JPH08112873A - Foam and manufacture thereof - Google Patents

Foam and manufacture thereof

Info

Publication number
JPH08112873A
JPH08112873A JP7013564A JP1356495A JPH08112873A JP H08112873 A JPH08112873 A JP H08112873A JP 7013564 A JP7013564 A JP 7013564A JP 1356495 A JP1356495 A JP 1356495A JP H08112873 A JPH08112873 A JP H08112873A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
foam
layer
foaming
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7013564A
Other languages
Japanese (ja)
Inventor
Satoyuki Kobayashi
智行 小林
Kenji Miyazaki
建次 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP7013564A priority Critical patent/JPH08112873A/en
Publication of JPH08112873A publication Critical patent/JPH08112873A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PURPOSE: To obtain excellent lightweight properties, heat insulating properties and compressive strength by a method wherein a highly expanding thermoplastic resin foam having a specified value of expansion ratio and a thermoplastic resin body are integrally formed in the hollow part of each square shape of the thermoplastic resin body having a lattice-like horizontal sectional shape. CONSTITUTION: A large number of double-layered circular cylinders, each of which is equipped with an inner layer made of a highly expandable thermoplastic resin composition and having circular crosssection, and an outer layer made of a thermoplastic resin, are arranged in close vicinity to one another. Under the condition that the circular cylinders are kept at a fixed interval between a pair of interval retaining plates, the circular cylinders are fed between and pinched by the opposing surfaces of double driving endless belts, which suppress the axial expansion of the double-layered circular cylinders. By heating after preheating, the highly expandable thermoplastic resin composition is expanded by the expansion ratio of 1,000-5,000% so as to expand the double-layered circular cylinders outwards, resulting in filling up gap and then deforming respective circular cylinders into square cylinders and, at the same time, fusing the outer layers together. Finally, by being cooled down, sheet-like foam 12, in which the highly expanding thermoplastic resin foam 11 and the thermoplastic resin body 10 are integrally formed in respective square hollow parts of the thermoplastic resin body 10 having lattice-like horizontal sectional shape, is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発泡体及びその製造方
法に関する。
FIELD OF THE INVENTION The present invention relates to a foam and a method for producing the same.

【0002】[0002]

【従来の技術】熱可塑性樹脂発泡体は、軽量性、断熱性
に優れているため、屋上断熱材、床用断熱材、自動車用
天井材等に使用されているが、圧縮強度に欠けるという
問題があった。
BACKGROUND OF THE INVENTION Thermoplastic resin foams are used for roof insulation, floor insulation, automobile ceiling materials, etc. because of their excellent lightness and heat insulation properties, but they lack the compressive strength. was there.

【0003】そこで、上記問題を解決するものとして、
2以上の繊維強化樹脂層が、多数の樹脂柱を介してつな
がれ、繊維強化樹脂層相互間における樹脂柱部分以外に
は、発泡体が充填されている樹脂発泡体が提案されてい
る(特開平4−151238号公報参照)。
Therefore, as a solution to the above problem,
A resin foam has been proposed in which two or more fiber-reinforced resin layers are connected via a large number of resin columns, and a foam is filled in a portion other than the resin column portion between the fiber-reinforced resin layers (Japanese Patent Laid-Open No. Hei 10-242242). No. 4-151238).

【0004】しかしながら、上記樹脂発泡体では、発泡
体中に複数の樹脂柱が個々に埋め込まれた状態であるた
めに補強効果が充分ではない。若し、高圧縮強度を得よ
うとすれば、発泡体中に多数の樹脂柱を密に埋め込む必
要があるが、このようにすれば発泡体の軽量化が阻害さ
れることになる。
However, in the above resin foam, the reinforcing effect is not sufficient because a plurality of resin columns are individually embedded in the foam. If a high compressive strength is to be obtained, it is necessary to densely embed a large number of resin columns in the foam, but this would hinder the weight reduction of the foam.

【0005】また、上記の同じ課題解決のために、2台
の押出機を使用し、一方の押出機から発泡剤を含有する
熱可塑性樹脂を押出してコアとしつつ、他方の押出機か
ら熱可塑性樹脂を押出してコアを被覆し、これを金型内
に射出発泡せしめて樹脂発泡体を得る方法(特開昭52
−104574号公報参照)も提案されている。
In order to solve the same problem as described above, two extruders are used, and one extruder extrudes a thermoplastic resin containing a foaming agent into a core, while the other extruder extrudes thermoplastic resin. A method in which a resin is extruded to coat a core, and this is injection-foamed in a mold to obtain a resin foam (JP-A-52)
Japanese Patent Laid-Open No. 104574) is also proposed.

【0006】上記方法では、外側に熱可塑性樹脂の表皮
が形成されるとともに、内部に熱可塑性樹脂の発泡組織
層と無発泡組織層である熱可塑性樹脂層との混在物が形
成され力学的に柱の役目をなす熱可塑性樹脂層が縦横に
内在することになるが、実際には発泡性熱可塑性樹脂を
均一に金型内に供給することは困難である。したがっ
て、樹脂発泡体中に上記柱の役目をなす熱可塑性樹脂層
を均一に形成することは難しいため、得られた樹脂発泡
体の圧縮強度が部分的に不充分になるうらみがある。
In the above method, a skin of a thermoplastic resin is formed on the outer side, and a mixture of a foamed tissue layer of the thermoplastic resin and a thermoplastic resin layer which is a non-foamed tissue layer is formed on the inside to mechanically Although the thermoplastic resin layer serving as a pillar exists in the vertical and horizontal directions, it is actually difficult to uniformly supply the expandable thermoplastic resin into the mold. Therefore, since it is difficult to uniformly form the thermoplastic resin layer serving as the pillar in the resin foam, there is a tendency that the compression strength of the obtained resin foam is partially insufficient.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、軽量
性、断熱性及び圧縮強度に優れた発泡体及びその製造方
法を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a foam which is excellent in lightness, heat insulation and compressive strength, and a method for producing the foam.

【0008】[0008]

【課題を解決するための手段】請求項1の発明による発
泡体は、水平断面形状が格子状の熱可塑性樹脂体の各四
角形状の中空部内に、発泡倍率が10〜50倍である熱
可塑性樹脂高発泡体が熱可塑性樹脂体と一体的に形成さ
れていることを特徴とするものである。
According to a first aspect of the present invention, there is provided a thermoplastic resin body having a foaming ratio of 10 to 50 times in each rectangular hollow portion of a thermoplastic resin body having a horizontal cross-section. The high resin foam is formed integrally with the thermoplastic resin body.

【0009】請求項2の発明による発泡体は、水平断面
形状がハニカム状の熱可塑性樹脂体の各六角形状の中空
部内に、発泡倍率が10〜50倍である熱可塑性樹脂高
発泡体が熱可塑性樹脂体と一体的に形成されていること
を特徴とするものである。
According to a second aspect of the present invention, in a foamed body of a thermoplastic resin having a honeycomb-shaped horizontal cross section, a thermoplastic resin high foam having a foaming ratio of 10 to 50 times is formed in each hexagonal hollow portion. It is characterized in that it is formed integrally with the plastic resin body.

【0010】請求項3の発明による発泡体は、水平断面
形状がハニカム状の熱可塑性樹脂体の各六角形状の中空
部内に、発泡倍率が5〜45倍でありかつ孔径が1〜1
0mmの貫通孔を有する熱可塑性樹脂高発泡体が熱可塑
性樹脂体と一体的に形成されていることを特徴とするも
のである。
According to the third aspect of the present invention, the foamed body has a foaming ratio of 5 to 45 times and a pore size of 1 to 1 in each hexagonal hollow portion of a thermoplastic resin body having a horizontal honeycomb cross section.
It is characterized in that a high thermoplastic resin foam having a 0 mm through hole is integrally formed with the thermoplastic resin body.

【0011】請求項4の発明は、請求項1、2又は3の
発明による発泡体において、熱可塑性樹脂体が水平断面
に対して垂直方向に配向した繊維を含有していることを
特徴とするものである。
A fourth aspect of the invention is characterized in that, in the foam according to the first, second or third aspect of the invention, the thermoplastic resin body contains fibers oriented in a direction perpendicular to a horizontal cross section. It is a thing.

【0012】請求項5の発明による発泡体は、水平断面
形状が格子状の熱可塑性樹脂低発泡体の各四角形状の中
空部内に、熱可塑性樹脂高発泡体が低発泡体と一体的に
形成され、高発泡体の発泡倍率が10〜50倍であり、
低発泡体の発泡倍率が高発泡体の発泡倍率より5倍以上
低いことを特徴とするものである。
According to a fifth aspect of the present invention, the thermoplastic resin high foam is integrally formed with the low foam in the hollow portion of each rectangular shape of the thermoplastic resin low foam having a lattice-shaped horizontal cross section. The expansion ratio of the high foam is 10 to 50 times,
It is characterized in that the expansion ratio of the low foam is 5 times or more lower than the expansion ratio of the high foam.

【0013】請求項6の発明による発泡体は、水平断面
形状がハニカム状の熱可塑性樹脂低発泡体の各六角形状
の中空部内に、熱可塑性樹脂高発泡体が低発泡体と一体
的に形成され、高発泡体の発泡倍率が10〜50倍であ
り、低発泡体の発泡倍率が高発泡体の発泡倍率より5倍
以上低いことを特徴とするものである。
According to a sixth aspect of the present invention, in the foamed body of low thermoplastic resin having a honeycomb-shaped horizontal cross section, the high foamed thermoplastic resin is integrally formed with the low foamed material in each hexagonal hollow portion. The expansion ratio of the high foam is 10 to 50 times, and the expansion ratio of the low foam is 5 times or more lower than the expansion ratio of the high foam.

【0014】請求項7の発明による発泡体は、水平断面
形状がハニカム状の熱可塑性樹脂低発泡体の各六角形状
の中空部内に、孔径が1〜10mmの貫通孔を有する熱
可塑性樹脂高発泡体が低発泡体と一体的に形成され、高
発泡体の発泡倍率が5〜45倍であり、低発泡体の発泡
倍率が3倍以下であることを特徴とするものである。
According to a seventh aspect of the present invention, in the foamed thermoplastic resin having a honeycomb-shaped horizontal cross-section, a thermoplastic resin high-foamed material having through holes with a hole diameter of 1 to 10 mm is provided in each hexagonal hollow portion. The body is integrally formed with the low foam, the high foam has an expansion ratio of 5 to 45 times, and the low foam has an expansion ratio of 3 times or less.

【0015】請求項8の発明は、請求項5、6又は7の
発明による発泡体において、低発泡体が水平断面に対し
て垂直方向に配向した繊維を含有していることを特徴と
するものである。
The invention of claim 8 is characterized in that, in the foam according to the invention of claim 5, 6 or 7, the low foam contains fibers oriented in a direction perpendicular to a horizontal section. Is.

【0016】請求項9の発明による発泡体の製造方法
は、高発泡性熱可塑性樹脂組成物よりなる内層と、熱可
塑性樹脂よりなる外層とを備えた2層筒又は2層柱を、
多数相互に接するかまたは近接する状態に並べるととも
に、このように並べられた多数の2層筒又は2層柱をそ
の軸方向の発泡を規制する一対の規制部材で挟んだのち
加熱し、高発泡性熱可塑性樹脂組成物を発泡させて外層
どうしを融着せしめ、全体を一体化させることを特徴と
するものである。
The method for producing a foam according to the invention of claim 9 comprises a two-layer cylinder or a two-layer cylinder comprising an inner layer made of a highly expandable thermoplastic resin composition and an outer layer made of a thermoplastic resin.
A large number of two-layer cylinders or two-layer columns arranged in such a manner as to be in contact with or close to each other are sandwiched by a pair of regulating members that regulate foaming in the axial direction, and then heated to achieve high foaming. The thermoplastic resin composition is foamed to fuse the outer layers to each other so that the whole is integrated.

【0017】請求項10の発明による発泡体の製造方法
は、高発泡性熱可塑性樹脂組成物よりなる内層と、熱可
塑性樹脂よりなる外層とを備えた2層円筒を、多数相互
が線接触するように千鳥配置に並べるとともに、このよ
うに並べられた多数の2層筒をその軸方向の発泡を規制
する一対の規制部材で挟んだのち加熱し、高発泡性熱可
塑性樹脂組成物を発泡させてそれぞれ六角柱状体に変形
せしめるとともに、外層どうしを融着せしめ、全体を一
体化させることを特徴とするものである。
In the method for producing a foam according to the tenth aspect of the present invention, a large number of two-layer cylinders having an inner layer made of a highly foamable thermoplastic resin composition and an outer layer made of a thermoplastic resin are in line contact with each other. As described above, a large number of two-layer cylinders arranged in this way are sandwiched by a pair of regulating members that regulate foaming in the axial direction, and then heated to foam the highly foamable thermoplastic resin composition. It is characterized in that each of them is transformed into a hexagonal columnar body, and the outer layers are fused together so that the whole is integrated.

【0018】請求項11の発明による発泡体の製造方法
は、発泡倍率5〜45倍の発泡体が得られる高発泡性熱
可塑性樹脂組成物よりなる内層と、熱可塑性樹脂よりな
る外層とを備えかつ内層の内外径及び内層の発泡後の発
泡倍率の関係が、 2√3d1 2 −100π≦πTI(d1 2 −d2 2 )≦
2√3d1 2 −π (d1 は内層の外径を、d2 は内層の内径を、TIは内
層の発泡後の発泡倍率をそれぞれ表わす)の式の条件を
満たす2層円筒を、多数相互が線接触するように千鳥配
置に並べるとともに、このように並べられた多数の2層
円筒をその軸方向の発泡を規制する一対の規制部材で挟
んだのち加熱し、発泡性熱可塑性樹脂組成物を発泡さ
せ、それぞれ孔径が1〜10mmの貫通孔を有する六角
柱状体に変形せしめるとともに、外層どうしを融着せし
め、全体を一体化させることを特徴とするものである。
The method for producing a foam according to the invention of claim 11 comprises an inner layer made of a highly expandable thermoplastic resin composition capable of obtaining a foam having an expansion ratio of 5 to 45 times, and an outer layer made of a thermoplastic resin. In addition, the relationship between the inner and outer diameters of the inner layer and the expansion ratio of the inner layer after foaming is 2√3d 1 2 −100π ≦ πTI (d 1 2 −d 2 2 ) ≦
2√3d 1 2 −π (d 1 is the outer diameter of the inner layer, d 2 is the inner diameter of the inner layer, and TI is the foaming ratio of the inner layer after foaming). A plurality of two-layer cylinders arranged in this way are arranged in a staggered arrangement so that they are in line contact with each other, and the two-layer cylinders are sandwiched by a pair of regulating members that regulate foaming in the axial direction, and then heated to form a foamable thermoplastic resin composition. It is characterized in that the material is foamed and deformed into a hexagonal columnar body having through holes each having a hole diameter of 1 to 10 mm, and the outer layers are fused to each other so as to be integrated as a whole.

【0019】請求項12の発明による発泡体の製造方法
は、高発泡性熱可塑性樹脂組成物よりなる内層と、低発
泡性熱可塑性樹脂組成物よりなる外層とを備えた2層筒
又は2層柱を、多数相互に接するかまたは近接する状態
に並べるとともに、このように並べられた多数の2層筒
又は2層柱をその軸方向の発泡を規制する一対の規制部
材で挟んだのち加熱し、高低両発泡性熱可塑性樹脂組成
物を発泡させて外層どうしを融着せしめ、全体を一体化
させることを特徴とするものである。
The method for producing a foam according to the twelfth aspect of the present invention is a two-layer tube or two layers having an inner layer made of a high-foaming thermoplastic resin composition and an outer layer made of a low-foaming thermoplastic resin composition. A large number of pillars are arranged in contact with or close to each other, and a large number of two-layer cylinders or two-layer pillars arranged in this manner are sandwiched by a pair of regulating members for regulating foaming in the axial direction and then heated. The high and low foamable thermoplastic resin composition is foamed to fuse the outer layers to each other so that the whole is integrated.

【0020】請求項13の発明による発泡体の製造方法
は、高発泡性熱可塑性樹脂組成物よりなる内層と、低発
泡性熱可塑性樹脂組成物よりなる外層とを備えた2層円
筒を、多数相互が線接触するように千鳥配置に並べると
ともに、このように並べられた多数の2層筒をその軸方
向の発泡を規制する一対の規制部材で挟んだのち加熱
し、高低両発泡性熱可塑性樹脂組成物を発泡させてそれ
ぞれ六角柱状体に変形せしめるとともに、外層どうしを
融着せしめ、全体を一体化させることを特徴とするもの
である。
The method for producing a foam according to the thirteenth aspect of the present invention comprises a large number of two-layer cylinders having an inner layer made of a highly foamable thermoplastic resin composition and an outer layer made of a low foamable thermoplastic resin composition. While arranging them in a staggered arrangement so that they are in line contact with each other, a large number of two-layer cylinders arranged in this way are sandwiched by a pair of regulating members that regulate foaming in the axial direction, and then heated It is characterized in that the resin composition is foamed to be transformed into hexagonal columnar bodies, respectively, and the outer layers are fused together so as to be integrated as a whole.

【0021】請求項14の発明は、請求項10又は13
の発明による発泡体の製造方法において、2層円筒の内
層の外径及び内径並びに内層の発泡後の発泡倍率の関係
が、 (d2 /d1 2 ≦1−2×√3/(πTI) (d1 は内層の外径を、d2 は内層の内径を、TIは内
層の発泡後の発泡倍率をそれぞれ表わす)の式の条件を
満たすことを特徴とするものである。
The invention of claim 14 is the invention of claim 10 or 13.
In the method for manufacturing a foam according to the invention of the inner layer of the outer and inner diameters as well as the expansion ratio after the inner layer of the foamed relationship two layers cylinder, (d 2 / d 1) 2 ≦ 1-2 × √3 / (πTI (D 1 represents the outer diameter of the inner layer, d 2 represents the inner diameter of the inner layer, and TI represents the foaming ratio of the inner layer after foaming).

【0022】請求項15の発明による発泡体の製造方法
は、発泡倍率5〜45倍の発泡体が得られる高発泡性熱
可塑性樹脂組成物よりなる内層と、発泡倍率が3倍以下
の発泡体が得られる低発泡性樹脂組成物よりなる外層と
を備えかつ内層と外層の各内径及び外層の外径、並びに
内層及び外層の発泡後の発泡倍率の関係が、 2√3d3 2 −100π≦π{TI(d1 2 −d2 2
+TO(d3 2 −d1 2)}≦2√3d3 2 −π (d1 は内層の外径を、d2 は内層の内径を、d3 は外
層の外径を、TIは内層の発泡後の発泡倍率を、TOは
外層の発泡後の発泡倍率をそれぞれ表わす)の式の条件
を満たす2層円筒を、多数相互が線接触するように千鳥
配置に並べるとともに、このように並べられた多数の2
層円筒をその軸方向の発泡を規制する一対の規制部材で
挟んだのち加熱し、発泡性熱可塑性樹脂組成物を発泡さ
せ、それぞれ孔径が1〜10mmの貫通孔を有する六角
柱状体に変形せしめるとともに、外層どうしを融着せし
め、全体を一体化させることを特徴とするものである。
According to a fifteenth aspect of the present invention, in the method for producing a foam, an inner layer made of a highly expandable thermoplastic resin composition capable of obtaining a foam having a foaming ratio of 5 to 45 times, and a foam having a foaming ratio of 3 times or less. Is provided with an outer layer made of a low foaming resin composition, and the inner diameter of each of the inner layer and the outer layer, the outer diameter of the outer layer, and the expansion ratio of the inner layer and the outer layer after foaming is 2√3d 3 2 -100π ≦ π {TI (d 1 2 −d 2 2 )
+ TO (d 3 2 −d 1 2 )} ≦ 2√3d 3 2 −π (d 1 is the outer diameter of the inner layer, d 2 is the inner diameter of the inner layer, d 3 is the outer diameter of the outer layer, and TI is the inner layer. The foaming ratio after foaming, TO represents the foaming ratio after foaming of the outer layer), and the two-layer cylinders satisfying the condition of the formula (1) are arranged in a zigzag arrangement so that they are in line contact with each other, and are arranged in this way. Many 2
The layered cylinder is sandwiched by a pair of restricting members that restrict foaming in the axial direction, and then heated to foam the expandable thermoplastic resin composition, which is transformed into a hexagonal columnar body having through holes each having a hole diameter of 1 to 10 mm. At the same time, the outer layers are fused together so that the whole is integrated.

【0023】請求項16の発明は、請求項9、10、1
1、12、13、14又は15の発明による発泡体の製
造方法において、外層が水平断面に対して垂直方向に配
向した繊維を含有していることを特徴とするものであ
る。
The invention of claim 16 relates to claims 9, 10, and 1.
The method for producing a foam according to the invention of 1, 12, 13, 14 or 15 is characterized in that the outer layer contains fibers oriented in a direction perpendicular to a horizontal section.

【0024】高低両発泡性熱可塑性樹脂組成物は、熱可
塑性樹脂と熱分解型発泡剤よりなるものである。
The high / low foamable thermoplastic resin composition comprises a thermoplastic resin and a pyrolytic foaming agent.

【0025】熱可塑性樹脂体、熱可塑性樹脂高低両発泡
体及び高低両発泡性熱可塑性樹脂組成物に用いられる各
熱可塑性樹脂は、特に限定されないが、その具体例とし
ては、低密度ポリエチレン、高密度ポリエチレン、直鎖
状低密度ポリエチレン、ランダムポリプロピレン、ホモ
ポリプロピレン、ブロック状ポリプロピレン等のオレフ
ィン系樹脂;ポリ塩化ビニル、塩素化ポリ塩化ビニル、
ABS樹脂、ポリスチレン、ポリカーボネート、ポリア
ミド、ポリフッ化ビニリデン、ポリフェニレンサルファ
イド、ポリスルホン、ポリエーテルケトン及びこれらの
共重合体等があげられる。これらは単独で用いられても
よいし、併用されてもよい。なかでも、得られる製品発
泡体の柔軟性を向上させるためには、低密度ポリエチレ
ン、高密度ポリエチレン、直鎖状低密度ポリエチレン、
ランダムポリプロピレン、ホモポリプロピレン、ブロッ
ク状ポリプロピレン等のオレフィン系樹脂またはこれら
の混合物が好ましく、高密度ポリエチレン、ホモポリプ
ロピレンが特に好ましい。
Each thermoplastic resin used in the thermoplastic resin, the thermoplastic resin high / low foam, and the high / low foamable thermoplastic resin composition is not particularly limited, but specific examples thereof include low-density polyethylene and high-density polyethylene. Density polyethylene, linear low-density polyethylene, random polypropylene, homopolypropylene, block polypropylene, and other olefin resins; polyvinyl chloride, chlorinated polyvinyl chloride,
Examples thereof include ABS resin, polystyrene, polycarbonate, polyamide, polyvinylidene fluoride, polyphenylene sulfide, polysulfone, polyether ketone, and copolymers thereof. These may be used alone or in combination. Among them, in order to improve the flexibility of the product foam obtained, low density polyethylene, high density polyethylene, linear low density polyethylene,
Olefin resins such as random polypropylene, homopolypropylene and block polypropylene, or a mixture thereof are preferable, and high density polyethylene and homopolypropylene are particularly preferable.

【0026】上記熱可塑性樹脂は、必ずしも架橋する必
要がないが、高低両発泡体及び高低両発泡性熱可塑性樹
脂組成物に用いられるものについては、架橋する方が好
ましい。架橋方法としては、例えば、(イ)シラングラ
フト重合体を熱可塑性樹脂に溶融混練後、水処理を行っ
て架橋する方法、(ロ)過酸化物を熱可塑性樹脂に過酸
化物の分解温度より低い温度で溶融混練後、過酸化物の
分解温度以上に加熱して架橋する方法及び(ハ)熱可塑
性樹脂に放射線を照射して架橋する方法等があげられ
る。
The above-mentioned thermoplastic resin is not necessarily required to be crosslinked, but it is preferable to crosslink the resin used in both the high and low foam and the high and low foamable thermoplastic resin composition. Examples of the cross-linking method include (a) a method in which a silane graft polymer is melt-kneaded with a thermoplastic resin and then water treatment is performed to cross-link it, and (b) a peroxide is added to the thermoplastic resin depending on the decomposition temperature of the peroxide. Examples of the method include a method of cross-linking by melting and kneading at a low temperature, and then heating at a temperature not lower than the decomposition temperature of peroxide to crosslink, and a method of irradiating the thermoplastic resin with radiation to crosslink.

【0027】まず、(イ)の架橋方法について述べる。
シラングラフト重合体の具体例としては、例えば、シラ
ングラフトポリエチレン、シラングラフトポリプロピレ
ン等があげられる。なお、シラングラフト重合体は、例
えば重合体を不飽和シラン化合物でグラフト変性して得
られる。
First, the crosslinking method (a) will be described.
Specific examples of the silane graft polymer include silane graft polyethylene and silane graft polypropylene. The silane graft polymer is obtained, for example, by graft-modifying the polymer with an unsaturated silane compound.

【0028】不飽和シラン化合物の具体例としては、一
般に、RR’nSiY3-n (Rはビニル基、アリル
基、プロペニル基、シクロヘキセニル基等のアルケニル
基;グリシジル基;アミノ基、メタクリル基;γ−クロ
ロエチル基、γ−ブロモエチル基等のハロゲン化アルキ
ル基等の有機官能基、R’は、メチル基、エチル基、プ
ロピル基、デシル基等の脂肪族飽和炭化水素基であり、
Yは、メトキシ基、エトキシ基、ホルミルオキシ基、プ
ロピオノキシアリールアミノ基等の加水分解可能な有機
官能基であり、nは、0、1、2である。)で表され、
また、架橋反応が速いことから、特に、CH2 =CHS
i(OA)3 (Aは、炭素数1〜8、好ましくは、1〜
4の脂肪族飽和炭化水素基)が好ましく、例えば、ビニ
ルトリメトキシシラン、ビニルトリエトキシシラン、ビ
ニルトリアセトキシシラン等があげられる。
Specific examples of unsaturated silane compounds are generally RR'nSiY3-n (R is an alkenyl group such as vinyl group, allyl group, propenyl group, cyclohexenyl group; glycidyl group; amino group, methacryl group; γ -Organofunctional groups such as halogenated alkyl groups such as chloroethyl group and γ-bromoethyl group, R'is an aliphatic saturated hydrocarbon group such as methyl group, ethyl group, propyl group and decyl group,
Y is a hydrolyzable organic functional group such as a methoxy group, an ethoxy group, a formyloxy group, and a propionoxyarylamino group, and n is 0, 1, or 2. ),
In addition, since the crosslinking reaction is fast, especially CH2 = CHS
i (OA) 3 (A represents 1 to 8 carbon atoms, preferably 1 to
4 aliphatic saturated hydrocarbon groups) are preferable, and examples thereof include vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltriacetoxysilane.

【0029】シラングラフト重合体の製造方法として
は、一般的なものが用いられ、例えば、ポリエチレン、
RR’SiY2 (式中、Rは、オレフィン性不飽和な1
価の炭化水素又はハイドロカーボンオキシ基であり、各
Yは、加水分解し得る有機基であり、R’はRが基Yで
ある。)で表される不飽和シラン化合物及び有機過酸化
物を反応させ、シラングラフトポリエチレンを得る方法
があげられる。
As a method for producing the silane graft polymer, a general method is used, for example, polyethylene,
RR'SiY2 (wherein R is an olefinically unsaturated 1
Is a valent hydrocarbon or hydrocarbonoxy group, each Y is a hydrolyzable organic group, and R ′ is a group Y in which R is a group. ) And an organic peroxide are reacted to obtain a silane-grafted polyethylene.

【0030】シラングラフト重合体は、例えば、Yがメ
トキシ基である場合には、これが水と接触することによ
り加水分解し水酸基となり、異なる分子の水酸基同士が
反応し、Si−O−Si結合を生じて、シラングラフト
重合体同士が架橋する。この際、シラノール縮合触媒を
併用するのが望ましい。
For example, when Y is a methoxy group, the silane graft polymer is hydrolyzed by contact with water to become a hydroxyl group, and hydroxyl groups of different molecules react with each other to form a Si--O--Si bond. As a result, the silane graft polymers are crosslinked with each other. At this time, it is desirable to use a silanol condensation catalyst together.

【0031】シラノール縮合触媒の具体例としては、ジ
ブチル錫ジアセテート、ジブチル錫ジラウレート、ジオ
クチル錫ジラウレート、オクタン酸錫、オレイン酸錫、
2−エチルヘキサン酸亜鉛、オクタン酸コバルト、ナフ
テン酸鉛、カプリル酸亜鉛、ステアリン酸亜鉛等があげ
られる。
Specific examples of the silanol condensation catalyst include dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, tin octoate, tin oleate,
Examples thereof include zinc 2-ethylhexanoate, cobalt octanoate, lead naphthenate, zinc caprylate, and zinc stearate.

【0032】シラノール縮合触媒の使用量は、多いと発
泡性熱可塑性樹脂組成物において不純物となって発泡倍
率が低下し、また、少ないと架橋反応速度が低下するこ
とにより水処理の時間が長くなるので、シラングラフト
重合体に対して、0.001〜10重量%が好ましく、
より好ましくは0.01〜3重量%である。
When the amount of the silanol condensation catalyst used is large, it becomes an impurity in the expandable thermoplastic resin composition to reduce the expansion ratio, and when it is small, the crosslinking reaction rate decreases and the water treatment time increases. Therefore, 0.001 to 10% by weight is preferable with respect to the silane graft polymer,
More preferably, it is 0.01 to 3% by weight.

【0033】シラングラフト重合体を熱可塑性樹脂に混
合する方法は、均一に混合できる方法であればよく、例
えば、熱可塑性樹脂及びシラングラフト重合体を1軸ま
たは2軸押出機に供給して溶融混練する方法、ロールを
用いて溶融混練する方法、ニーダーを用いて溶融混練す
る方法等があげられる。
The silane graft polymer may be mixed with the thermoplastic resin so long as it can be uniformly mixed. For example, the thermoplastic resin and the silane graft polymer are fed to a uniaxial or biaxial extruder and melted. Examples thereof include a kneading method, a melt kneading method using a roll, and a melt kneading method using a kneader.

【0034】水処理する方法は、水中に浸漬する方法の
他、水蒸気にさらす方法も含まれ、100℃より高い温
度で処理する場合は、加圧下において行えばよい。
The method of treating with water includes a method of immersing in water and a method of exposing to water vapor. When treating at a temperature higher than 100 ° C., it may be carried out under pressure.

【0035】水処理する際の水及び水蒸気の温度は、低
いと、架橋反応速度が低下し、また、高いと、各円筒の
外層同士が融着するので、50〜130℃が好ましい。
90〜120℃が特に好ましい。
When the temperature of water and water vapor during the water treatment is low, the crosslinking reaction rate is low, and when it is high, the outer layers of the respective cylinders are fused to each other.
90-120 degreeC is especially preferable.

【0036】水処理時間は、短いと、架橋反応が完全に
進行しないときがあり、また、長いと、2層筒又は2層
柱の外層同士が融着するので、5分〜12時間が好まし
い。シラングラフト重合体の添加量は、多いと、架橋が
かかりすぎて発泡体の発泡倍率が低下し、また、少ない
と、セルが破泡して均一なセルが得られず、得られる発
泡体の圧縮強度が低下するので、熱可塑性樹脂100重
量部に対して、5〜50重量部が好ましく、20〜35
重量部が特に好ましい。
If the water treatment time is short, the crosslinking reaction may not proceed completely, and if the water treatment time is long, the outer layers of the two-layer cylinder or the two-layer column are fused, so that 5 minutes to 12 hours are preferable. . When the addition amount of the silane graft polymer is large, the crosslinking is excessively applied to reduce the foaming ratio of the foam, and when the addition amount is small, the cells are broken and uniform cells cannot be obtained. Since the compressive strength decreases, it is preferably 5 to 50 parts by weight with respect to 100 parts by weight of the thermoplastic resin, and 20 to 35 parts by weight.
Part by weight is especially preferred.

【0037】つぎに(ロ)の架橋方法について述べる。
(ロ)の架橋方法において用いられる過酸化物の具体例
としては、ジブチルパーオキサイド、ジクミルパーオキ
サイド、ターシャルブチルクミルパーオキサイド、ジイ
ソプロピルパーオキサイド等があげられるが、なかでも
ジクミルパーオキサイド、ターシャルブチルクミルパー
オキサイドが好ましく、ジクミルパーオキサイドが特に
好ましい。
Next, the crosslinking method (b) will be described.
Specific examples of the peroxide used in the crosslinking method (b), dibutyl peroxide, dicumyl peroxide, tertiary butyl cumyl peroxide, diisopropyl peroxide, and the like, but among them, dicumyl peroxide, Tertiary butyl cumyl peroxide is preferred, and dicumyl peroxide is particularly preferred.

【0038】過酸化物を熱可塑性樹脂に添加する方法
は、特に限定されず、例えば上記シラングラフト重合体
を熱可塑性樹脂に溶融混練するのと同様の方法があげら
れる。過酸化物の添加量は、多いと、樹脂分解反応が進
行しやすく、得られる発泡体が着色し、また、少ない
と、熱可塑性樹脂の架橋が不充分となり、高発泡倍率の
発泡体が得られないので、熱可塑性樹脂100重量部に
対して、0.5〜5重量部が好ましく、1〜3重量部が
特に好ましい。
The method of adding the peroxide to the thermoplastic resin is not particularly limited, and examples thereof include the same method as the melt kneading of the silane graft polymer with the thermoplastic resin. If the addition amount of the peroxide is large, the resin decomposition reaction easily proceeds and the resulting foam is colored, and if the addition amount is small, the crosslinking of the thermoplastic resin is insufficient and a foam having a high expansion ratio is obtained. Therefore, 0.5 to 5 parts by weight is preferable, and 1 to 3 parts by weight is particularly preferable, relative to 100 parts by weight of the thermoplastic resin.

【0039】最後に(ハ)の架橋方法について述べる。
放射線の照射量は、多いと、架橋がかかりすぎて得られ
る発泡体の発泡倍率が低下し、また、少ないと、セルが
破泡して均一なセルが得られず、得られる発泡体の圧縮
強度が低下するので、1〜20Mradが好ましく、3
〜10Mradが特に好ましい。
Finally, the crosslinking method (c) will be described.
When the irradiation dose of radiation is large, the foaming ratio of the foam obtained by cross-linking is reduced, and when it is small, the cells are broken and uniform cells cannot be obtained, resulting in compression of the resulting foam. 1-20 Mrad is preferable because the strength decreases, and 3
Particularly preferred is 10 Mrad.

【0040】放射線を照射する方法の具体例としては、
2台の電子線発生装置を用い、その間に熱可塑性樹脂を
通過させ、熱可塑性樹脂に電子線を照射する方法があげ
られる。
Specific examples of the method of irradiating with radiation include:
A method of using two electron beam generators and passing a thermoplastic resin between them to irradiate the thermoplastic resin with an electron beam can be mentioned.

【0041】ところで、本発明による発泡体は通常シー
ト状であるが、熱可塑性樹脂高発泡体を熱可塑性樹脂体
と、また、熱可塑性樹脂高発泡体を熱可塑性樹脂低発泡
体とそれぞれ一体的に形成させるには、熱融着によるの
が一般的であるが、重合体よりなる接着層を介して接着
してもよい。
The foam according to the present invention is usually in the form of a sheet, but the high thermoplastic resin foam and the high thermoplastic resin foam are integrally formed with the low thermoplastic resin foam, respectively. In general, heat fusion is used for the formation, but they may be adhered via an adhesive layer made of a polymer.

【0042】熱融着による場合、融着されるべき双方の
熱可塑性樹脂が異種であるとすると、両者は熱融着性を
有している必要がある。熱融着性を有する熱可塑性樹脂
の組み合わせの具体例としては、高密度ポリエチレンと
低密度ポリエチレン、高密度ポリエチレンと直鎖状低密
度ポリエチレン、高密度ポリエチレンとホモポリプロピ
レン、ポリ塩化ビニルとポリ酢酸ビニル等の組み合わせ
が挙げられるが、得られた発泡体の柔軟性及び強度の向
上の点から、高密度ポリエチレンと低密度ポリエチレ
ン、高密度ポリエチレンと直鎖状低密度ポリエチレン、
高密度ポリエチレンとホモポリプロピレンの組み合わせ
が好ましく、高密度ポリエチレンとホモポリプロピレン
の組み合わせが特に好ましい。
In the case of heat fusion, if the two thermoplastic resins to be fused are different from each other, it is necessary that both have a heat fusion property. Specific examples of the combination of the thermoplastic resin having heat fusion property include high density polyethylene and low density polyethylene, high density polyethylene and linear low density polyethylene, high density polyethylene and homopolypropylene, polyvinyl chloride and polyvinyl acetate. And the like, but from the viewpoint of improving the flexibility and strength of the obtained foam, high-density polyethylene and low-density polyethylene, high-density polyethylene and linear low-density polyethylene,
A combination of high-density polyethylene and homopolypropylene is preferable, and a combination of high-density polyethylene and homopolypropylene is particularly preferable.

【0043】接着層を形成する重合体は、接着すべき双
方の熱可塑性樹脂を確実に接着できるものであれば特に
限定されないが、その具体例としてはエチレンビニルア
セテート、エチレン−塩化ビニル共重合体、熱可塑性樹
脂及び熱可塑性樹脂高発泡体に用いられる熱可塑性樹脂
単量体の共重合体、熱可塑性樹脂低発泡体及び熱可塑性
樹脂高発泡体に用いられる熱可塑性樹脂単量体の共重合
体をあげることができる。特に接着性の優れている点か
ら、熱可塑性樹脂体、熱可塑性樹脂低発泡体及び熱可塑
性樹脂高発泡体に用いられる熱可塑性樹脂各々の単量体
の共重合体が好ましい。
The polymer forming the adhesive layer is not particularly limited as long as it can reliably bond both thermoplastic resins to be bonded, and specific examples thereof include ethylene vinyl acetate and ethylene-vinyl chloride copolymer. Copolymer of thermoplastic resin monomer used for thermoplastic resin and high foam of thermoplastic resin, copolymerization of thermoplastic resin monomer used for low foam of thermoplastic resin and high foam of thermoplastic resin You can raise your coalescence. Particularly, from the viewpoint of excellent adhesiveness, a copolymer of monomers of each of the thermoplastic resins used in the thermoplastic resin body, the low thermoplastic resin foam and the high thermoplastic resin foam is preferable.

【0044】熱可塑性樹脂体、熱可塑性樹脂高低両発泡
体及び高低両発泡性熱可塑性樹脂組成物に用いられる熱
可塑性樹脂には、強度向上のため、必要に応じて、ガラ
ス短繊維、炭素短繊維、ポリエステル短繊維等の補強
材、炭酸カルシウム、水酸化アルミニウム、ガラスパウ
ダー等の充填剤等を添加してもよい。
The thermoplastic resin used in the thermoplastic resin material, the thermoplastic resin high / low foam material, and the high / low foamable thermoplastic resin composition may contain glass short fiber, carbon short fiber, if necessary, in order to improve the strength. Reinforcing materials such as fibers and polyester short fibers, fillers such as calcium carbonate, aluminum hydroxide and glass powder may be added.

【0045】補強材として、短繊維を添加する場合は、
多いと、発泡時セルを破壊し、高発泡倍率が得られず、
また、少ないと、得られる製品発泡体の補強効果が充分
でないので、その添加量は、熱可塑性樹脂体、熱可塑性
樹脂高低両発泡体及び高低両発泡性熱可塑性樹脂組成物
に用いられる各々の熱可塑性樹脂100重量部に対して
1〜20重量部が好ましく、3〜10重量部が特に好ま
しい。
When short fibers are added as a reinforcing material,
If too much, the cells are destroyed during foaming, and a high expansion ratio cannot be obtained,
Further, if the amount is small, the reinforcing effect of the resulting product foam is not sufficient, so the addition amount of each is used for the thermoplastic resin body, the thermoplastic resin high-low foam and high-low foamable thermoplastic resin composition. 1 to 20 parts by weight is preferable with respect to 100 parts by weight of the thermoplastic resin, and 3 to 10 parts by weight is particularly preferable.

【0046】短繊維の長さは、長いと、得られる製品発
泡体の軽量化が実現できず、また、短いと、同発泡体の
補強効果が充分でないので、1〜30mmが好ましく、
3〜5mmが特に好ましい。
If the length of the short fibers is long, the weight of the resulting product foam cannot be reduced, and if the length is short, the reinforcing effect of the foam is not sufficient. Therefore, the length is preferably 1 to 30 mm.
3-5 mm is especially preferable.

【0047】充填剤を添加する場合は、多いと、得られ
る製品発泡体の軽量化が実現できず、また、少ないと、
同発泡体の補強効果が充分でないので、熱可塑性樹脂
体、熱可塑性樹脂高低両発泡体及び高低両発泡性熱可塑
性樹脂組成物の各々の熱可塑性樹脂100重量部に対し
て10〜100重量部が好ましく、30〜50重量部が
特に好ましい。
When the amount of the filler to be added is too large, the weight reduction of the product foam obtained cannot be realized.
Since the reinforcing effect of the foam is not sufficient, 10 to 100 parts by weight per 100 parts by weight of each of the thermoplastic resin, the thermoplastic resin high and low foam, and the high and low expandable thermoplastic resin composition. Is preferred, and 30 to 50 parts by weight is particularly preferred.

【0048】熱可塑性樹脂高発泡体の発泡倍率は、高い
と、高発泡体内での輻射伝熱が大きくなって発泡体の熱
伝導率が増大し、得られる製品発泡体の断熱性が低下
し、また、低いと、同発泡体の軽量化が実現できないの
で、10〜50倍に限定され、なかでも15〜40倍が
好ましく、15〜30倍が特に好ましい。
If the foaming ratio of the thermoplastic resin high foam is high, the radiant heat transfer in the high foam increases, the thermal conductivity of the foam increases, and the heat insulation of the resulting product foam decreases. Further, if it is low, the weight saving of the foam cannot be realized, so that it is limited to 10 to 50 times, preferably 15 to 40 times, particularly preferably 15 to 30 times.

【0049】但し、熱可塑性樹脂高発泡体に孔径が1〜
10mmの貫通孔を有する場合は、製品発泡体の強度が
貫通孔を有しない場合に比して低下するので、熱可塑性
樹脂高発泡体の発泡倍率は、製品発泡体の軽量性はやや
低下するものの、5〜45倍に限定される。
However, the thermoplastic resin high foam has a pore size of 1 to
When the through-hole has a diameter of 10 mm, the strength of the product foam is reduced as compared with the case where the through-hole is not provided. Therefore, the expansion ratio of the high thermoplastic resin foam is slightly reduced in the lightness of the product foam. However, it is limited to 5 to 45 times.

【0050】高発泡性熱可塑性樹脂組成物から得られる
高発泡体の発泡倍率も上記と同じ理由により、10〜5
0倍が好ましく、更に15〜40倍が好ましく、特に1
5〜30倍が好ましく、また、高発泡体に貫通孔を有す
る場合は、上記と同じ理由で5〜45倍に限定される。
For the same reason as above, the expansion ratio of the high foam obtained from the high expandable thermoplastic resin composition is 10 to 5.
It is preferably 0 times, more preferably 15 to 40 times, especially 1
5 to 30 times is preferable, and when the high foam has through holes, it is limited to 5 to 45 times for the same reason as above.

【0051】得られる発泡体の軽量性は、高発泡体の発
泡倍率に大きく左右され、高発泡体の発泡倍率により発
泡体の軽量性が略決定される。
The lightness of the resulting foam is largely dependent on the expansion ratio of the high foam, and the lightness of the foam is substantially determined by the expansion ratio of the high foam.

【0052】一方、得られる発泡体の圧縮強度は、低発
泡体の発泡倍率に大きく左右され、低発泡体の発泡倍率
により発泡体の圧縮強度が略決定される。
On the other hand, the compressive strength of the obtained foam is largely influenced by the expansion ratio of the low foam, and the compression strength of the foam is substantially determined by the expansion ratio of the low foam.

【0053】したがって、所望の軽量性を有する発泡体
を得るために、高発泡体の発泡倍率が決定され、次に所
望の圧縮強度を得るために低発泡体の発泡倍率が決定さ
れる。低発泡体の発泡倍率を決定する際、該発泡倍率と
高発泡倍率との差が5倍未満であると、得られる発泡体
は軽量性を維持することができるものの、圧縮強度に欠
けたものとなる。よって、軽量性と圧縮強度とのバラン
スのとれた発泡体を得るためには、低発泡体の発泡倍率
は、高発泡体の発泡倍率より5倍以上低いことが必要で
ある。
Therefore, in order to obtain a foam having a desired lightness, the expansion ratio of the high foam is determined, and then the expansion ratio of the low foam is determined to obtain the desired compression strength. When determining the expansion ratio of the low foam, if the difference between the expansion ratio and the high expansion ratio is less than 5 times, the resulting foam can maintain the lightness but lacks the compressive strength. Becomes Therefore, in order to obtain a foam having a good balance between lightness and compressive strength, the expansion ratio of the low foam needs to be 5 times or more lower than the expansion ratio of the high foam.

【0054】但し、熱可塑性樹脂高発泡体に孔径が1〜
10mmの貫通孔を有する場合は、製品発泡体の強度
が、貫通孔を有しない場合に比して低下するので、熱可
塑性樹脂低発泡体の発泡倍率は、3倍以下に限定され
る。
However, the thermoplastic resin high foam has a pore size of 1 to
In the case of having a through hole of 10 mm, the strength of the product foam is lower than that in the case of not having a through hole, so the expansion ratio of the low thermoplastic resin foam is limited to 3 times or less.

【0055】熱可塑性樹脂体、熱可塑性樹脂高発泡体及
び熱可塑性樹脂低発泡体の各厚みは、厚いと、得られる
製品発泡体の軽量化が実現できず、また、薄いと、同発
泡体の圧縮強度が低下するので、熱可塑性樹脂体の場
合、0.05〜3.0mmが好ましく、0.1〜2.0
mmが特に好ましい。高発泡体の場合、10〜200m
mが好ましく、20〜100mmが特に好ましい。低発
泡体の場合、0.05〜5mmが好ましく、0.1〜2
mmが特に好ましい。
If the thickness of each of the thermoplastic resin body, the high thermoplastic resin foam and the low thermoplastic resin foam is large, the resulting product foam cannot be reduced in weight. In the case of a thermoplastic resin body, 0.05 to 3.0 mm is preferable, and the compressive strength of 0.1 to 2.0 is preferable.
mm is particularly preferred. 10-200m for high foam
m is preferable and 20-100 mm is especially preferable. In the case of low foam, 0.05-5 mm is preferable, 0.1-2
mm is particularly preferred.

【0056】ここで、熱可塑性樹脂体及び低発泡体の厚
みとは、製品発泡体の水平断面方向の格子又はハニカム
を構成する壁の平均の厚みをいい、高発泡体の厚みと
は、水平断面方向の厚みの最大値という。
Here, the thickness of the thermoplastic resin body and the low-foamed body means the average thickness of the walls forming the lattice or the honeycomb in the horizontal cross-sectional direction of the product foamed body, and the thickness of the high-foamed body means the horizontal thickness. It is called the maximum thickness in the cross-sectional direction.

【0057】なお、熱可塑性樹脂体、低発泡体及び高発
泡体の各厚みは、均一である必要はなく、不均一であっ
てもよい。
The thicknesses of the thermoplastic resin body, the low-foamed body and the high-foamed body need not be uniform and may be non-uniform.

【0058】熱可塑性樹脂体又は低発泡体が製品発泡体
中に多いと、軽量化が実現できず、また、少ないと、得
られる製品発泡体の強度が低下するので、製品発泡体中
の含有割合は、熱可塑性樹脂体の場合、5〜35重量%
が好ましく、8〜25重量%が特に好ましいものであ
り、低発泡体の場合、10〜50重量%が好ましく、1
0〜30重量%が特に好ましい。
When the amount of the thermoplastic resin or the low foam is large in the product foam, the weight reduction cannot be realized, and when it is small, the strength of the product foam obtained is lowered, so that it is contained in the product foam. The ratio is 5 to 35% by weight in the case of a thermoplastic resin body
Is preferable, and 8 to 25% by weight is particularly preferable, and in the case of a low foam, 10 to 50% by weight is preferable and 1
0 to 30% by weight is particularly preferred.

【0059】格子の各四角形状中空部の形状は、すべて
同一である必要はなく、また、四角のなかには菱形も含
まれるし、正方形である必要もない。したがって、格子
を構成している壁は、必ずしも縦横に直交していなくて
もよく、斜めに交わっていてもよい。ハニカム状の各六
角状中空部の形状も、すべて同一である必要はなく、六
角形と認識できる程度でありさえすればよい。
The shapes of the quadrangular hollow portions of the lattice do not all have to be the same, and the squares do not have to include a rhombus or a square. Therefore, the walls forming the lattice do not necessarily need to be orthogonal to each other in the vertical and horizontal directions, and may intersect diagonally. The shapes of the honeycomb-shaped hexagonal hollow portions do not have to be the same as long as they can be recognized as hexagons.

【0060】熱可塑性樹脂体、熱可塑性樹脂低発泡体、
及び2層筒又は2層柱の外層に垂直方向に配向した状態
で含有せしめられている繊維としては、ガラス繊維、炭
素繊維等の無機繊維、ポリエステル繊維、アラミド繊維
等の有機繊維、鉄繊維、アルミ繊維等の金属繊維があげ
られ、なかでも、軽量、高強度、経済性の点からガラス
繊維が好ましい。
Thermoplastic resin, low thermoplastic resin foam,
And, as the fibers contained in the outer layer of the two-layer cylinder or the two-layer column in a state of being oriented in the vertical direction, glass fibers, inorganic fibers such as carbon fibers, polyester fibers, organic fibers such as aramid fibers, iron fibers, Examples of the metal fibers include aluminum fibers, and among them, glass fibers are preferable from the viewpoints of light weight, high strength, and economical efficiency.

【0061】繊維の添加量は、多いと得られる製品発泡
体の重量が増加し、また、少ないと同発泡体の補強効果
が充分でないので、熱可塑性樹脂体、熱可塑性樹脂低発
泡体、及び2層筒又は2層柱の外層に用いられる各々の
熱可塑性樹脂100重量部に対して10〜40重量部が
好ましく、15〜30重量部が特に好ましい。
When the amount of the fiber added is large, the weight of the product foam obtained is increased, and when the amount is small, the reinforcing effect of the foam is not sufficient, so that the thermoplastic resin body, the low thermoplastic resin foam, and 10 to 40 parts by weight is preferable, and 15 to 30 parts by weight is particularly preferable, relative to 100 parts by weight of each thermoplastic resin used for the outer layer of the two-layer cylinder or the two-layer column.

【0062】繊維長さは、製品発泡体の厚さにもよる
が、一般的に長いほうが好ましく、短いと、製品発泡体
の補強効果が充分でないので、5mm以上が好ましく、
8mm以上が特に好ましい。
Although the fiber length depends on the thickness of the product foam, it is generally preferably longer, and if it is short, the reinforcing effect of the product foam is not sufficient.
8 mm or more is particularly preferable.

【0063】請求項8又は16の発明においては、繊維
は、製品発泡体の水平断面に対して垂直方向に配向して
いる必要がある。垂直方向に配向していない繊維は、製
品発泡体の圧縮強度向上の効果に寄与しにくいからであ
る。したがって、繊維のうち70重量%以上が垂直方向
に配向していることが好ましく、90重量%以上の繊維
が垂直方向に配向していることが更に好ましい。
In the invention of claim 8 or 16, the fibers must be oriented in the vertical direction with respect to the horizontal cross section of the product foam. This is because fibers that are not oriented in the vertical direction are unlikely to contribute to the effect of improving the compressive strength of the product foam. Therefore, 70% by weight or more of the fibers are preferably oriented in the vertical direction, and more preferably 90% by weight or more of the fibers are oriented in the vertical direction.

【0064】2層筒又は2層柱の製造方法は、特に限定
されないが、たとえば、つぎの方法があげられる。 (i) 内層用熱可塑性樹脂及び熱分解型発泡剤等を2軸押
出機に供給し、熱分解型発泡剤の分解温度より低い温度
で溶融混練する一方、外層用熱可塑性樹脂及び必要に応
じて添加される熱分解型発泡剤等を異なる2軸押出機に
供給し、熱分解型発泡剤を添加した場合は、その分解温
度より低い温度で溶融混練し、共押出しにより、熱可塑
性樹脂又は低発泡性熱可塑性樹脂組成物で被覆された高
発泡性熱可塑性樹脂組成物を長尺筒状又は柱状に押出
し、これを所要数所定長さ毎に切断することにより2層
筒又は2層柱を得る方法。
The method for producing the two-layer cylinder or the two-layer column is not particularly limited, but the following method may be mentioned, for example. (i) The thermoplastic resin for the inner layer and the thermal decomposition type foaming agent are supplied to the twin-screw extruder and melt-kneaded at a temperature lower than the decomposition temperature of the thermal decomposition type foaming agent, while the thermoplastic resin for the outer layer and if necessary When a thermal decomposition type foaming agent or the like added as a thermal decomposition type foaming agent is supplied to different twin-screw extruders and the thermal decomposition type foaming agent is added, it is melt-kneaded at a temperature lower than the decomposition temperature, and co-extruded to give A two-layer cylinder or a two-layer cylinder by extruding a high-foaming thermoplastic resin composition coated with a low-foaming thermoplastic resin composition into a long tubular shape or a columnar shape and cutting this into a required number of predetermined lengths How to get.

【0065】(ii)内層用熱可塑性樹脂及び熱分解型発泡
剤等を2軸押出機に供給し、熱分解型発泡剤の分解温度
より低い温度で溶融混練し高発泡性熱可塑性樹脂組成物
を長尺筒状又は柱状に押出し、これを所要数所定長さ毎
に切断した後、これらを、熱可塑性樹脂又は低発泡性熱
可塑性樹脂組成物が溶融された有機溶媒溶液中に浸漬す
るか、同様の有機溶媒溶液をこれらに塗布することによ
り2層筒又は2層柱を得る方法。
(Ii) Thermoplastic resin for inner layer, pyrolytic foaming agent, etc. are fed to a twin-screw extruder and melt-kneaded at a temperature lower than the decomposition temperature of the pyrolytic foaming agent to obtain a highly foamable thermoplastic resin composition. Is extruded into a long cylindrical shape or a columnar shape, and after cutting this into a required number of predetermined lengths, these are immersed in an organic solvent solution in which a thermoplastic resin or a low foaming thermoplastic resin composition is melted. , A method of obtaining a two-layer cylinder or a two-layer cylinder by applying the same organic solvent solution to them.

【0066】なお、上記塗布の場合、用いられる有機溶
媒は、熱可塑性樹脂組成物または低発泡性熱可塑性樹脂
組成物を溶解することができればよく、その具体例とし
ては、トルエン、キシレン等の芳香族炭化水素;塩化メ
チレン、ジクロロメタン等のハロゲン化炭化水素;アセ
トン、メチルエチルケトン等のケトン化合物等があげら
れる。外層用熱可塑性樹脂に、ポリスチレンまたはポリ
塩化ビニルを用いた場合には、塩化メチレンを、ポリ塩
化ビニルを用いた場合には、メチルエチルケトンを用い
るのが好ましい。
In the case of the above-mentioned coating, the organic solvent used is only required to be able to dissolve the thermoplastic resin composition or the low-foaming thermoplastic resin composition, and specific examples thereof include aromatic compounds such as toluene and xylene. Group hydrocarbons; halogenated hydrocarbons such as methylene chloride and dichloromethane; ketone compounds such as acetone and methyl ethyl ketone. When polystyrene or polyvinyl chloride is used as the thermoplastic resin for the outer layer, methylene chloride is preferably used, and when polyvinyl chloride is used, methyl ethyl ketone is preferably used.

【0067】外層が軸方向に配向した繊維を含有する2
層筒又は2層柱の製造方法は、特に限定されないが、た
とえば、つぎの方法があげられる。
The outer layer contains axially oriented fibers 2
The method for producing the layered cylinder or the two-layered column is not particularly limited, but the following method may be mentioned, for example.

【0068】(i) 内層用熱可塑性樹脂及び熱分解型発泡
剤等を2軸押出機に供給し、熱分解型発泡剤の分解温度
より低い温度で溶融混練する一方、繊維、外層用熱可塑
性樹脂及び必要に応じて添加される熱分解型発泡剤等を
異なる2軸押出機に供給し、熱分解型発泡剤を添加した
場合は、その分解温度より低い温度で溶融混練し、繊維
を軸方向に配向させながら共押出しにより、熱可塑性樹
脂又は低発泡性熱可塑性樹脂組成物で被覆された高発泡
性熱可塑性樹脂組成物を長尺筒状又は柱状に押出し、こ
れを所要数所定長さ毎に切断することにより2層筒又は
2層柱を得る方法。
(I) The thermoplastic resin for the inner layer, the pyrolytic foaming agent, etc. are fed to a twin-screw extruder and melt-kneaded at a temperature lower than the decomposition temperature of the pyrolytic foaming agent, while the thermoplastic resin for the fiber and the outer layer is thermoplastic. When the resin and the pyrolytic foaming agent that is added as necessary are supplied to different twin-screw extruders, and when the pyrolytic foaming agent is added, the fibers are melt-kneaded at a temperature lower than the decomposition temperature and the fiber is By co-extrusion while orienting in a direction, a highly expandable thermoplastic resin composition coated with a thermoplastic resin or a low expandable thermoplastic resin composition is extruded into a long tubular shape or a columnar shape, and the required number of the predetermined length is obtained. A method of obtaining a two-layer cylinder or a two-layer column by cutting each layer.

【0069】(ii)一方向に揃えられた多数の連続強化繊
維及び外層用熱可塑性樹脂及び必要に応じて添加される
熱分解型発泡剤等よりなる繊維強化熱可塑性樹脂長尺筒
又は柱を、繊維が軸方向になるようにして連続的に賦形
するとともに、内層用熱可塑性樹脂及び熱分解型発泡剤
等を2軸押出機に供給し、熱分解型発泡剤の分解温度よ
り低い温度で溶融混練し、賦形した繊維強化熱可塑性樹
脂長尺筒の内面に被覆するように押出し、これを所要数
所定長さ毎に切断することにより2層筒又は2層柱を得
る方法。
(Ii) A long tube or column of fiber-reinforced thermoplastic resin composed of a large number of continuous reinforcing fibers aligned in one direction, a thermoplastic resin for the outer layer, and a pyrolytic foaming agent added as necessary. , The fibers are continuously shaped in the axial direction, and the thermoplastic resin for the inner layer and the pyrolytic foaming agent are supplied to the twin-screw extruder, and the temperature is lower than the decomposition temperature of the pyrolytic foaming agent. A method of obtaining a two-layer cylinder or a two-layer column by melt-kneading with, extruding so as to cover the inner surface of a shaped fiber-reinforced thermoplastic resin long cylinder, and cutting this into a required number of predetermined lengths.

【0070】(iii) 内層用熱可塑性樹脂及び熱分解型発
泡剤等を2軸押出機に供給し、熱分解型発泡剤の分解温
度より低い温度で溶融混練し、長尺筒状又は柱状に押出
するとともに、その外側から、一方向に揃えられた多数
の連続強化繊維、外層用熱可塑性樹脂及び必要に応じて
添加される熱分解型発泡剤等よりなる繊維強化熱可塑性
樹脂シートを、繊維が軸方向になるようにしながら、筒
状に曲げて両縁を突き合わせ、積層被覆し、得られた積
層長尺筒又は柱を所要数所定長さ毎に切断することによ
り2層筒又は2層柱を得る方法。
(Iii) The thermoplastic resin for the inner layer, the pyrolytic foaming agent, etc. are fed to a twin-screw extruder and melt-kneaded at a temperature lower than the decomposition temperature of the pyrolytic foaming agent to form a long tubular or columnar shape. While extruding, from the outside, a fiber-reinforced thermoplastic resin sheet composed of a large number of continuous reinforcing fibers aligned in one direction, a thermoplastic resin for the outer layer, and a thermal decomposition type foaming agent added as necessary, In a tubular shape by bending the both ends to abut each other, stacking and covering them, and cutting the obtained laminated long cylinders or columns at a required number of predetermined lengths to form a two-layer cylinder or a two-layer cylinder. How to get the pillars.

【0071】2層筒が2層円筒の場合、その内層の外径
は、大きいと、高発泡体の比率が大きくなって、得られ
る製品発泡体の強度が低下し、また、小さいと、同発泡
体の軽量化が実現できないので、10〜100mmが好
ましく、20〜50mmが特に好ましい。
In the case where the two-layer cylinder is a two-layer cylinder, if the outer diameter of the inner layer is large, the ratio of the high-foamed product is high, and the strength of the product foam obtained is low. Since it is not possible to reduce the weight of the foamed body, 10 to 100 mm is preferable, and 20 to 50 mm is particularly preferable.

【0072】外層の厚みは厚いと、得られる製品発泡体
の軽量化が実現できず、また薄いと、同発泡体の圧縮強
度が低下するので、0.05〜5.0mmが好ましく、
0.1〜2.0mmが特に好ましい。なお、外層には、
筒又は柱の周面を被覆する層のみならず、同周面及び上
下面の全面を被覆する層も含まれる。
If the thickness of the outer layer is large, the resulting product foam cannot be reduced in weight, and if it is thin, the compressive strength of the foam decreases, so 0.05 to 5.0 mm is preferable,
Particularly preferred is 0.1 to 2.0 mm. In addition, in the outer layer,
Not only the layer that covers the peripheral surface of the cylinder or the column but also the layer that covers the entire peripheral surface and the entire upper and lower surfaces is included.

【0073】2層筒又は2層柱の高さは、断面形状の大
きさにもよるが、高いと、発泡時不安定となるので、1
00mm以下が好ましく、より好ましくは50mm以下
である。
The height of the two-layer cylinder or the two-layer cylinder depends on the size of the cross-sectional shape, but if the height is high, it becomes unstable during foaming.
The length is preferably 00 mm or less, more preferably 50 mm or less.

【0074】製品発泡体を得るために用いられる多数の
2層筒又は2層柱の高さは、すべて同一であることが好
ましいが、必ずしも正確に同一であることはなく、ほぼ
同一であればよい。
The heights of the many two-layer cylinders or two-columns used to obtain the product foam are preferably all the same, but they are not necessarily exactly the same, and if they are almost the same. Good.

【0075】ここで、千鳥配置とは、各2層円筒を中心
としてその周囲に6つの2層円筒が配置されていること
をいう。
Here, the staggered arrangement means that each two-layer cylinder is centered and six two-layer cylinders are arranged around it.

【0076】2層筒又は2層柱の横断面形状は、真円形
であることが望ましいが、長円形、三角形、四角形、多
角形でも差支えない。2層柱の場合、その外層は周面の
みならず、上下面にも形成されることがある。
The cross-sectional shape of the two-layer cylinder or the two-layer cylinder is preferably a perfect circle, but may be an oval, a triangle, a quadrangle, or a polygon. In the case of a two-layer pillar, the outer layer may be formed not only on the peripheral surface but also on the upper and lower surfaces.

【0077】2層筒の配置方法は、特に限定されない
が、縦横に規則正しく配置することは、得られる熱可塑
性樹脂体又は熱可塑性樹脂低発泡体の水平断面形状が規
則正しい格子状となり、製品発泡体の圧縮強度が向上し
好適である。
The method of arranging the two-layer cylinder is not particularly limited, but if the two-layer cylinders are arranged regularly in the vertical and horizontal directions, the horizontal cross-sectional shape of the obtained thermoplastic resin body or low thermoplastic resin foam will be a regular lattice shape, and the product foam will be formed. It is preferable because the compressive strength of is improved.

【0078】又、少なくとも1つと接する状態に配置す
ることは、製品発泡体中、熱可塑性樹脂低発泡体中に孔
が生じにくくなり、得られる製品発泡体の熱伝導度が低
下し、断熱性が向上し好適である。
Also, when the product foam is arranged in contact with at least one of them, pores are less likely to be formed in the product foam and the low thermoplastic resin foam, the thermal conductivity of the product foam obtained is lowered, and the heat insulation property is reduced. Is improved, which is preferable.

【0079】更に、2層筒を円筒とし、多数相互に線接
触するように千鳥配置に並べることは、熱可塑性樹脂体
又は熱可塑性樹脂低発泡体の水平断面形状がハニカム状
となり、得られる製品発泡体の圧縮強度が向上し、好適
である。
Furthermore, by arranging the two-layer cylinder as a cylinder and arranging them in a zigzag arrangement so that a large number of them are in line contact with each other, the thermoplastic resin body or the thermoplastic resin low-foam body has a honeycomb-shaped horizontal cross-section, and the obtained product This is preferable because the compressive strength of the foam is improved.

【0080】この際、2層円筒の内外径並びに内層の発
泡後の発泡倍率の関係を (d2 /d1 2 ≦1−2×√3/(πTI) (d1 は内層の外径を、d2 は内層の内径を、TIは内
層の発泡後の発泡倍率をそれぞれ表わす)とすること
は、熱可塑性樹脂体又は熱可塑性樹脂低発泡体の水平断
面形状が規則正しいハニカム状となり、製品発泡体の圧
縮強度が向上し、且つ、熱可塑性樹脂高発泡体に孔が生
じず、断熱性が向上(熱伝導度が低下)し、好適であ
る。
At this time, the relationship between the inner and outer diameters of the two-layer cylinder and the expansion ratio of the inner layer after foaming is (d 2 / d 1 ) 2 ≦ 1-2 × √3 / (πTI) (d 1 is the outer diameter of the inner layer) , D 2 is the inner diameter of the inner layer, and TI is the foaming ratio of the inner layer after foaming, which means that the thermoplastic resin body or the low thermoplastic resin foam has a regular honeycomb cross-section, It is preferable since the compressive strength of the foam is improved, the pores are not formed in the high thermoplastic resin foam, and the heat insulating property is improved (the thermal conductivity is decreased).

【0081】2層柱を相互に近接する状態に並べる場
合、無規則に配置してもよいが、縦横に規則正しく配置
するか、仮想されるハニカムにおける各六角形の頂点及
びその中心点に配置することが望ましい。
When the two-layer pillars are arranged in close proximity to each other, they may be arranged irregularly, but they may be arranged regularly in the vertical and horizontal directions, or may be arranged at the vertices of each hexagon in the virtual honeycomb and the center points thereof. Is desirable.

【0082】前者のように配置すると、得られる熱可塑
性樹脂体又は熱可塑性樹脂低発泡体の水平断面形状が格
子状となり、後者のように配置すると、熱可塑性樹脂体
又は熱可塑性樹脂低発泡体の水平断面形状がハニカム状
となり、圧縮強度が向上するからである。なお、後者の
配置で得られた製品発泡体は、前者の配置で得られたも
のより、圧縮強度は向上する。
When the former is arranged, the horizontal cross-sectional shape of the obtained thermoplastic resin or the low thermoplastic resin foam becomes a lattice, and when the latter is arranged, the thermoplastic resin or the low thermoplastic resin foam is arranged. This is because the horizontal cross-section has a honeycomb shape and the compressive strength is improved. The product foam obtained in the latter arrangement has higher compressive strength than that obtained in the former arrangement.

【0083】単に仮想されるハニカムにおける各六角形
の頂点及びその中心点に2層柱を配置するだけでは、加
熱発泡したさい、多数の2層柱相互の外層どうしが全面
的に融着せず、部分的に空隙の生じることがありうる
が、ハニカムにおける角六角形を正六角形とし、次式の
条件を満足するようにすれば、上記空隙は生じない。
By simply disposing the two-layer pillars at the vertices and the center points of the hexagons in the virtual honeycomb, the outer layers of a large number of the two-layer pillars do not completely fuse to each other during heating and foaming, Although voids may partially occur, the voids do not occur if the square hexagon in the honeycomb is a regular hexagon and the condition of the following equation is satisfied.

【0084】 R2 ≦L2 ≦T×S/√3 …(式A) L:ハニカムを構成する正六角形の一辺の長さ T:内層の発泡倍率 S:2層柱の底面の面積 R:2層柱の底面の最大長 上記において、得られる発泡体の圧縮強度は、(イ)無
規則配置、(ロ)少なくとも1つと接触配置、(ハ)仮
想ハニカムにおける六角形の頂点及び点配置、(ニ)
(ハ)において一定条件配置の順に大きくなる。
R 2 ≦ L 2 ≦ T × S / √3 (Formula A) L: length of one side of a regular hexagon forming the honeycomb T: expansion ratio of inner layer S: area of bottom of two-layer column R: Maximum length of the bottom surface of the two-layer pillar In the above, the compressive strength of the obtained foam is (a) irregular arrangement, (b) contact arrangement with at least one, (c) hexagonal vertex and point arrangement in the virtual honeycomb, (D)
In (c), it becomes larger in the order of fixed condition arrangement.

【0085】ハニカム状の熱可塑性樹脂体及び熱可塑性
樹脂低発泡体におけるハニカムを構成する六角形の一辺
の長さは、低発泡体及び高発泡体の発泡倍率、熱可塑性
樹脂体及び低発泡体の厚み、並びに要求される発泡体の
圧縮強度等により、適宜設定されるが、長いと、製品発
泡体の圧縮強度が低下し、短いと、製品発泡体の発泡倍
率が小さくなって軽量性が低下するので、5〜100m
mが好ましく、10〜50mmがより好ましい。
The length of one side of the hexagon forming the honeycomb in the honeycomb-shaped thermoplastic resin body and the thermoplastic resin low-foamed body is the expansion ratio of the low-foamed body and the high-foamed body, the thermoplastic resin body and the low-foamed body. Is appropriately set depending on the thickness of the product, the required compressive strength of the foam, and the like. When the length is long, the compressive strength of the product foam decreases, and when the length is short, the expansion ratio of the product foam is small and the lightness is low. As it decreases, 5-100m
m is preferable and 10-50 mm is more preferable.

【0086】また、内層の内外径及び内層の発泡後の発
泡倍率並びに、必要に応じて外層の外径を、 2√3d1 2 −100π≦πTI(d1 2 −d2 2 )≦
2√3d1 2 −π (d1 は内層の外径を、d2 は内層の内径を、TIは内
層の発泡後の発泡倍率をそれぞれ表わす)又は、 2√3d3 2 −100π≦π{TI(d1 2 −d2 2
+TO(d3 2 −d1 2)}≦2√3d3 2 −π (d1 は内層の外径を、d2 は内層の内径を、d3 は外
層の外径を、TIは内層の発泡後の発泡倍率を、TOは
外層の発泡後の発泡倍率をそれぞれ表わす)とすること
により、熱可塑性樹脂高発泡体の中央部に、孔径が1〜
10mmの貫通孔を生じさせることができ、コンクリー
ト下水管等貫通孔を必要とする用途等に好適に用いるこ
とができる。
The inner and outer diameters of the inner layer, the expansion ratio of the inner layer after foaming, and, if necessary, the outer diameter of the outer layer are set to 2√3d 1 2 −100π ≦ πTI (d 1 2 −d 2 2 ) ≦
2√3d 1 2 −π (d 1 represents the outer diameter of the inner layer, d 2 represents the inner diameter of the inner layer, and TI represents the expansion ratio of the inner layer after foaming) or 2√3d 3 2 −100π ≦ π { TI (d 1 2 −d 2 2 )
+ TO (d 3 2 −d 1 2 )} ≦ 2√3d 3 2 −π (d 1 is the outer diameter of the inner layer, d 2 is the inner diameter of the inner layer, d 3 is the outer diameter of the outer layer, and TI is the inner layer. By setting the expansion ratio after foaming to (TO represents the expansion ratio after foaming of the outer layer), the thermoplastic resin high foam has a pore size of 1 to 1 at the center.
Since a through hole of 10 mm can be formed, it can be suitably used for applications requiring a through hole such as a concrete sewer pipe.

【0087】多数の2層筒又は2層柱をその軸方向の発
泡を規制する一対の規制部材で挾むのであるが、一対の
規制部材としては、連続生産上、2層筒又は2層柱の高
さとほぼ同一の間隔を保って上下に配置せられかつ同一
速度で同一方向に移動せられる一対のポリテトラフルオ
ロエチレン製ベルトが好ましいが、静止状態の上下一対
の鉄板や上下一対の金網板等でもよい。
A large number of two-layer cylinders or two-layer columns are sandwiched by a pair of regulating members that regulate the foaming in the axial direction. It is preferable to use a pair of polytetrafluoroethylene belts that are vertically arranged at substantially the same distance as the height of the sheet and are moved in the same direction at the same speed, but a pair of upper and lower iron plates and a pair of upper and lower wire mesh plates in a stationary state. And so on.

【0088】加熱方法は、熱分解型発泡剤の分解温度以
上に加熱できる方法であればよく、たとえば、電気ヒー
ター、遠赤外線ヒーター、加熱された油や空気等の加熱
媒体を循環させた加熱装置等を用いる方法があげられ
る。
Any heating method may be used as long as it can be heated above the decomposition temperature of the thermal decomposition type foaming agent. For example, an electric heater, a far infrared heater, a heating device in which a heating medium such as heated oil or air is circulated. And the like.

【0089】得られる製品発泡体の圧縮強度を一層向上
させるために、規制部材と2層筒又は2層柱との間に、
ガラスペーパー、チョップドストランドマット、熱可塑
性樹脂又は熱硬化性樹脂製シート、金属製シート等の補
強面材を供給し、製品発泡体の上下面に接合させるよう
にしてもよい。
In order to further improve the compressive strength of the resulting product foam, between the regulating member and the two-layer cylinder or the two-layer cylinder,
Reinforcing surface materials such as glass paper, chopped strand mat, thermoplastic resin or thermosetting resin sheet, and metal sheet may be supplied and bonded to the upper and lower surfaces of the product foam.

【0090】なお、ガラスペーパーとは薄手のガラス繊
維不織布をいい、通常、10〜25mm程度のガラス短
繊維が極微量のポリビニルアルコール等の樹脂により部
分的に結着されてなり、工業的には、いわゆる抄造法に
より製造されている。このようなガラスペーパーは重い
と、得られる製品発泡体の軽量化が実現できず、また、
軽いと、同発泡体の強度の向上が得られないので、10
〜100g/m2 が好ましく、20〜50g/m2 が特
に好ましい。
The glass paper is a thin glass fiber non-woven fabric, and is usually composed of short glass fibers of about 10 to 25 mm partially bound by a resin such as polyvinyl alcohol. Manufactured by the so-called papermaking method. If such a glass paper is heavy, the weight of the resulting product foam cannot be reduced, and
If it is light, the strength of the foam cannot be improved, so 10
Preferably ~100g / m 2, 20~50g / m 2 is particularly preferred.

【0091】上記熱可塑性樹脂製シートに用いられる熱
可塑性樹脂の具体例としては、ポリエチレン、ポリプロ
ピレン、ポリエチレンテレフタレート等があげられる。
Specific examples of the thermoplastic resin used in the above thermoplastic resin sheet include polyethylene, polypropylene, polyethylene terephthalate and the like.

【0092】上記熱硬化性樹脂製シートに用いられる熱
硬化性樹脂の具体例としては、メラミン樹脂、フェノー
ル樹脂、エポキシ樹脂、不飽和ポリエステル等があげら
れる。
Specific examples of the thermosetting resin used for the thermosetting resin sheet include melamine resin, phenol resin, epoxy resin, unsaturated polyester and the like.

【0093】金属製シートに用いられる金属の具体例と
しては、アルミニウム、鉄等があげられる。
Specific examples of the metal used for the metal sheet include aluminum and iron.

【0094】上記熱可塑性樹脂、熱硬化性樹脂又は金属
からなるシートの厚さは、厚いと、得られる製品発泡体
の軽量化が実現できず、また、薄いと、同発泡体の補強
効果が充分でないので、0.05〜1mmが好ましく、
0.1〜0.5mmが特に好ましい。
If the thickness of the sheet made of the above-mentioned thermoplastic resin, thermosetting resin or metal is large, it is not possible to reduce the weight of the product foam obtained, and if it is thin, the reinforcing effect of the foam is not achieved. Since it is not enough, 0.05-1 mm is preferable,
0.1 to 0.5 mm is particularly preferable.

【0095】請求項11及び15の発明において、孔径
を1〜10mmの範囲としたのは、孔径が1mm未満で
は、通水性、通気性に役立たず、また、10mmを超え
ると、得られる製品発泡体の剛性が低下するからであ
る。
In the eleventh and fifteenth aspects of the present invention, the pore diameter is set in the range of 1 to 10 mm because when the pore diameter is less than 1 mm, water permeability and air permeability are not useful, and when it exceeds 10 mm, the product foamed is obtained. This is because the rigidity of the body decreases.

【0096】ここで、内層の外径及び内径並びに外層の
外径及び内径は、多数の2層円筒のすべてについての平
均をいうものとする。
Here, the outer diameter and the inner diameter of the inner layer and the outer diameter and the inner diameter of the outer layer mean the average of all of the many two-layer cylinders.

【0097】つぎに、水平断面形状が格子状の熱可塑性
樹脂体又は熱可塑性樹脂低発泡体(以下両者を一括して
単に「熱可塑性樹脂体」という)の各四角状の中空部内
に、熱可塑性樹脂高発泡体が熱可塑性樹脂体と一体的に
形成されている発泡体の製造方法の一例を図1〜5を参
照して説明する。
Next, heat is applied to each square hollow portion of the thermoplastic resin body or the thermoplastic resin low-foamed body having a horizontal cross-sectional shape of a lattice (hereinafter, both are simply referred to as "thermoplastic resin body"). An example of a method for manufacturing a foam in which the high-plastic-plastic foam is integrally formed with the thermoplastic resin will be described with reference to FIGS.

【0098】まず、熱可塑性樹脂組成物又は低発泡性熱
可塑性樹脂組成物と高発泡性熱可塑性樹脂組成物を異な
る2軸押出機に供給して溶融混練し、共押出しにより2
層円筒状又は2層円柱状に押出し、所要数所定寸法毎に
切断することにより、図1に示すような高発泡性熱可塑
性樹脂組成物よりなる内層(1) (1A)と熱可塑性樹脂組成
物よりなる外層(2) とを備えた2層円筒(3) (図1(A)
参照)又は2層円柱(3A)(図1(B) 参照)を得る。な
お、以下2層円筒(3) のみについて説明するが、2層円
柱(3A)もこれと同様である。
First, the thermoplastic resin composition or the low-foaming thermoplastic resin composition and the high-foaming thermoplastic resin composition are fed to different twin-screw extruders, melt-kneaded, and co-extruded to obtain 2
An inner layer (1) (1A) and a thermoplastic resin composition made of a highly expandable thermoplastic resin composition as shown in FIG. 1 are obtained by extruding into a single-layer cylindrical shape or a two-layer cylindrical shape and cutting into a required number of predetermined dimensions. A two-layer cylinder (3) with an outer layer (2) made of material (Fig. 1 (A)
See) or a two-layer cylinder (3A) (see FIG. 1 (B)). Only the two-layer cylinder (3) will be described below, but the two-layer cylinder (3A) is also the same.

【0099】得られた多数の2層円筒(3) を図2に示す
ようにホッパ(4) に投入する。ホッパ(4) には、排出口
(5) が設けられており、ホッパ(4) の下には、その排出
口(5) に近接しかつ周面に複数の2層円筒受け凹所(6)
を有する回転ローラ(7) が配置せられている。凹所(6)
は軸及び周方向に所定間隔で設けられており、ホッパ
(4) の排出口(5) は、凹所(6) に対応するような形態と
なされている。
A large number of the obtained two-layer cylinders (3) are put into a hopper (4) as shown in FIG. The hopper (4) has an outlet
(5) is provided below the hopper (4) close to its outlet (5) and on the peripheral surface there are a plurality of two-layer cylindrical receiving recesses (6).
There is a rotating roller (7) arranged with. Recess (6)
Are provided at predetermined intervals in the axial and circumferential directions.
The outlet (5) of (4) is shaped so as to correspond to the recess (6).

【0100】回転ローラ(7) は、図2において、反時計
方向に回転しており、凹所(6) が排出口(5) のちょうど
下にくると、ホッパ(4) 内の2層円筒(3) が凹所(6) に
落下する。
The rotating roller (7) is rotating counterclockwise in FIG. 2, and when the recess (6) is just below the discharge port (5), it is a two-layer cylinder in the hopper (4). (3) falls into the recess (6).

【0101】回転ローラ(7) の下方には、図2に示すよ
うに、2層円筒(3) の高さとほぼ同一の間隔をおいて、
上下一対のポリテトラフルオロエチレン製駆動エンドレ
スベルト(8)(9)が配置せられている。両駆動エンドレス
ベルト(8)(9)が2層円筒(3)の加熱発泡による軸方向の
発泡を規制する規制部材であり、両駆動エンドレスベル
ト(8)(9)の対向面(8a)(9a)が2層円筒(3) の規制面とな
る。両対向面(8a)(9a)は、ともに後から前へ同一速度で
移動せしめられる。下側の駆動エンドレスベルト(9)
は、上側の駆動エンドレスベルト(8) より後方に突出し
ており、その後方突出上面(9b)に2層円筒(3) の高さと
ほぼ同じ間隔をおいてホッパ(4) の排出口(5) がのぞん
でいる。そして、両駆動エンドレスベルト(8)(9)の対向
面(8a)(9a)を上下から挾むように近接して、後から順に
予熱装置(27)、加熱装置(28)及び冷却装置(29)が配置さ
れている。なお、前記対向面(8a)(9a)の間隔を一定に保
つために、図2に鎖線で示す間隔保持板(30)を加熱装置
(28)とともに配置しておいてもよい。
Below the rotary roller (7), as shown in FIG. 2, at a distance substantially equal to the height of the two-layer cylinder (3),
A pair of upper and lower polytetrafluoroethylene drive endless belts (8) and (9) are arranged. The two-drive endless belts (8) and (9) are control members that control the foaming in the axial direction due to the heat foaming of the two-layer cylinder (3), and the opposing surfaces (8a) ( 9a) is the control surface of the double-layer cylinder (3). Both opposing surfaces (8a) and (9a) can be moved from the rear to the front at the same speed. Lower Drive Endless Belt (9)
Are projected rearward from the upper drive endless belt (8), and the rear projection upper surface (9b) is spaced at substantially the same height as the height of the two-layer cylinder (3), and the discharge port (5) of the hopper (4) is I'm looking for. Then, the opposing surfaces (8a) and (9a) of both drive endless belts (8) and (9) are close to each other so as to be sandwiched from above and below, and a preheating device (27), a heating device (28), and a cooling device (29) are sequentially arranged from the rear. Are arranged. In order to keep the distance between the facing surfaces (8a) and (9a) constant, a space holding plate (30) shown by a chain line in FIG.
It may be placed together with (28).

【0102】なお、前とは、図2、図6及び図8の右方
をいい、後とは、同図の左方をいうものとする。図2に
示すように、2層円筒(3) を1列の凹所(6) に収容した
回転ローラ(7)が180°回転すると、凹所(6) の開口
部が下向きになるので、凹所(6) 内の2層円筒(3) は1
列のまま落下し、下側の駆動エンドレスベルト(9) の後
方突出上面(9b)に供給せられる。同後方突出上面(9b)上
にある多数の2層円筒(3) は、たとえば図4に示すよう
に、縦横両方向に相互に近接する状態に並んでいる。そ
して上下駆動エンドレスベルト(8)(9)の移動にともな
い、両者の対向面(8a)(9a)が、前記配置の多数の2層円
筒(3) を自然に挾む。
The term "front" refers to the right side of FIGS. 2, 6 and 8, and the term "rear" refers to the left side of FIG. As shown in FIG. 2, when the rotating roller (7) that accommodates the two-layer cylinder (3) in one row of the recesses (6) rotates 180 °, the opening of the recesses (6) faces downward, The two-layer cylinder (3) in the recess (6) is 1
It falls in a row and is supplied to the rear projecting upper surface (9b) of the lower drive endless belt (9). A large number of two-layer cylinders (3) on the rearward projecting upper surface (9b) are arranged in a state of being close to each other in both vertical and horizontal directions as shown in FIG. 4, for example. Along with the movement of the vertical drive endless belts (8) and (9), the opposing surfaces (8a) and (9a) of the both naturally sandwich the two-layer cylinders (3) arranged as described above.

【0103】そこで、多数の2層円筒(3) を予熱装置(2
7)で予熱した後、加熱装置(28)で加熱することにより、
発泡性熱可塑性樹脂組成物を発泡させて各2層円筒(3)
を内外に膨張させることにより相互の隙間をうめ、例え
ば図5に示すように、それぞれ四角柱状体に変形せしめ
るとともに、外層どうしを融着せしめ、ついで冷却装置
(29)で冷却し、水平断面形状が格子状の熱可塑性樹脂体
(格子状熱可塑性樹脂壁)(10)の各四角形状の中空部内
に、熱可塑性樹脂高発泡体(11)が熱可塑性樹脂体(10)と
一体的に形成された発泡体(12)を得る。
Therefore, a large number of two-layer cylinders (3) are connected to the preheating device (2
After preheating with 7), by heating with the heating device (28),
Foamable thermoplastic resin composition is foamed to form each two-layer cylinder (3)
By expanding the inside and outside, a mutual gap is filled, and as shown in FIG. 5, for example, they are each transformed into a quadrangular prismatic body, and the outer layers are fused together, and then the cooling device.
Cooled in (29), the thermoplastic resin high foam (11) is thermoplastic in each square hollow of the thermoplastic resin body (lattice thermoplastic resin wall) with a horizontal cross-sectional shape (lattice thermoplastic resin wall) (10). A foam (12) integrally formed with the resin body (10) is obtained.

【0104】つぎに、水平断面形状がハニカム状の熱可
塑性樹脂体の各六角形状の中空部内に、熱可塑性樹脂高
発泡体が熱可塑性樹脂体と一体的に形成された発泡体の
製造法の一例を図6〜10を参照して説明する。
Next, in the method for producing a foamed product, the thermoplastic resin high-foamed body is integrally formed with the thermoplastic resin body in each hexagonal hollow portion of the thermoplastic resin body having a honeycomb shape in horizontal cross section. An example will be described with reference to FIGS.

【0105】上記と同じ2層円筒(3) を図6に示すよう
にホッパ(13)に投入する。ホッパ(13)には、横長の排出
口(14)が設けられており、ホッパ(13)の下には、その排
出口(14)に近接しかつ周面に対称形に一対の軸方向にの
びた2層円筒受け横長凹所(15)を有する回転ローラ(16)
が配置せられている。横長凹所(15)の開口部の形態は、
ホッパ(13)の排出口(14)の形態に対応せしめられてい
る。
The same two-layer cylinder (3) as described above is put into the hopper (13) as shown in FIG. The hopper (13) is provided with a horizontally long discharge port (14) .Under the hopper (13), close to the discharge port (14) and symmetrical to the peripheral surface in a pair of axial directions. Rotating roller (16) having extended two-layer cylindrical receiving lateral recess (15)
Is placed. The shape of the opening of the horizontally elongated recess (15) is
It corresponds to the shape of the discharge port (14) of the hopper (13).

【0106】回転ローラ(16)は、図6において、反時計
方向に回転しており、凹所(15)が排出口(14)のちょうど
下にくると、ホッパ(13)内の2層円筒(3) が多数1列に
なって凹所(15)に落下する。
The rotating roller (16) is rotating counterclockwise in FIG. 6, and when the recess (15) is located just below the discharge port (14), it is a two-layer cylinder in the hopper (13). A large number of (3) fall in one row and fall into the recess (15).

【0107】回転ローラ(16)の下には、前下向き傾斜振
動シュート(17)が配置せられている。シュート(17)は、
図8に示すように、その幅が後から前に向って順次狭ま
った梯形状のものであり、両側縁に立上り側壁(18)が設
けられている。
Below the rotating roller (16), a front downward tilting vibration chute (17) is arranged. Shoot (17)
As shown in FIG. 8, it has a ladder shape whose width is gradually narrowed from the rear to the front, and rising side walls (18) are provided on both side edges.

【0108】図6に示すように、1列の2層円筒(3) を
凹所(15)に収容した回転円筒(16)が180°回転する
と、凹所(15)の開口部が下向きになるので、凹所(15)内
の2層円筒(3) は1列のままシュート(17)上に落下す
る。なお、凹所(15)は2つのみならず、放射状に3つ以
上あってもよい。そして、図8から分かるように、1列
の2層円筒(3) は、後から前方に向かって間隔が狭まっ
ている1対の両側壁(18)により、次第にシュート(17)の
中心線方向に寄せられるとともに、シュート(17)の振動
により、シュート(17)の出口に至るまでに、最も安定し
た状態の千鳥配置に並ぶ。
As shown in FIG. 6, when the rotary cylinder (16) accommodating one row of the two-layer cylinder (3) in the recess (15) is rotated by 180 °, the opening of the recess (15) is directed downward. Therefore, the two-layer cylinder (3) in the recess (15) falls on the chute (17) in one row. The recesses (15) are not limited to two, but may be three or more in a radial pattern. Then, as can be seen from FIG. 8, the one-layer double-layer cylinder (3) is gradually moved toward the center line direction of the chute (17) by the pair of both side walls (18) whose distance is narrowed from the rear to the front. And the vibration of the chute (17) causes the chute (17) to line up in a zigzag arrangement in the most stable state before reaching the exit of the chute (17).

【0109】シュート(17)の前方には、図6に示すよう
に、上記同様の駆動エンドレスベルト(8)(9)が配置せら
れている。下側の駆動エンドレスベルト(9) は、上側の
駆動エンドレスベルト(8) より後方に突出しており、そ
の後方突出上面(9b)に近接してシュート(17)の前端がの
ぞんでいる。
As shown in FIG. 6, drive endless belts (8) and (9) similar to the above are arranged in front of the chute (17). The lower drive endless belt (9) projects rearward from the upper drive endless belt (8), and the front end of the chute (17) is close to the rearward projecting upper surface (9b).

【0110】なお、両駆動エンドレスベルト(8)(9)、予
熱装置(27)、加熱装置(28)、冷却装置(29)及び間接保持
板(30)の詳細は、図2で述べたのと同様である。
Details of the two-drive endless belts (8) and (9), the preheating device (27), the heating device (28), the cooling device (29) and the indirect holding plate (30) are as described in FIG. Is the same as.

【0111】千鳥配置に並べられた多数の2層円筒(3)
は、シュート(17)の先端からシュート(17)の振動と自重
により、下側の駆動エンドレスベルト(9) の後方突出上
面(9b)に供給せられる。同後方突出上面(9b)上にある多
数の2層円筒(3) は、図9に示すように相互に線接触す
るように千鳥配置に並んでいる。上下駆動エンドレスベ
ルト(8)(9)の移動にともない、両者の対向面(8a)(9a)
が、前記配置の多数の2層円筒(3) を自然に挾む。
A large number of two-layer cylinders arranged in a staggered arrangement (3)
Is supplied from the tip of the chute (17) to the rearward projecting upper surface (9b) of the lower drive endless belt (9) by the vibration and the self-weight of the chute (17). A large number of two-layer cylinders (3) on the rear projecting upper surface (9b) are arranged in a staggered arrangement so as to be in line contact with each other as shown in FIG. Vertical drive endless belts (8) (9a) move along with the movement of the endless belts (8a) (9a)
However, it naturally interposes a large number of two-layer cylinders (3) having the above arrangement.

【0112】そこで、多数の2層円筒(3) を予熱装置(2
7)で予熱した後、加熱装置(28)で加熱することにより、
発泡性熱可塑性樹脂組成物を発泡させて各2層円筒(3)
を内外に膨張させることにより相互の隙間をうめ、図1
0に示すように、六角柱状体に変形せしめるとともに、
外層どうしを融着せしめ、ついで冷却装置(29)で冷却
し、水平断面形状がハニカムの熱可塑性樹脂体(ハニカ
ム状熱可塑性樹脂壁)(19)の各六角形状の中空部内に、
熱可塑性樹脂高発泡体(20)が熱可塑性樹脂体(19)と一体
的に形成された発泡体(21)を得る。
Therefore, a large number of two-layer cylinders (3) are connected to the preheating device (2
After preheating with 7), by heating with the heating device (28),
Foamable thermoplastic resin composition is foamed to form each two-layer cylinder (3)
Expand the inside and outside to fill the gap between them,
As shown in 0, while deforming into a hexagonal columnar body,
The outer layers are fused together, and then cooled by a cooling device (29), in the hexagonal hollow portion of the thermoplastic resin body having a honeycomb horizontal cross-section (honeycomb-shaped thermoplastic resin wall) (19),
A foamed body (21) is obtained in which the high thermoplastic resin foamed body (20) is integrally formed with the thermoplastic resin body (19).

【0113】[0113]

【作用】請求項1の発明による発泡体は、水平断面形状
が格子状の熱可塑性樹脂体の各四角形状の中空部内に、
発泡倍率が10〜50倍である熱可塑性樹脂高発泡体が
熱可塑性樹脂体と一体的に形成されているから、熱可塑
性樹脂体が格子状の壁を形成することと相俟って圧縮強
度に優れているが、各四角形状中空部内の熱可塑性樹脂
高発泡体より重い。他方熱可塑性樹脂高発泡体は、圧縮
強度に劣るが軽量性に優れている。したがって、熱可塑
性樹脂体と熱可塑性樹脂高発泡体は相互の欠点を補いつ
つ、発泡体全体の軽量性及び圧縮強度を向上させる。
The foam according to the first aspect of the present invention is characterized in that the horizontal cross-section is formed in each square hollow portion of the thermoplastic resin body having a lattice shape.
Since the high thermoplastic resin foam having a foaming ratio of 10 to 50 times is formed integrally with the thermoplastic resin body, the thermoplastic resin body forms a lattice-shaped wall together with the compressive strength. However, it is heavier than the high thermoplastic resin foam in each square hollow. On the other hand, the high thermoplastic resin foam is inferior in compressive strength but is excellent in lightness. Therefore, the thermoplastic resin body and the thermoplastic resin high-foamed body improve the lightness and the compression strength of the entire foamed body while compensating for each other's defects.

【0114】請求項2の発明による発泡体は、水平断面
形状がハニカム状の熱可塑性樹脂体の各六角形状の中空
部内に、発泡倍率が10〜50倍である熱可塑性樹脂高
発泡体が熱可塑性樹脂体と一体的に形成されているか
ら、熱可塑性樹脂体がハニカム状の壁を形成することと
相俟って圧縮強度に優れているが、各六角状中空部内の
熱可塑性樹脂高発泡体より重い。他方熱可塑性樹脂高発
泡体は、圧縮強度に劣るが軽量性、断熱性に優れてい
る。したがって、熱可塑性樹脂体と熱可塑性樹脂高発泡
体は相互の欠点を補いつつ、発泡体全体の軽量性、断熱
性及び圧縮強度を向上させる。
In the foam according to the second aspect of the present invention, a thermoplastic resin high foam having a foaming ratio of 10 to 50 times is formed in the hexagonal hollow portion of the thermoplastic resin body having a horizontal honeycomb cross section. Since it is formed integrally with the plastic resin body, it has excellent compressive strength in combination with the fact that the thermoplastic resin body forms a honeycomb-shaped wall, but the thermoplastic resin highly foamed inside each hexagonal hollow part. Heavier than the body. On the other hand, the high thermoplastic resin foam is inferior in compressive strength, but is excellent in lightness and heat insulation. Therefore, the thermoplastic resin body and the thermoplastic resin high-foamed body complement each other's defects, and improve the lightness, heat insulation and compressive strength of the entire foamed body.

【0115】請求項3及び7の発明による発泡体は、各
六角形状の中空部内の熱可塑性樹脂高発泡体に孔径が1
〜10mmの貫通孔を有するものであるから、土中に埋
められ、内部の水が一定レベルを超えると、これを自然
に周囲の土へ逃がすことのできる構造のコンクリート製
下水管に有用な多孔板が得られる。
In the foams according to the inventions of claims 3 and 7, the thermoplastic resin high foam in each hexagonal hollow portion has a pore size of 1 or less.
Since it has a through hole of 10 mm, it is useful for concrete sewer pipes with a structure that can be buried in soil and, when the internal water exceeds a certain level, can naturally escape to the surrounding soil. A board is obtained.

【0116】請求項5及び6の発明による発泡体は、熱
可塑性樹脂体の代わりに熱可塑性樹脂低発泡体が用いら
れ、この低発泡体の発泡倍率が高発泡体の発泡倍率より
5倍以上低いものであるから、請求項1及び2の発明に
よる発泡体に比べ、耐圧強度は若干低下するが、反面軽
量性及び断熱性はよくなる。
In the foam according to the invention of claims 5 and 6, a low thermoplastic resin foam is used in place of the thermoplastic resin body, and the foaming ratio of this low foaming is 5 times or more than that of the high foaming product. Since it is low, the compressive strength is slightly reduced as compared with the foam according to the inventions of claims 1 and 2, but on the other hand, the lightness and the heat insulating property are improved.

【0117】請求項4及び8の発明による発泡体は、格
子状又はハニカム状の熱可塑性樹脂体又は低発泡体が垂
直方向に配向した繊維を含有しているから、繊維により
補強され、それだけ圧縮強度が向上する。
The foam according to the invention of claims 4 and 8 is reinforced by the fibers because the lattice-shaped or honeycomb-shaped thermoplastic resin body or the low foam contains fibers oriented in the vertical direction, and is compressed accordingly. Strength is improved.

【0118】請求項9及び12の発明による発泡体の製
造方法は、高発泡性熱可塑性樹脂組成物よりなる内層
と、熱可塑性樹脂又は低発泡性熱可塑性樹脂組成物より
なる外層とを備えた2層筒又は2層柱を、多数相互に接
するかまたは近接する状態に並べるとともに、このよう
に並べられた多数の2層筒又は2層柱をその軸方向の発
泡を規制する一対の規制部材で挟んだのち加熱し、発泡
性熱可塑性樹脂組成物を発泡させて外層どうしを融着せ
しめ、全体を一体化させるものであるから、融着せられ
た各外層により格子状に一体化した熱可塑性樹脂壁又は
熱可塑性樹脂低発泡体壁が形成せられるとともに、四角
形状の中空部内に前記壁と一体的に熱可塑性樹脂高発泡
体が形成せられ、請求項1、2、5又は6の発明による
発泡体を容易にうることができる。
The method for producing a foam according to the present invention comprises an inner layer made of a highly foamable thermoplastic resin composition and an outer layer made of a thermoplastic resin or a low foaming thermoplastic resin composition. A pair of regulating members for arranging a large number of two-layer cylinders or two-layer pillars in contact with or close to each other and for regulating a large number of the two-layer cylinders or two-layer pillars arranged in this way to foam in the axial direction. It is sandwiched between and then heated to foam the expandable thermoplastic resin composition to fuse the outer layers together and to integrate the whole, so that the thermoplastic layers integrated in a lattice by the fused outer layers The resin wall or the low thermoplastic resin foam wall is formed, and the high thermoplastic resin foam is integrally formed with the wall in the rectangular hollow portion. Easy to obtain foam Door can be.

【0119】請求項10及び13の発明による発泡体の
製造方法は、高発泡性熱可塑性樹脂組成物よりなる内層
と、熱可塑性樹脂又は低発泡性熱可塑性樹脂組成物より
なる外層とを備えた2層円筒を、多数相互が線接触する
ように千鳥配置に並べるとともに、このように並べられ
た多数の2層円筒をその軸方向の発泡を規制する一対の
規制部材で挟んだのち加熱し、発泡性熱可塑性樹脂組成
物を発泡させてそれぞれ六角柱状体に変形せしめるとと
もに、外層どうしを融着せしめ、全体を一体化させるも
のであるから、融着せられた各外層によりハニカム状に
一体化した熱可塑性樹脂壁又は熱可塑性樹脂低発泡体壁
が形成せられるとともに、六角形状の中空部内に前記壁
と一体的に熱可塑性樹脂高発泡体が形成せられ、請求項
2又は6の発明による発泡体を容易かつ確実にうること
ができる。
The method for producing a foam according to the tenth and thirteenth aspects of the present invention comprises an inner layer made of a highly expandable thermoplastic resin composition and an outer layer made of a thermoplastic resin or a low expandable thermoplastic resin composition. The two-layer cylinders are arranged in a zigzag arrangement so that a large number of them make line contact with each other, and a large number of the two-layer cylinders arranged in this way are sandwiched by a pair of regulating members that regulate foaming in the axial direction, and then heated. The expandable thermoplastic resin composition is foamed and deformed into hexagonal columnar bodies, respectively, and the outer layers are fused to each other so that the whole is integrated, so that the fused outer layers are integrated into a honeycomb shape. The thermoplastic resin wall or the thermoplastic resin low foam wall is formed, and the thermoplastic resin high foam is integrally formed with the wall in the hexagonal hollow portion. That foam can sell easily and surely.

【0120】請求項11及び15の発明による発泡体の
製造方法は、それぞれ上述のような構成を有するので、
板状発泡体中には、熱可塑性樹脂または発泡倍率3倍以
下の低発泡体のハニカム構造部分が得られ、これにより
高剛性が保持せられる。そして、ハニカム構造部分以外
は、発泡倍率5〜45倍の高発泡体であるから、1枚の
板状発泡体は全体として軽量である。しかも、各変形し
た六角柱状体には、孔径1〜10mmの貫通孔があるの
で、板状発泡体自体は、孔径1〜10mmの孔が多数同
一ピッチで規則正しくあけられた多孔板となる。
Since the method for producing a foam according to the invention of claims 11 and 15 has the above-mentioned constitutions respectively,
In the plate-like foam, a honeycomb structure portion of a thermoplastic resin or a low foam having a foaming ratio of 3 times or less is obtained, whereby high rigidity is maintained. Further, except for the honeycomb structure portion, since it is a high-foamed body having a foaming ratio of 5 to 45 times, one plate-shaped foamed body is lightweight as a whole. Moreover, since each deformed hexagonal columnar body has through holes having a hole diameter of 1 to 10 mm, the plate-shaped foam body itself is a perforated plate in which a large number of holes having a hole diameter of 1 to 10 mm are regularly formed at the same pitch.

【0121】請求項14の発明は、請求項10又は13
の発明による発泡体の製造方法において、2層円筒の内
層の外径及び内径並びに内層の発泡後の発泡倍率の関係
が、 (d2 /d1 2 ≦1−2×√3/(πT) (d1 は内層の外径を、d2 は内層の内径を、Tは内層
の発泡後の発泡倍率をそれぞれ表わす)の式の条件を満
たすから、ハニカム状の熱可塑性樹脂壁の各六角形状の
中空部内を熱可塑性樹脂高発泡体により完全に満たす。
The invention of claim 14 is the invention of claim 10 or 13.
In the method for producing a foam according to the invention, the relationship between the outer diameter and the inner diameter of the inner layer of the two-layer cylinder and the foaming ratio of the inner layer after foaming is (d 2 / d 1 ) 2 ≦ 1-2 × √3 / (πT (D 1 represents the outer diameter of the inner layer, d 2 represents the inner diameter of the inner layer, and T represents the expansion ratio of the inner layer after foaming). Therefore, each hexagon of the honeycomb-shaped thermoplastic resin wall is satisfied. The hollow portion of the shape is completely filled with the high thermoplastic resin foam.

【0122】請求項16の発明による発泡体の製造方法
は、2層筒又は2層柱の外層が垂直方向に配向した繊維
を含有しているから、得られた発泡体における格子状又
はハニカム状の熱可塑性樹脂体又は低発泡体が垂直方向
に配向した繊維を含有しており、繊維により補強され、
それだけ圧縮強度が向上する。
In the method for producing a foam according to the sixteenth aspect of the present invention, since the outer layer of the two-layer cylinder or the two-layer column contains fibers oriented in the vertical direction, the obtained foam has a lattice shape or a honeycomb shape. The thermoplastic resin body or low foam of contains a fiber oriented vertically, and is reinforced by the fiber,
The compressive strength is improved accordingly.

【0123】[0123]

【実施例】【Example】

実施例1及び2 高密度ポリエチレン(三菱油化社製 商品名EY40H
表1〜4中、「HDPE」という)、ポリプロピレン
(三菱油化社製 商品名PY230 表1〜4中、「P
P」という)、シラングラフトポリプロピレン(三菱油
化社製 商品名XPM800H 表1〜4中、「シラン
グラフトPP」という)及びアゾジカルボンアミドを表
1の配合比で含有する高発泡性熱可塑性樹脂組成物を単
軸押出機に供給して180℃で溶融混練し、横断面形状
が直径円形のストランドを押出すとともに、ポリプロピ
レン(三菱油化社製 商品名PY230)を単軸押出機
に供給して180℃で溶融混練し、クロスヘッドダイを
用いて、前記ストランドを被覆するようにして横断面形
状が円形のストランドを共押出し、これを冷却後、長さ
25mm毎に切断し、98℃の水中に1時間浸漬後、放
置して乾燥させ、高発泡性熱可塑性樹脂組成物よりなる
横断面円形の内層(1A)と、熱可塑性樹脂よりなる外層
(2) とを備えかつ表1の横断面寸法を有するとともに、
高さ25mmの2種類の2層円柱(3A)を多数得た(図1
(B)参照)。
Examples 1 and 2 High-density polyethylene (trade name EY40H manufactured by Mitsubishi Petrochemical Co., Ltd.)
In Tables 1 to 4, "HDPE"), polypropylene (trade name PY230 manufactured by Mitsubishi Petrochemical Co., Ltd.)
P "), silane-grafted polypropylene (trade name XPM800H manufactured by Mitsubishi Petrochemical Co., Ltd., referred to as" silane-grafted PP "in Tables 1 to 4), and azodicarbonamide at a compounding ratio shown in Table 1. The product is fed to a single-screw extruder and melt-kneaded at 180 ° C to extrude a strand having a circular cross-sectional shape with a circular diameter, and polypropylene (trade name PY230 manufactured by Mitsubishi Petrochemical Co., Ltd.) is fed to the single-screw extruder. Melt-knead at 180 ° C., co-extrude a strand having a circular cross-sectional shape so as to cover the strand using a crosshead die, cool this, and then cut into lengths of 25 mm and submerge in 98 ° C. water. After being immersed for 1 hour in an air, it is left to dry, and an inner layer (1A) having a circular cross-section made of a highly expandable thermoplastic resin composition and an outer layer made of a thermoplastic resin.
(2) and has the cross-sectional dimensions of Table 1, and
A large number of two types of two-layer cylinders (3A) with a height of 25 mm were obtained (Fig. 1
(B)).

【0124】図2に示すように、2層円柱(3A)を多数ホ
ッパ(4) に投入し、回転ローラ(7)を介して一対の駆動
エンドレスベルト(8)(9)のうち、図示しない振動体によ
り振動を与えられた、下側の駆動エンドレスベルト(9)
の後方突出上面(9b)に、多数相互に不規則状態に並べ、
一対の間隔保持板(30)により、約25mmの間隔に保た
れて2層円柱(3A)の軸方向の発泡を規制する両駆動エン
ドレスベルト(8)(9)の対向面(8a)(9a)に送り込み、両者
により2層円柱(3A)の上下を挾みながら、予熱装置(27)
で200℃に予熱した後、加熱装置(28)で220℃に加
熱することにより、高発泡性熱可塑性樹脂組成物を20
倍に発泡させて各2層円柱(3A)を外方に膨張させること
により相互の隙間をうめながらそれぞれ変形せしめると
ともに、外層どうしを融着せしめ、ついで冷却装置(29)
で冷却し、水平断面形状が不規則に連続した熱可塑性樹
脂体の各四角形状の中空部内に、熱可塑性樹脂高発泡体
が熱可塑性樹脂体と一体的に形成されたシート状発泡体
を得た。
As shown in FIG. 2, a large number of two-layer cylinders (3A) are put into the hopper (4), and a pair of drive endless belts (8) and (9) are not shown among the pair of drive rollers via the rotating roller (7). Lower drive endless belt, vibrated by vibrating body (9)
On the rear protruding upper surface (9b) of the
Opposing surfaces (8a) (9a) of the two-drive endless belts (8) (9) that are kept at an interval of about 25 mm by a pair of space holding plates (30) and restrict foaming in the axial direction of the two-layer cylinder (3A). ), And while sandwiching the top and bottom of the two-layer cylinder (3A) by both, preheater (27)
After being preheated to 200 ° C. with a heating device (28), the highly foamable thermoplastic resin composition is heated to 220 ° C.
Double expansion and expand each two-layer cylinder (3A) outwards so that they can be deformed while filling the gaps between them, and the outer layers are fused together, and then the cooling device (29)
A sheet-like foam in which the thermoplastic resin high foam is integrally formed with the thermoplastic resin body is obtained by cooling in a rectangular hollow portion of the thermoplastic resin body whose horizontal cross-section is irregularly continuous. It was

【0125】表1に示すように、下側の駆動エンドレス
ベルト(9) の後方突出上面(9b)への2層円柱(3A)の配置
量(以下単に「配置量」という)の少ない実施例1で
は、相互の隙間が完全にうまらず部分的に外層どうし間
に空隙が発生したが、配置量の多い実施例2では、相互
の隙間が完全にうまっていた。
As shown in Table 1, an embodiment in which the arrangement amount of the two-layer cylinder (3A) on the rear projecting upper surface (9b) of the lower drive endless belt (9) (hereinafter simply referred to as "arrangement amount") is small In Example 1, the mutual gap was not completely formed, and a partial gap was formed between the outer layers, but in Example 2 in which the arrangement amount was large, the mutual gap was completely filled.

【0126】実施例3及び4 実施例1及び2と同じ2層円柱(3A)を、別々に、多数ホ
ッパ(4) に投入し、回転ローラ(7) を介して一対の駆動
エンドレスベルト(8)(9)のうち、下側の駆動エンドレス
ベルト(9) の後方突出上面(9b)に、縦横両方向に多数相
互に近接する状態に並べて(図2ないし図4参照)、一
対の間隔保持板(30)により、約25mmの間隔に保たれ
て2層円柱(3A)の軸方向の発泡を規制する両駆動エンド
レスベルト(8)(9)の対向面(8a)(9a)に送り込み、両者に
より2層円柱(3A)の上下を挾みながら、予熱装置(27)で
200℃に予熱した後、加熱装置(28)で220℃に加熱
することにより、発泡性熱可塑性樹脂組成物を20倍に
発泡させて各2層円柱(3A)を外方に膨張させることによ
り相互の隙間をうめながらそれぞれ四角柱状体に変形せ
しめるとともに、外層どうしを融着せしめ、ついで冷却
装置(29)で冷却し、水平断面形状が格子状の熱可塑性樹
脂体(10)の各四角形状の中空部内に、熱可塑性樹脂高発
泡体(11)が熱可塑性樹脂体(10)と一体的に形成されたシ
ート状発泡体(12)を得た(図5参照)。
Embodiments 3 and 4 The same two-layer cylinders (3A) as in Embodiments 1 and 2 were separately put into the hopper (4), and a pair of drive endless belts (8) were placed through the rotating roller (7). (9) Of the lower drive endless belt (9), the rear projecting upper surface (9b) is arranged side by side in a state of being close to each other in both vertical and horizontal directions (see FIGS. 2 to 4), and a pair of spacing plates By the (30), the two-end drive endless belts (8) and (9), which are kept at an interval of about 25 mm and regulate the foaming in the axial direction of the two-layer cylinder (3A), are fed to the facing surfaces (8a) and (9a), While sandwiching the upper and lower sides of the two-layer cylinder (3A) with the preheating device (27) to 200 ° C., the heating device (28) heats the foamable thermoplastic resin composition to 220 ° C. By expanding it twice and expanding each two-layer cylinder (3A) outward, it can be transformed into a square columnar body while filling the mutual gap. The outer layers are fused together, and then cooled by a cooling device (29), and the thermoplastic resin high foam (11) is placed inside each square hollow portion of the thermoplastic resin body (10) having a horizontal cross-sectional shape of a lattice. A sheet-like foam (12) integrally formed with the thermoplastic resin body (10) was obtained (see FIG. 5).

【0127】実施例3及び4における2層円柱相互の外
層どうしの間の空隙の有無は表1に示すとおりである。
The presence or absence of voids between the outer layers of the two-layer cylinders in Examples 3 and 4 is as shown in Table 1.

【0128】実施例5 ポリプロピレン(三菱油化社製 商品名PY230)1
00重量部にガラス繊維(長さ10mm、直径13μ
m)20重量部を配合し、ガラス繊維を軸方向に配列さ
せた以外、実施例1と同様にして2層円柱を得、配置量
を表1に示すように、実施例4より多くした以外は実施
例4と同様にして、水平断面形状が格子状で垂直方向に
配向した繊維(24)を含有する熱可塑性樹脂体(10)の各四
角形状の中空部内に、熱可塑性樹脂高発泡体(11)が熱可
塑性樹脂体(10)と一体的に形成されたシート状発泡体(1
2)を得た(図11参照)。
Example 5 Polypropylene (trade name PY230 manufactured by Mitsubishi Petrochemical Co., Ltd.) 1
100 parts by weight of glass fiber (length 10 mm, diameter 13 μ
m) A two-layer cylinder was obtained in the same manner as in Example 1 except that 20 parts by weight was blended and the glass fibers were arranged in the axial direction, and the arrangement amount was larger than that in Example 4 as shown in Table 1. In the same manner as in Example 4, the thermoplastic resin high-foamed material was placed in each quadrangular hollow part of the thermoplastic resin body (10) containing fibers (24) having a lattice-like horizontal cross section and oriented vertically. The sheet-like foam (1) in which (11) is integrally formed with the thermoplastic resin body (10)
2) was obtained (see FIG. 11).

【0129】実施例6 高発泡性熱可塑性樹脂組成物においてアゾジカルボンア
ミドの配合量が表1に示すように実施例1より少ないこ
とおよび横断面寸法が表1に示すように実施例1と大き
く相違する以外は実施例2と同様にして2層円柱を得、
配置量を表1に示すように、実施例4より大幅に多くし
た代わりに、高発泡体の発泡倍率を5倍と大幅に小さく
した以外は実施例4と同様にして、水平断面形状が格子
状の熱可塑性樹脂体の各四角形状の中空部内に、熱可塑
性樹脂高発泡体が熱可塑性樹脂体と一体的に形成された
シート状発泡体を得た。
Example 6 In the highly foamable thermoplastic resin composition, the compounding amount of azodicarbonamide was smaller than that in Example 1 as shown in Table 1 and the cross-sectional dimension was larger than that in Example 1 as shown in Table 1. A two-layer cylinder was obtained in the same manner as in Example 2 except for the difference.
As shown in Table 1, the horizontal cross-sectional shape is a grid in the same manner as in Example 4 except that the foaming ratio of the high foam is greatly reduced to 5 times instead of being significantly increased as compared with Example 4. A sheet-shaped foam was obtained in which the thermoplastic resin high-foamed body was integrally formed with the thermoplastic resin body in each quadrangular hollow portion of the thermoplastic resin body.

【0130】実施例7 実施例1と同じ多数の2層円柱を一対の規制部材として
の上下一対の鉄板のうち、下の鉄板上の仮想されるハニ
カムにおける各六角形の頂点及びその中心点に表1に示
す量配置し、配置2層円柱の上に上の鉄板をのせ、両鉄
板により2層円柱の上下を挾んで加熱装置で220℃に
加熱することにより、高発泡性熱可塑性樹脂組成物を2
0倍に発泡させて各2層円柱を外方に膨張させることに
より相互の隙間をうめながらそれぞれ六角柱状体に変形
せしめるとともに、外層どうしを融着せしめ、ついで冷
却装置で冷却し、水平断面形状がハニカム状の熱可塑性
樹脂体(19)の各六角形状の中空部内に、熱可塑性樹脂高
発泡体(20)が熱可塑性樹脂体(19)と一体的に形成された
シート状発泡体(20)を得た(図10参照)。
Example 7 Among the pair of upper and lower iron plates serving as a pair of regulating members, the same large number of two-layer cylinders as in Example 1 were used for the apex of each hexagon and its center point in the virtual honeycomb on the lower iron plate. Arranged in the amounts shown in Table 1, placing the upper iron plate on the arranged two-layer cylinder, sandwiching the upper and lower sides of the two-layer cylinder with both iron plates, and heating to 220 ° C. with a heating device to obtain a highly foamable thermoplastic resin composition. Two things
By expanding each two-layer cylinder outward by expanding it to 0 times and transforming each into a hexagonal columnar body while filling the gaps between them, the outer layers are fused together and then cooled by a cooling device to form a horizontal cross-sectional shape. Is a honeycomb-shaped thermoplastic resin body (19) in each hexagonal hollow portion, a thermoplastic resin high foam (20) is formed integrally with the thermoplastic resin body (19) sheet-like foam (20 ) Was obtained (see FIG. 10).

【0131】実施例8 実施例1と同じ多数の2層円柱から実施例7より配置量
を多くした以外は実施例7と同様にして、水平断面形状
がハニカム状の熱可塑性樹脂体の各六角形状の中空部内
に、熱可塑性樹脂高発泡体が熱可塑性樹脂体と一体的に
形成されたシート状発泡体を得た。この実施例では、上
記式Aの条件を満足させるようにしたので、実施例7で
は2層円柱相互に部分的に空隙が発生したものが、この
実施例では空隙が生じなかった。
Example 8 In the same manner as in Example 7 except that the same number of two-layer cylinders as those in Example 1 were used in comparison with Example 7, hexagons of a thermoplastic resin body having a honeycomb-shaped horizontal cross-section. A sheet-shaped foam was obtained in which the thermoplastic resin high foam was integrally formed with the thermoplastic resin in the hollow portion of the shape. In this example, the condition of the above formula A was satisfied, so that in Example 7, voids were partially generated between the two-layer cylinders, but in this Example, voids were not generated.

【0132】実施例9 実施例1の2層円柱を2層円筒としたことおよび横断面
寸法を表1のようにしたこと以外は実施例1と同様にし
て2層円筒を得、さらに配置量を表1に示すように、実
施例1より少なくした以外は実施例1と同様にして、水
平断面形状が不規則に連続した熱可塑性樹脂体の各中空
部内に、熱可塑性樹脂高発泡体が熱可塑性樹脂体と一体
的に形成されたシート状発泡体を得た。この実施例で
は、2層円筒相互の外層どうし間に部分的に空隙が発生
しかつ内方向への膨張が不充分なため内層内側にも空隙
が生じた。
Example 9 A two-layer cylinder was obtained in the same manner as in Example 1 except that the two-layer cylinder of Example 1 was changed to a two-layer cylinder, and the cross-sectional dimensions were as shown in Table 1. As shown in Table 1, in the same manner as in Example 1 except that the thermoplastic resin high foam was filled in each hollow portion of the thermoplastic resin body having an irregular horizontal cross-sectional shape. A sheet-like foam body integrally formed with the thermoplastic resin body was obtained. In this example, voids were partially generated between the outer layers of the two-layer cylinders and the inward expansion was insufficient, so voids were also formed inside the inner layer.

【0133】実施例10 内層内径が表1に示すように、実施例9より小さいこと
のみが相違すること以外実施例9と同様の2層円筒を得
た。そして、配置量を表1に示すように、実施例3より
多くした以外は実施例3と同様にして、水平断面形状が
格子状の熱可塑性樹脂体の各四角形状の中空部内に、熱
可塑性樹脂高発泡体が熱可塑性樹脂体と一体的に形成さ
れたシート状発泡体を得た。
Example 10 As shown in Table 1, a two-layer cylinder similar to that of Example 9 was obtained except that the inner diameter of the inner layer was smaller than that of Example 9. Then, as shown in Table 1, in the same manner as in Example 3 except that the arrangement amount was set to be larger than that in Example 3, the thermoplastic resin was formed in each of the quadrangular hollow portions of the thermoplastic resin body having a horizontal cross-sectional shape of a lattice. A sheet-shaped foamed body in which the resin high-foamed body was integrally formed with the thermoplastic resin body was obtained.

【0134】実施例11 内層内径が表1に示すように、実施例9より若干小さい
ことのみが相違する以外は実施例9と同様の2層円筒を
得た。そして、図8では、シュート(17)の一対の両側壁
(18)が後から前方に向かって間隔が狭まっているが、こ
の実施例では両側壁が平行なシュートを用いてシート状
発泡体を得た。すなわち、図6及び図7に示すように、
2層円筒(3) を多数ホッパ(13)に投入し、回転ローラ(1
6)を介してシュート(17)に横1列状に順次供給する。す
ると、横1列の2層円筒(3) は、自重で斜め下方に移動
し、多数の2層円筒(3) はシュートの出口に至るまで
に、少なくとも1つが接している状態に並ぶ。つぎに、
このように並べられた多数の2層円筒(3) を1対の駆動
エンドレスベルト(8)(9)のうち、下側の駆動エンドレス
ベルト(9) の後方突出上面(9b)に供給し、その後実施例
9と同様にして、水平断面形状が不規則に連続した熱可
塑性樹脂体の中空部内に、熱可塑性樹脂高発泡体が熱可
塑性樹脂体と一体的に形成されたシート状発泡体を得
た。この実施例では、2層円筒相互の外層どうし間及び
内層内側に部分的に空隙が発生した。
Example 11 As shown in Table 1, a two-layer cylinder similar to that of Example 9 was obtained except that the inner diameter of the inner layer was slightly smaller than that of Example 9. And in FIG. 8, a pair of side walls of the chute (17)
Although the interval of (18) is narrowed from the rear toward the front, in this example, a sheet-shaped foam was obtained using a chute whose both side walls were parallel. That is, as shown in FIGS. 6 and 7,
Insert the two-layer cylinder (3) into the hopper (13) and rotate the roller (1
It is sequentially supplied to the chute (17) in a horizontal row via 6). Then, the two-layer cylinders (3) in one row move diagonally downward due to their own weight, and a large number of two-layer cylinders (3) are lined up in a state in which at least one is in contact by the time the outlet of the chute is reached. Next,
A large number of two-layer cylinders (3) arranged in this way are supplied to the rear projecting upper surface (9b) of the lower drive endless belt (9) among the pair of drive endless belts (8) and (9), Thereafter, in the same manner as in Example 9, a sheet-shaped foam in which the thermoplastic resin high-foamed body was integrally formed with the thermoplastic resin body was provided in the hollow portion of the thermoplastic resin body whose horizontal cross-sectional shape was irregularly continuous. Obtained. In this example, voids were partially generated between the outer layers of the two-layer cylinders and inside the inner layer.

【0135】実施例12 実施例9と同じ2層円筒(3) を多数ホッパ(13)に投入
し、回転ローラ(16)を介してシュート(17)に横1列状に
順次供給する。すると、横1列の2層円筒(3) は、後か
ら前方に向かって間隔が狭まっている1対の両側壁(18)
により、次第にシュート(17)の中心線方向に寄せられる
とともに、シュート(17)の振動により、シュート(17)の
出口に至るまでに、最も安定した状態の千鳥配置に並
ぶ。つぎに、千鳥配置に並べられた多数の2層円筒(3)
を1対の駆動エンドレスベルト(8)(9)のうち、下側の駆
動エンドレスベルト(9) の後方突出上面(9b)に供給し
(図6ないし図9参照)、約25mmの間隔に保たれて
2層円筒(3) の軸方向の発泡を規制する両駆動エンドレ
スベルト(8)(9)の対向面(8a)(9a)に送り込み、両者によ
り2層円筒(3) の上下を挾みながら、予熱装置(27)で2
00℃に予熱した後、加熱装置(28)で220℃に加熱す
ることにより、発泡性熱可塑性樹脂組成物を発泡させて
各2層円筒(3) を内外に膨張させることにより、それぞ
れ六角柱状体に変形せしめるとともに、外層どうしを融
着せしめ、ついで冷却装置(29)で冷却し、水平断面形状
がハニカム状の熱可塑性樹脂体の各六角形状の中空部内
に、熱可塑性樹脂高発泡体が熱可塑性樹脂体と一体的に
形成されたシート状発泡体を得た。
Embodiment 12 The same two-layer cylinder (3) as in Embodiment 9 is put into a large number of hoppers (13) and sequentially fed to a chute (17) in a row in a row through rotating rollers (16). Then, the horizontal two-layer cylinder (3) has a pair of both side walls (18) whose intervals are narrowed from the rear toward the front.
As a result, the shoots (17) are gradually approached in the direction of the center line, and due to the vibration of the shoots (17), they are arranged in the staggered arrangement in the most stable state before reaching the exit of the shoots (17). Next, a large number of two-layer cylinders arranged in a staggered arrangement (3)
Of the pair of drive endless belts (8) and (9) to the rearward projecting upper surface (9b) of the lower drive endless belt (9) (see FIGS. 6 to 9) and keep them at an interval of about 25 mm. It is fed to the opposing surfaces (8a) and (9a) of the two-drive endless belts (8) and (9) that regulate the foaming of the two-layer cylinder (3) in the axial direction, and the upper and lower sides of the two-layer cylinder (3) are sandwiched by both. While watching, 2 with the preheater (27)
After preheating to 00 ° C, by heating to 220 ° C with a heating device (28), the expandable thermoplastic resin composition is foamed to expand each two-layer cylinder (3) in and out to form a hexagonal columnar shape. While deforming the body, the outer layers are fused together, and then cooled by the cooling device (29), and the thermoplastic resin high-foamed body is in the hexagonal hollow part of the thermoplastic resin body having a horizontal cross-sectional shape of honeycomb. A sheet-like foam body integrally formed with the thermoplastic resin body was obtained.

【0136】実施例13 実施例5の2層円柱を2層円筒としたことおよび横断面
寸法を表1のようにしたこと以外は実施例5と同様にし
て2層円筒を得、配置量を表2に示すように実施例12
より多くした以外、実施例12と同様にして、水平断面
形状がハニカム状で垂直方向に配向した繊維を含有する
熱可塑性樹脂体の各六角形状の中空部内に、熱可塑性樹
脂高発泡体が熱可塑性樹脂体と一体的に形成されたシー
ト状発泡体を得た。
Example 13 A two-layer cylinder was obtained in the same manner as in Example 5 except that the two-layer cylinder of Example 5 was changed to a two-layer cylinder and the cross-sectional dimensions were as shown in Table 1. Example 12 as shown in Table 2
In the same manner as in Example 12 except that the number was increased, the thermoplastic resin high-foam material was heated in each hexagonal hollow portion of the thermoplastic resin body containing fibers in which the horizontal cross-sectional shape was honeycomb and oriented in the vertical direction. A sheet-like foam body integrally formed with the plastic resin body was obtained.

【0137】実施例14及び16 2層円筒の内径を、請求項14に示す式の条件を満たさ
せるため、表2に示すように、実施例12より小さくし
たこと、また、配置量を表2に示すように実施例12よ
り多くした以外、実施例12と同様にして、水平断面形
状がハニカム状の熱可塑性樹脂体(19)の各六角形状の中
空部内に、熱可塑性樹脂高発泡体(20)が熱可塑性樹脂体
(19)と一体的に形成されたシート状発泡体(21)を得た
(図10参照)。
Examples 14 and 16 The inner diameter of the two-layer cylinder was set smaller than that of Example 12 as shown in Table 2 in order to satisfy the condition of the formula shown in claim 14, and the arrangement amount was set in Table 2. In the same manner as in Example 12, except that the thermoplastic resin high foam (19) having a honeycomb-shaped horizontal cross-section is provided in each hexagonal hollow portion, as shown in FIG. 20) is a thermoplastic resin body
A sheet-like foam (21) integrally formed with (19) was obtained (see FIG. 10).

【0138】実施例15 2層円筒の内径を、請求項14に示す式の条件を満たさ
せるため、表2に示すように、実施例12より小さくし
たこと、また、配置量を表2に示すように実施例12よ
り多くした以外は実施例12と同様にして、水平断面形
状がハニカム状で垂直方向に配向した繊維(24)を含有す
る熱可塑性樹脂体(19)の各六角形状の中空部内に、熱可
塑性樹脂高発泡体(20)が熱可塑性樹脂体(19)と一体的に
形成されたシート状発泡体(21)を得た(図12参照)。
Example 15 As shown in Table 2, the inner diameter of the two-layer cylinder was made smaller than that of Example 12 in order to satisfy the condition of the formula shown in claim 14, and the arrangement amount is shown in Table 2. In the same manner as in Example 12 except that the number was larger than that in Example 12, each hexagonal hollow of the thermoplastic resin body (19) containing the fibers (24) having a honeycomb-shaped horizontal cross-section and vertically oriented. A sheet-like foam (21) was obtained in which the high thermoplastic resin foam (20) was integrally formed with the thermoplastic resin body (19) in the inside (see FIG. 12).

【0139】実施例14〜16では、請求項14の式の
条件を満足させるようにしたので、実施例12及び13
では2層円柱の内層内側に空隙が発生したものが、これ
らの実施例では空隙が生じなかった。
In Examples 14 to 16, since the conditions of the formula of Claim 14 were satisfied, Examples 12 and 13
In contrast, voids were generated inside the inner layer of the two-layer cylinder, but voids were not generated in these examples.

【0140】実施例17 2層円筒の内径を、請求項15に示す式の条件を満たさ
せるため、表2に示すように、実施例14より大きくし
たこと、また、配置量を表2に示すように実施例14よ
り少なくした以外は実施例14と同様にして、高発泡性
熱可塑性樹脂組成物を発泡させて各2層円筒を内外に膨
張させることにより相互の隙間をうめ、それぞれ貫通孔
(22)を有する六角柱状体に変形せしめるとともに、外層
どうしを融着せしめ、ついで冷却装置で冷却し、水平断
面形状がハニカム状の熱可塑性樹脂体(19)の各六角形状
の中空部内に、熱可塑性樹脂高発泡体(20)が熱可塑性樹
脂体(19)と一体的に形成された多孔板状発泡体(23)を得
た(図13参照)。
Example 17 As shown in Table 2, the inner diameter of the two-layer cylinder was made larger than that of Example 14 in order to satisfy the condition of the formula shown in claim 15, and the arrangement amount is shown in Table 2. In the same manner as in Example 14 except that the number is smaller than that in Example 14, the high-foaming thermoplastic resin composition is expanded to expand each two-layer cylinder inward and outward so as to fill each other's gaps and to form through holes.
(22) with deforming into a hexagonal columnar body, by fusing the outer layers to each other, then cooled by a cooling device, the horizontal cross-sectional shape is a honeycomb-shaped thermoplastic resin body (19) in each hexagonal hollow portion, A porous plate-like foam (23) in which the high thermoplastic resin foam (20) was integrally formed with the thermoplastic resin body (19) was obtained (see FIG. 13).

【0141】実施例18 2層円筒の内径を、請求項15に示す式の条件を満たさ
せるため、表2に示すように、実施例15より大きくし
たこと、また、配置量を表2に示すように実施例14よ
り少なくした以外は実施例15と同様にして、水平断面
形状がハニカム状の熱可塑性樹脂体の各六角形状の中空
部内に、熱可塑性樹脂高発泡体が熱可塑性樹脂体と一体
的に形成された多孔板状発泡体を得た。
Example 18 As shown in Table 2, the inner diameter of the two-layer cylinder was made larger than that of Example 15 in order to satisfy the condition of the formula shown in claim 15, and the arrangement amount is shown in Table 2. In the same manner as in Example 15 except that the number is smaller than that in Example 14, the thermoplastic resin high-foamed material is combined with the thermoplastic resin body in each hexagonal hollow portion of the thermoplastic resin body having a honeycomb horizontal cross section. A perforated plate-like foam integrally formed was obtained.

【0142】比較例1 実施例8における2層円柱の内層となる高発泡性熱可塑
性樹脂組成物のみを用いて円柱を得たこと、配置量を表
2に示すようにしたこと以外は実施例8と同様にしてシ
ート状発泡体を得た。
Comparative Example 1 An example was obtained except that a column was obtained using only the highly expandable thermoplastic resin composition as the inner layer of the two-layer column in Example 8 and the arrangement amount was as shown in Table 2. A sheet-like foam was obtained in the same manner as in 8.

【0143】比較例2 実施例14における2層円筒の内層となる高発泡性熱可
塑性樹脂組成物のみを用いて円筒を得たこと、配置量を
表2に示すようにしたこと以外は実施例14と同様にし
てシート状発泡体を得た。
Comparative Example 2 An example was obtained except that a cylinder was obtained using only the highly expandable thermoplastic resin composition as the inner layer of the two-layer cylinder in Example 14 and the arrangement amount was as shown in Table 2. A sheet-like foam was obtained in the same manner as 14.

【0144】比較例3 実施例8における2層円柱の内層となる高発泡性熱可塑
性樹脂組成物のみを用いかつアゾジカルボンアミドの配
合量を表2に示すように実施例8の半分にしたこと以外
は実施例8と同様にしてシート状発泡体を得た。
Comparative Example 3 Only the high-foaming thermoplastic resin composition to be the inner layer of the two-layer cylinder in Example 8 was used, and the amount of azodicarbonamide compounded was half that of Example 8 as shown in Table 2. A sheet-like foam was obtained in the same manner as in Example 8 except for the above.

【0145】比較例4 実施例14における2層円柱の内層となる高発泡性熱可
塑性樹脂組成物のみを用いかつアゾジカルボンアミドの
配合量を表2に示すように実施例14の半分にし配置量
を表2に示すようにしたこと以外は実施例14と同様に
してシート状発泡体を得た。
Comparative Example 4 Only the high-foaming thermoplastic resin composition to be the inner layer of the two-layer cylinder in Example 14 was used, and the amount of azodicarbonamide compounded was half that of Example 14, as shown in Table 2. A sheet-like foam was obtained in the same manner as in Example 14 except that the above was set as shown in Table 2.

【0146】実施例19〜22、25〜27、29〜3
2、34、36及び37 これらの実施例は、実施例1〜4、6〜12、14、1
6及び17の外層となる熱可塑性樹脂の代わりに、高密
度ポリエチレン(三菱油化社製 商品名EY40H)、
ポリプロピレン(三菱油化社製 商品名PY230)、
シラングラフトポリプロピレン(三菱油化社製 商品名
XPM800H)、アゾジカルボンアミドを表3又は4
の配合比で含有する低発泡性熱可塑性樹脂組成物を用
い、下側の駆動エンドレスベルト(9) の後方突出上面(9
b)への2層円柱又は2層円筒の配合量を表3又は4に示
すようにしたこと以外は上記各実施例にそれぞれ対応さ
せてシート状発泡体を得たものである。
Examples 19-22, 25-27, 29-3
2, 34, 36 and 37 These examples correspond to Examples 1 to 4, 6 to 12, 14, 1
Instead of the thermoplastic resin as the outer layer of 6 and 17, high density polyethylene (trade name EY40H manufactured by Mitsubishi Petrochemical Co., Ltd.),
Polypropylene (product name PY230 manufactured by Mitsubishi Yuka Co., Ltd.),
Table 3 or 4 shows silane-grafted polypropylene (trade name XPM800H manufactured by Mitsubishi Petrochemical Co., Ltd.) and azodicarbonamide.
Using the low-foaming thermoplastic resin composition contained in the compounding ratio of, the rear projecting upper surface (9) of the lower drive endless belt (9)
A sheet-like foam was obtained in accordance with each of the above Examples except that the compounding amount of the two-layer cylinder or the two-layer cylinder in b) was set as shown in Table 3 or 4.

【0147】実施例23及び28 これらの実施例は、上記組成物におけるアゾジカルボン
アミドの配合量を表3に示すように実施例22および2
7より多くし、かつ下側の駆動エンドレスベルト(9) の
後方突出上面(9b)への円柱の配置量を表3に示すように
実施例22又は27より多くしたこと以外は実施例22
又は27とそれぞれ同様にしてシート状発泡体を得たも
のである。
Examples 23 and 28 In these Examples, the amounts of azodicarbonamide compounded in the above composition are shown in Table 3 as in Examples 22 and 2.
Example 22 except that the number of cylinders arranged on the rearward projecting upper surface (9b) of the lower drive endless belt (9) was larger than that of Example 22 or 27 as shown in Table 3.
Alternatively, a sheet-shaped foamed body was obtained in the same manner as in No. 27 or No. 27.

【0148】実施例24、33、35及び38 これらの実施例は、実施例5、13、15及び18の外
層となる熱可塑性樹脂の代わりに、高密度ポリエチレン
(三菱油化社製 商品名EY40H)、ポリプロピレン
(三菱油化社製 商品名PY230)、シラングラフト
ポリプロピレン(三菱油化社製 商品名XPM800
H)、アゾジカルボンアミド及びガラス繊維(長さ10
mm、直径3μm)を表3及び表4の配合比で含有する
低発泡性熱可塑性樹脂組成物を用い、下側の駆動エンド
レスベルト(9) の後方突出上面(9b)への円柱又は円筒の
配合量を表1及び表2に示すようにしたこと以外は上記
各実施例にそれぞれ対応させてシート状発泡体を得たも
のである。
Examples 24, 33, 35 and 38 In these examples, high density polyethylene (trade name EY40H manufactured by Mitsubishi Petrochemical Co., Ltd.) was used in place of the thermoplastic resin as the outer layer of Examples 5, 13, 15 and 18. ), Polypropylene (trade name PY230 manufactured by Mitsubishi Petrochemical Co., Ltd.), silane graft polypropylene (trade name XPM800 manufactured by Mitsubishi Petrochemical Co., Ltd.)
H), azodicarbonamide and glass fibers (length 10
mm, diameter 3 μm) in a blending ratio shown in Tables 3 and 4, using a low-foaming thermoplastic resin composition, and a cylindrical or cylindrical shape is provided on the rearward projecting upper surface (9b) of the lower drive endless belt (9). A sheet-like foam was obtained in accordance with each of the above-mentioned Examples except that the compounding amounts were set as shown in Tables 1 and 2.

【0149】上記各例で得られた発泡体の圧縮強度及び
熱伝導度をつぎの方法で測定し、その結果を表1〜4に
示す。圧縮強度は、JIS K6767に従い、熱伝導
度は、JIS A1413に従ってそれぞれ測定した。
The compressive strength and thermal conductivity of the foams obtained in the above examples were measured by the following methods, and the results are shown in Tables 1 to 4. The compressive strength was measured according to JIS K6767, and the thermal conductivity was measured according to JIS A1413.

【0150】[0150]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 (注) 1.配置形式 A:無規則 B:縦横規則的 C:仮想ハニカム構成六角形の頂点及び中心点 D:式Aの条件を満たすC E:少なくとも1つと接触 F:千鳥配置 G:請求項14の式の条件を満たすF H:請求項11又は15の式の条件を満たすF 2.高発泡体貫通孔の寸法評価 ○:貫通孔直径1〜10mm ×:上記以外の径[Table 4] (Note) 1. Arrangement form A: Random B: Regular in all directions C: Hexagonal vertex and center of virtual honeycomb configuration D: Condition of condition A CE E: Contact with at least one F: Staggered arrangement G: Formula of claim 14 F H satisfying the condition: F F satisfying the condition of the formula of claim 11 or 15. Dimensional evaluation of high-foam through-holes ○: Through-hole diameter 1 to 10 mm ×: Diameter other than the above

【0151】図14には、上記多孔板状発泡体(23)をコ
ンクリート製角状下水管(25)に使用した状態を示す。下
水管(25)の両側面に、長さ方向所定間隔おきに横長方形
の窓(26)があけられ、各窓(26)にその開口面積に合致す
る大きさの多孔板状発泡体(23)がはめられて固着せられ
ている。多孔板状発泡体(23)は多数の孔(22)を備えてい
るので、下水管(25)に一定レベル以上の水が流入する
と、孔(22)より自然にかつ徐々に下水管(25)の水が周囲
の土へ流出し、下水管(25)が満水状態にならないように
なされている。上記多孔板状発泡体は、通水性、通気性
及び通音性に優れているので、もちろん上記下水管(25)
の用途以外にも使用可能である。
FIG. 14 shows a state in which the perforated plate-like foam (23) is used in a concrete rectangular sewer pipe (25). Horizontal rectangular windows (26) are opened at predetermined intervals in the longitudinal direction on both sides of the sewer pipe (25), and a perforated plate-like foam (23) having a size matching the opening area of each window (26) is provided. ) Is fitted and fixed. Since the perforated plate-like foam (23) has a large number of holes (22), when a certain level or more of water flows into the sewer pipe (25), the sewer pipe (25) will naturally and gradually flow from the holes (22). The water in () flows out to the surrounding soil and the sewer pipe (25) is prevented from becoming full. Since the perforated plate-shaped foam is excellent in water permeability, air permeability and sound permeability, of course, the sewer pipe (25)
It can also be used for other purposes.

【0152】[0152]

【発明の効果】請求項1、2、5及び6の発明の発泡体
は、これを構成する熱可塑性樹脂体又は熱可塑性樹脂低
発泡体が格子状又はハニカム状の壁を形成しているの
で、圧縮強度に優れ、かつこれと一体の残りの部分が熱
可塑性樹脂高発泡体であるから、軽量性及び断熱性に優
れている。請求項9、10、12、13及び14の発明
の発泡体の製造方法によれば、このような軽量性、断熱
性及び圧縮強度に優れた発泡体を容易に得ることができ
る。
According to the foam of the invention of claims 1, 2, 5 and 6, since the thermoplastic resin body or the low thermoplastic resin foam constituting the foam forms a lattice-like or honeycomb-like wall. It has excellent compressive strength, and since the remaining part integrated with it is a high thermoplastic resin foam, it is excellent in lightness and heat insulation. According to the method for producing a foam of the inventions of claims 9, 10, 12, 13 and 14, it is possible to easily obtain a foam excellent in such lightness, heat insulation and compressive strength.

【0153】請求項3及び7の発明による発泡体は各熱
可塑性樹脂高発泡体が孔を有するものであるから、土中
に埋められ、内部の水が一定レベルを超えると、これを
自然に周囲の土へ逃がすことのできる構造のコンクリー
ト製下水管などに用いることができる。請求項11及び
15の発明の発泡体の製造方法によれば、このような多
孔発泡体を容易にうることができる。
In the foams according to the inventions of claims 3 and 7, since each thermoplastic resin high foam has pores, when it is buried in the soil and the internal water exceeds a certain level, the It can be used for concrete sewer pipes with a structure that allows it to escape to the surrounding soil. According to the foam manufacturing method of the invention of claims 11 and 15, such a porous foam can be easily obtained.

【0154】請求項4及び8の発明の発泡体は、これを
構成する格子状又はハニカム状の熱可塑性樹脂体又は低
発泡体が繊維により補強されているから、さらに圧縮強
度が優れている。請求項16の発明の発泡体の製造方法
によれば、このような格子状又はハニカム状の熱可塑性
樹脂体又は熱可塑性樹脂低発泡体が繊維により補強され
たとくに圧縮強度に優れた発泡体を容易にうることがで
きる。
The foam of the invention of claims 4 and 8 is further excellent in compressive strength because the lattice-shaped or honeycomb-shaped thermoplastic resin or low foam constituting the foam is reinforced by fibers. According to the method for producing a foam of the invention of claim 16, a lattice-shaped or honeycomb-shaped thermoplastic resin or a thermoplastic resin low-foamed body is reinforced by fibers to obtain a foam having particularly excellent compressive strength. It can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は、本発明の実施例に用いられる高発泡
性熱可塑性樹脂組成物よりなる内層と熱可塑性樹脂また
は低発泡性熱可塑性樹脂組成物よりなる外層とを備えた
2層円筒の一例を示す斜視図であり、(B)は同じく2
層円柱の一例を示す斜視図である。
FIG. 1 (A) is a two-layer structure including an inner layer made of a highly expandable thermoplastic resin composition used in Examples of the present invention and an outer layer made of a thermoplastic resin or a low expandable thermoplastic resin composition. It is a perspective view showing an example of a cylinder, (B) is the same 2
It is a perspective view showing an example of a layer cylinder.

【図2】多数の2層円筒から水平断面形状が格子状の熱
可塑性樹脂体又は熱可塑性樹脂低発泡体を有する発泡体
を製造する状態を示す側断面図である。
FIG. 2 is a side sectional view showing a state in which a foamed body having a thermoplastic resin body or a thermoplastic resin low-foamed body having a horizontal cross-sectional shape of a lattice is produced from a large number of two-layer cylinders.

【図3】図2の装置内の2層円筒受け凹所を有する回転
ローラの拡大斜視図である。
3 is an enlarged perspective view of a rotating roller having a two-layer cylindrical receiving recess in the apparatus of FIG.

【図4】縦横両方向に相互に近接して並べられた多数の
2層円筒の部分拡大平面図である。
FIG. 4 is a partially enlarged plan view of a large number of two-layer cylinders arranged close to each other in both vertical and horizontal directions.

【図5】水平断面形状が格子状の熱可塑性樹脂体又は熱
可塑性樹脂低発泡体を有する発泡体の部分拡大平面図で
ある。
FIG. 5 is a partially enlarged plan view of a thermoplastic resin body having a lattice-shaped horizontal cross section or a foamed body having a low thermoplastic resin foam.

【図6】多数の2層円筒から水平断面形状がハニカム状
の熱可塑性樹脂体又は熱可塑性樹脂低発泡体を有する発
泡体を製造する状態を示す側断面図である。
FIG. 6 is a side sectional view showing a state in which a foamed body having a thermoplastic resin body or a low thermoplastic resin foam body having a horizontal honeycomb cross-section is manufactured from a large number of two-layer cylinders.

【図7】図6の装置内の2層円筒受け凹所を有する回転
ローラの拡大斜視図である。
7 is an enlarged perspective view of a rotating roller having a two-layer cylindrical receiving recess in the apparatus of FIG.

【図8】シュート及び下側駆動エンドレスベルトの後方
突出上面の一部を示す拡大平面図である。
FIG. 8 is an enlarged plan view showing a part of a rear projecting upper surface of the chute and the lower drive endless belt.

【図9】千鳥配置に並べられた多数の2層円筒の部分拡
大平面図である。
FIG. 9 is a partially enlarged plan view of a large number of two-layer cylinders arranged in a staggered arrangement.

【図10】水平断面形状がハニカム状の熱可塑性樹脂体
又は熱可塑性樹脂低発泡体を有する発泡体の部分拡大平
面図である。
FIG. 10 is a partially enlarged plan view of a foamed body having a thermoplastic resin body or a thermoplastic resin low-foamed body having a honeycomb shape in horizontal cross section.

【図11】水平断面形状が格子状でかつ水平断面に対し
て垂直方向に配列した繊維が含有された熱可塑性樹脂体
又は繊維含有熱可塑性樹脂低発泡体を有する発泡体の部
分拡大斜視断面図である。
FIG. 11 is a partially enlarged perspective sectional view of a foam having a thermoplastic resin body or a fiber-containing low thermoplastic resin foam containing fibers arranged in a lattice shape in a horizontal section and arranged in a direction perpendicular to the horizontal section. Is.

【図12】水平断面形状がハニカム状でかつ水平断面に
対して垂直方向に配列した繊維が含有された熱可塑性樹
脂体又は繊維含有熱可塑性樹脂低発泡体を有する発泡体
の部分拡大斜視断面図である。
FIG. 12 is a partially enlarged perspective sectional view of a foam having a thermoplastic resin body or a fiber-containing thermoplastic resin low foam having a honeycomb horizontal cross section and fibers arranged in a direction perpendicular to the horizontal cross section. Is.

【図13】多孔板状発泡体の部分拡大平面図である。FIG. 13 is a partially enlarged plan view of a perforated plate foam.

【図14】多孔板状発泡体が用いられている下水管の部
分斜視図である。
FIG. 14 is a partial perspective view of a sewer pipe in which a perforated plate-shaped foam is used.

【符号の説明】[Explanation of symbols]

(1) :2層円筒の内層 (1A):2層円柱の内層 (2) :2層円筒又は2層円柱の外層 (3) :2層円筒 (3A):2層円柱 (8)(9):規制部材(駆動エンドレスコンベヤ) (10):格子状の熱可塑性樹脂体又は熱可塑性樹脂低発泡
体 (11)(20):熱可塑性樹脂高発泡体 (19):ハニカム状の熱可塑性樹脂体又は熱可塑性樹脂低
発泡体 (12)(21):発泡体 (22):貫通孔 (24):繊維
(1): Inner layer of two-layer cylinder (1A): Inner layer of two-layer cylinder (2): Two-layer cylinder or outer layer of two-layer cylinder (3): Two-layer cylinder (3A): Two-layer cylinder (8) (9) ): Control member (driving endless conveyor) (10): Lattice-shaped thermoplastic resin body or low thermoplastic resin foam (11) (20): High thermoplastic resin foam (19): Honeycomb-shaped thermoplastic resin Body or low thermoplastic resin foam (12) (21): Foam (22): Through hole (24): Fiber

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平6−198224 (32)優先日 平6(1994)8月23日 (33)優先権主張国 日本(JP) ─────────────────────────────────────────────────── ─── Continuation of the front page (31) Priority claim number Japanese Patent Application No. 6-198224 (32) Priority date Hei 6 (1994) August 23 (33) Priority claim country Japan (JP)

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 水平断面形状が格子状の熱可塑性樹脂体
の各四角形状の中空部内に、発泡倍率が10〜50倍で
ある熱可塑性樹脂高発泡体が熱可塑性樹脂体と一体的に
形成されていることを特徴とする発泡体。
1. A thermoplastic resin high foam having a foaming ratio of 10 to 50 times is integrally formed with the thermoplastic resin body in each quadrangular hollow portion of the thermoplastic resin body having a horizontal cross-sectional shape of a lattice. A foam characterized by being.
【請求項2】 水平断面形状がハニカム状の熱可塑性樹
脂体の各六角形状の中空部内に、発泡倍率が10〜50
倍である熱可塑性樹脂高発泡体が熱可塑性樹脂体と一体
的に形成されていることを特徴とする発泡体。
2. The expansion ratio is 10 to 50 in each hexagonal hollow portion of a thermoplastic resin body having a honeycomb shape in horizontal cross section.
A foam characterized in that a high thermoplastic resin foam that is twice as large as the thermoplastic resin is integrally formed with the thermoplastic resin.
【請求項3】 水平断面形状がハニカム状の熱可塑性樹
脂体の各六角形状の中空部内に、発泡倍率が5〜45倍
でありかつ孔径が1〜10mmの貫通孔を有する熱可塑
性樹脂高発泡体が熱可塑性樹脂体と一体的に形成されて
いることを特徴とする発泡体。
3. A thermoplastic resin high-foaming having a through-hole having a foaming ratio of 5 to 45 times and a hole diameter of 1 to 10 mm in each hexagonal hollow portion of a thermoplastic resin body having a honeycomb shape in horizontal cross section. A foam characterized in that the body is formed integrally with a thermoplastic resin body.
【請求項4】 熱可塑性樹脂体が水平断面に対して垂直
方向に配向した繊維を含有していることを特徴とする請
求項1、2又は3の発泡体。
4. The foam according to claim 1, wherein the thermoplastic resin body contains fibers oriented in a direction perpendicular to a horizontal cross section.
【請求項5】 水平断面形状が格子状の熱可塑性樹脂低
発泡体の各四角形状の中空部内に、熱可塑性樹脂高発泡
体が低発泡体と一体的に形成され、高発泡体の発泡倍率
が10〜50倍であり、低発泡体の発泡倍率が高発泡体
の発泡倍率より5倍以上低いことを特徴とする発泡体。
5. A thermoplastic resin high foam is integrally formed with the low foam in each rectangular hollow portion of the thermoplastic resin low foam having a horizontal cross-sectional shape of a lattice, and a foaming ratio of the high foam is obtained. Is 10 to 50 times, and the expansion ratio of the low foam is 5 times or more lower than the expansion ratio of the high foam.
【請求項6】 水平断面形状がハニカム状の熱可塑性樹
脂低発泡体の各六角形状の中空部内に、熱可塑性樹脂高
発泡体が低発泡体と一体的に形成され、高発泡体の発泡
倍率が10〜50倍であり、低発泡体の発泡倍率が高発
泡体の発泡倍率より5倍以上低いことを特徴とする発泡
体。
6. A thermoplastic resin high foam is integrally formed with a low foam in each hexagonal hollow portion of a thermoplastic low foam having a honeycomb horizontal cross-section, and a foaming ratio of the high foam is obtained. Is 10 to 50 times, and the expansion ratio of the low foam is 5 times or more lower than the expansion ratio of the high foam.
【請求項7】 水平断面形状がハニカム状の熱可塑性樹
脂低発泡体の各六角形状の中空部内に、孔径が1〜10
mmの貫通孔を有する熱可塑性樹脂高発泡体が低発泡体
と一体的に形成され、高発泡体の発泡倍率が5〜45倍
であり、低発泡体の発泡倍率が3倍以下であることを特
徴とする発泡体。
7. A hole diameter of 1 to 10 is provided in each hexagonal hollow portion of a thermoplastic resin low foam having a horizontal cross-sectional shape of a honeycomb.
The thermoplastic resin high foam having through holes of mm is formed integrally with the low foam, the high foam has a foaming ratio of 5 to 45 times, and the low foam has a foaming ratio of 3 times or less. A foam characterized by:
【請求項8】 低発泡体が水平断面に対して垂直方向に
配向した繊維を含有していることを特徴とする請求項
5、6又は7の発泡体。
8. The foam of claim 5, 6 or 7 wherein the low foam contains fibers oriented perpendicular to a horizontal cross section.
【請求項9】 高発泡性熱可塑性樹脂組成物よりなる内
層と、熱可塑性樹脂よりなる外層とを備えた2層筒又は
2層柱を、多数相互に接するかまたは近接する状態に並
べるとともに、このように並べられた多数の2層筒又は
2層柱をその軸方向の発泡を規制する一対の規制部材で
挟んだのち加熱し、高発泡性熱可塑性樹脂組成物を発泡
させて外層どうしを融着せしめ、全体を一体化させるこ
とを特徴とする発泡体の製造方法。
9. A plurality of two-layer cylinders or two-columns, each having an inner layer made of a highly expandable thermoplastic resin composition and an outer layer made of a thermoplastic resin, are arranged in a state of being in contact with each other or close to each other, A large number of two-layer cylinders or two-layer columns arranged in this way are sandwiched by a pair of regulating members that regulate foaming in the axial direction, and then heated to foam the highly foamable thermoplastic resin composition to separate the outer layers. A method for producing a foam, which comprises fusion-bonding and integrating the whole.
【請求項10】 高発泡性熱可塑性樹脂組成物よりなる
内層と、熱可塑性樹脂よりなる外層とを備えた2層円筒
を、多数相互が線接触するように千鳥配置に並べるとと
もに、このように並べられた多数の2層筒をその軸方向
の発泡を規制する一対の規制部材で挟んだのち加熱し、
高発泡性熱可塑性樹脂組成物を発泡させてそれぞれ六角
柱状体に変形せしめるとともに、外層どうしを融着せし
め、全体を一体化させることを特徴とする発泡体の製造
方法。
10. A two-layer cylinder provided with an inner layer made of a highly expandable thermoplastic resin composition and an outer layer made of a thermoplastic resin is arranged in a staggered arrangement so that a large number of them are in line contact with each other. A large number of arranged two-layer cylinders are sandwiched by a pair of regulating members that regulate foaming in the axial direction, and then heated.
A method for producing a foam, comprising foaming a highly foamable thermoplastic resin composition to transform each into a hexagonal columnar body, and fusing the outer layers together so that the whole is integrated.
【請求項11】 発泡倍率5〜45倍の発泡体が得られ
る高発泡性熱可塑性樹脂組成物よりなる内層と、熱可塑
性樹脂よりなる外層とを備えかつ内層の内外径及び内層
の発泡後の発泡倍率の関係が、 2√3d1 2 −100π≦πTI(d1 2 −d2 2 )≦
2√3d1 2 −π (d1 は内層の外径を、d2 は内層の内径を、TIは内
層の発泡後の発泡倍率をそれぞれ表わす)の式の条件を
満たす2層円筒を、多数相互が線接触するように千鳥配
置に並べるとともに、このように並べられた多数の2層
円筒をその軸方向の発泡を規制する一対の規制部材で挟
んだのち加熱し、発泡性熱可塑性樹脂組成物を発泡さ
せ、それぞれ孔径が1〜10mmの貫通孔を有する六角
柱状体に変形せしめるとともに、外層どうしを融着せし
め、全体を一体化させることを特徴とする発泡体の製造
方法。
11. An inner layer made of a highly expandable thermoplastic resin composition capable of obtaining a foam having an expansion ratio of 5 to 45 times, and an outer layer made of a thermoplastic resin. The relationship of the expansion ratio is 2√3d 1 2 −100π ≦ πTI (d 1 2 −d 2 2 ) ≦
2√3d 1 2 −π (d 1 is the outer diameter of the inner layer, d 2 is the inner diameter of the inner layer, and TI is the foaming ratio of the inner layer after foaming). A plurality of two-layer cylinders arranged in this way are arranged in a staggered arrangement so that they are in line contact with each other, and the two-layer cylinders are sandwiched by a pair of regulating members that regulate foaming in the axial direction, and then heated to form a foamable thermoplastic resin composition. A method for producing a foam, which comprises foaming an object, transforming it into a hexagonal columnar body having through holes each having a hole diameter of 1 to 10 mm, and fusing the outer layers together to integrate the whole.
【請求項12】 高発泡性熱可塑性樹脂組成物よりなる
内層と、低発泡性熱可塑性樹脂組成物よりなる外層とを
備えた2層筒又は2層柱を、多数相互に接するかまたは
近接する状態に並べるとともに、このように並べられた
多数の2層筒又は2層柱をその軸方向の発泡を規制する
一対の規制部材で挟んだのち加熱し、高低両発泡性熱可
塑性樹脂組成物を発泡させて外層どうしを融着せしめ、
全体を一体化させることを特徴とする発泡体の製造方
法。
12. A number of two-layer cylinders or two-layer columns, each having an inner layer made of a highly foamable thermoplastic resin composition and an outer layer made of a low foamable thermoplastic resin composition, are in contact with or close to each other. In addition to arranging in a state, a large number of two-layer cylinders or two-layer columns arranged in this manner are sandwiched by a pair of regulating members that regulate foaming in the axial direction, and then heated to give a high and low foamable thermoplastic resin composition. Foam to fuse the outer layers together,
A method for producing a foam, characterized by integrating the whole.
【請求項13】 高発泡性熱可塑性樹脂組成物よりなる
内層と、低発泡性熱可塑性樹脂組成物よりなる外層とを
備えた2層円筒を、多数相互が線接触するように千鳥配
置に並べるとともに、このように並べられた多数の2層
筒をその軸方向の発泡を規制する一対の規制部材で挟ん
だのち加熱し、高低両発泡性熱可塑性樹脂組成物を発泡
させてそれぞれ六角柱状体に変形せしめるとともに、外
層どうしを融着せしめ、全体を一体化させることを特徴
とする発泡体の製造方法。
13. A two-layer cylinder having an inner layer made of a high-foaming thermoplastic resin composition and an outer layer made of a low-foaming thermoplastic resin composition is arranged in a staggered arrangement so that many of them make line contact with each other. At the same time, a large number of two-layer cylinders arranged in this way are sandwiched by a pair of regulating members that regulate foaming in the axial direction, and then heated to foam both the high and low foamable thermoplastic resin compositions to form hexagonal columnar bodies. A method for producing a foam, characterized in that the outer layers are fused together, and the whole is integrated.
【請求項14】 2層円筒の内層の外径及び内径並びに
内層の発泡後の発泡倍率の関係が、 (d2 /d1 2 ≦1−2×√3/(πTI) (d1 は内層の外径を、d2 は内層の内径を、TIは内
層の発泡後の発泡倍率をそれぞれ表わす)の式の条件を
満たすことを特徴とする請求項10又は13の発泡体の
製造方法。
14. The relationship between the outer diameter and inner diameter of the inner layer of the two-layer cylinder and the expansion ratio of the inner layer after foaming is (d 2 / d 1 ) 2 ≦ 1-2 × √3 / (πTI) (d 1 is the outer diameter of the inner layer, d 2 is the inner layer of the inner diameter, TI manufacturing method of the foam according to claim 10 or 13, characterized in that satisfy the formula each represents) the foaming magnification after the inner layer of foam.
【請求項15】 発泡倍率5〜45倍の発泡体が得られ
る高発泡性熱可塑性樹脂組成物よりなる内層と、発泡倍
率が3倍以下の発泡体が得られる低発泡性樹脂組成物よ
りなる外層とを備えかつ内層と外層の各内径及び外層の
外径、並びに内層及び外層の発泡後の発泡倍率の関係
が、 2√3d3 2 −100π≦π{TI(d1 2 −d2 2
+TO(d3 2 −d1 2)}≦2√3d3 2 −π (d1 は内層の外径を、d2 は内層の内径を、d3 は外
層の外径を、TIは内層の発泡後の発泡倍率を、TOは
外層の発泡後の発泡倍率をそれぞれ表わす)の式の条件
を満たす2層円筒を、多数相互が線接触するように千鳥
配置に並べるとともに、このように並べられた多数の2
層円筒をその軸方向の発泡を規制する一対の規制部材で
挟んだのち加熱し、発泡性熱可塑性樹脂組成物を発泡さ
せ、それぞれ孔径が1〜10mmの貫通孔を有する六角
柱状体に変形せしめるとともに、外層どうしを融着せし
め、全体を一体化させることを特徴とする発泡体の製造
方法。
15. An inner layer made of a highly expandable thermoplastic resin composition capable of obtaining a foam having an expansion ratio of 5 to 45 times, and a low foaming resin composition capable of obtaining a foam having an expansion ratio of 3 times or less. The inner diameter of each of the inner layer and the outer layer, the outer diameter of the outer layer, and the expansion ratio of the inner layer and the outer layer after foaming are 2√3d 3 2 −100π ≦ π {TI (d 1 2 −d 2 2 )
+ TO (d 3 2 −d 1 2 )} ≦ 2√3d 3 2 −π (d 1 is the outer diameter of the inner layer, d 2 is the inner diameter of the inner layer, d 3 is the outer diameter of the outer layer, and TI is the inner layer. The foaming ratio after foaming, TO represents the foaming ratio after foaming of the outer layer), and the two-layer cylinders satisfying the condition of the formula (1) are arranged in a zigzag arrangement so that they are in line contact with each other, and are arranged in this way. Many 2
The layered cylinder is sandwiched by a pair of restricting members that restrict foaming in the axial direction, and then heated to foam the expandable thermoplastic resin composition, which is transformed into a hexagonal columnar body having through holes each having a hole diameter of 1 to 10 mm. At the same time, the method for producing a foam is characterized in that the outer layers are fused and the whole is integrated.
【請求項16】 外層が水平断面に対して垂直方向に配
向した繊維を含有していることを特徴とする請求項9、
10、11、12、13、14又は15の発泡体の製造
方法。
16. The outer layer contains fibers oriented vertically with respect to a horizontal cross section.
A method for producing a foam of 10, 11, 12, 13, 14 or 15.
JP7013564A 1994-01-31 1995-01-31 Foam and manufacture thereof Pending JPH08112873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7013564A JPH08112873A (en) 1994-01-31 1995-01-31 Foam and manufacture thereof

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP931394 1994-01-31
JP18832994 1994-08-10
JP18832894 1994-08-10
JP6-9313 1994-08-23
JP19822494 1994-08-23
JP6-188329 1994-08-23
JP6-198224 1994-08-23
JP6-188328 1994-08-23
JP7013564A JPH08112873A (en) 1994-01-31 1995-01-31 Foam and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08112873A true JPH08112873A (en) 1996-05-07

Family

ID=27519049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7013564A Pending JPH08112873A (en) 1994-01-31 1995-01-31 Foam and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08112873A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029864A1 (en) 2005-09-09 2007-03-15 Ricoh Company, Ltd. Miniature cell array structure and manufacturing method of miniaturized composite component using such a miniature cell array structure
JP2012000829A (en) * 2010-06-16 2012-01-05 Ricoh Co Ltd Method of manufacturing hollow structure, manufacture apparatus and hollow structure
US8298651B2 (en) 2007-01-29 2012-10-30 Ricoh Company, Ltd. Hollow structure forming substrate, method of producing hollow structure forming substrate, and method of producing hollow structure using hollow structure forming substrate
WO2018056243A1 (en) * 2016-09-21 2018-03-29 住友ベークライト株式会社 Composite molded object and method for producing composite molded object
JP2019130861A (en) * 2018-02-02 2019-08-08 株式会社経営総合研究所 Extrusion method for concrete formwork board and extrusion apparatus for concrete formwork board
WO2021166951A1 (en) * 2020-02-17 2021-08-26 米島フエルト産業株式会社 Laminate, method for manufacturing intermediate sheet, and method for manufacturing composite material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029864A1 (en) 2005-09-09 2007-03-15 Ricoh Company, Ltd. Miniature cell array structure and manufacturing method of miniaturized composite component using such a miniature cell array structure
US8617335B2 (en) 2005-09-09 2013-12-31 Ricoh Company, Ltd. Miniature cell array structure and manufacturing method of miniaturized composite component using such a miniature cell array structure
US8298651B2 (en) 2007-01-29 2012-10-30 Ricoh Company, Ltd. Hollow structure forming substrate, method of producing hollow structure forming substrate, and method of producing hollow structure using hollow structure forming substrate
US9132593B2 (en) 2009-07-10 2015-09-15 Ricoh Company, Ltd. Hollow cell array structure and method and apparatus for producing hollow cell array structure
JP2012000829A (en) * 2010-06-16 2012-01-05 Ricoh Co Ltd Method of manufacturing hollow structure, manufacture apparatus and hollow structure
WO2018056243A1 (en) * 2016-09-21 2018-03-29 住友ベークライト株式会社 Composite molded object and method for producing composite molded object
JP2019130861A (en) * 2018-02-02 2019-08-08 株式会社経営総合研究所 Extrusion method for concrete formwork board and extrusion apparatus for concrete formwork board
WO2021166951A1 (en) * 2020-02-17 2021-08-26 米島フエルト産業株式会社 Laminate, method for manufacturing intermediate sheet, and method for manufacturing composite material
JPWO2021166951A1 (en) * 2020-02-17 2021-08-26

Similar Documents

Publication Publication Date Title
US5594038A (en) Plastic foam material composed of thermoplastic resin and silane-modified thermoplastic resin and method for making same
US6399189B1 (en) Foamable thermoplastic sheet-like synthetic resin, thermoplastic foamed resin and their production method
WO2002016124A1 (en) Expandable thermoplastic resin molded product, method of producing expandable thermoplastic resin molded product and thermoplastic resin foam
AU690945B2 (en) Thermoplastic resin foam and method of production thereof
US20140335321A1 (en) Embossed polymer sheet
JPH08112873A (en) Foam and manufacture thereof
JP4299375B2 (en) Foamable thermoplastic resin sheet, thermoplastic resin foam, and methods for producing the same
EP0646622A2 (en) Plastic foam material composed of thermoplastic resin and silane-modified thermoplastic resin and method for making same
JP3476323B2 (en) Floor material
JP2003166335A (en) Floor material
JP3958811B2 (en) Continuous production method of foam
JP3369091B2 (en) Thermoplastic resin foam and method for producing the same
JPH11138564A (en) Manufacture of foam and floor heating floor material
JP3603068B2 (en) Method for producing thermoplastic resin foam
JP3171732B2 (en) Manufacturing method of long composite building materials
JP3848419B2 (en) Foamable thermoplastic resin sheet and method for producing foam
JPH08281680A (en) Production of foam having unevenness
JPH09136371A (en) Foam and its manufacture
JP2000071364A (en) Production of floor material
JP3759805B2 (en) Floor materials and condominiums using this
JP2000176955A (en) Production of foam
JPH10100181A (en) Foamable thermoplastic resin sheet and production of foam
JPH09234756A (en) Manufacture of expandable thermoplastic resin sheet and expanded sheet
JPH10280661A (en) Floor material and building structure using same