JPH08111306A - Nd-fe-b based magnet powder for bonded magnet excellent in corrosion resistance, bonded magnet and production of magnet powder - Google Patents

Nd-fe-b based magnet powder for bonded magnet excellent in corrosion resistance, bonded magnet and production of magnet powder

Info

Publication number
JPH08111306A
JPH08111306A JP6270460A JP27046094A JPH08111306A JP H08111306 A JPH08111306 A JP H08111306A JP 6270460 A JP6270460 A JP 6270460A JP 27046094 A JP27046094 A JP 27046094A JP H08111306 A JPH08111306 A JP H08111306A
Authority
JP
Japan
Prior art keywords
magnet
magnet powder
bonded
powder
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6270460A
Other languages
Japanese (ja)
Inventor
Koichiro Morimoto
耕一郎 森本
Kiichi Komada
紀一 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP6270460A priority Critical patent/JPH08111306A/en
Publication of JPH08111306A publication Critical patent/JPH08111306A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Abstract

PURPOSE: To obtain an Nd-Fe-B based magnet powder for bonded magnet excellent in corrosion resistance, a bonded magnet excellent in corrosion resistance produced of that magnet powder, and a production method of magnet powder. CONSTITUTION: An SiO2 protective film is formed on the surface of an Nd-Fe-B based magnet powder to produce a powder for bonded magnet excellent in corrosion resistance. The magnetic powder is bound by a resin binder to obtain a bonded magnet. A silicon dioxide protective film is formed on the surface of an Nd-Fe-B based magnet powder by sol-gel reaction using ethylsilicate or plasma chemical deposition to produce an Nd-Fe-B based magnet powder for bonded magnet excellent in corrosion resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、耐食性に優れたボン
ド磁石用Nd−Fe−B系磁石粉末、この磁石粉末で作
製したNd−Fe−B系ボンド磁石、およびボンド磁石
用Nd−Fe−B系磁石粉末の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Nd-Fe-B system magnet powder for a bond magnet having excellent corrosion resistance, an Nd-Fe-B system bond magnet produced from this magnet powder, and an Nd-Fe-for a bond magnet. The present invention relates to a method for producing B-based magnet powder.

【0002】[0002]

【従来の技術】一般に、Nd−Fe−B系磁石粉末を樹
脂バインダーで結合して所定の寸法形状に成形したNd
−Fe−B系ボンド磁石は比較的安価で高い磁気特性を
有するとともに、寸法精度が高く、薄肉で複雑な形状の
磁石に容易に製造できるところから、電気電子機器に広
く使用されている。
2. Description of the Related Art In general, Nd-Fe-B magnet powder is bound with a resin binder and molded into a predetermined size and shape.
The -Fe-B based bonded magnet is widely used in electric and electronic devices because it is relatively inexpensive and has high magnetic properties, has high dimensional accuracy, and can be easily manufactured into a magnet having a thin wall and a complicated shape.

【0003】しかしながら、一般にNd−Fe−B系磁
石粉末は酸化しやすく、このため多湿高温環境下で保存
することができないのは勿論のこと、このNd−Fe−
B系磁石粉末を樹脂バインダーで結合したボンド磁石を
上記多湿高温環境下で使用しても酸化し、磁気特性が大
幅に低下することは避けられなかった。
However, in general, Nd-Fe-B type magnet powder is easily oxidized and therefore cannot be stored in a high humidity and high temperature environment.
Even if the bonded magnet in which the B-based magnet powder was bonded with the resin binder was used in the above-mentioned high-humidity and high-temperature environment, it was unavoidable that it was oxidized and the magnetic characteristics were significantly lowered.

【0004】この対策として、Nd−Fe−B系磁石粉
末表面にポリオレフィン、ポリスチレン等の高分子保護
皮膜を形成し、耐食性の改善を図ることが提案されてい
る(特開平4−257202号公報参照)。
As a countermeasure against this, it has been proposed to form a polymer protective film of polyolefin, polystyrene or the like on the surface of the Nd-Fe-B magnet powder to improve the corrosion resistance (see JP-A-4-257202). ).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記高
分子保護皮膜は、(a) 100℃程度の比較的低温で
熱劣化を起こして急速に防食性を失うため、多湿、高温
の環境下での使用に限界がある、(b) O2 やH2
に対するバリヤー性が十分でないために、通常10μm
以上の厚膜とする必要があるが、このような厚膜にする
と実効的なボンド磁石中での磁石粉末の体積分率が下が
り、ボンド磁石の磁気特性を低下させる、などの課題が
あった。
However, the above-mentioned polymer protective film (a) undergoes thermal deterioration at a relatively low temperature of about 100 ° C. and rapidly loses its anticorrosion property. Limited use, (b) O 2 and H 2 O
Since the barrier property against
Although it is necessary to use the thick film as described above, such a thick film has a problem that the volume fraction of the magnet powder in the effective bonded magnet is lowered and the magnetic characteristics of the bonded magnet are deteriorated. .

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明者等
は、かかる課題を解決するべく研究を行った結果、
(イ) 二酸化ケイ素(以下、SiO2 で示す)皮膜
は、Nd−Fe−B系ボンド磁石の使用温度範囲内の高
温環境下でも物性に変化がなく、したがって高温環境下
における防食性の低下はない、(ロ) SiO2 皮膜
は、高分子皮膜に比べてO2 やH2 Oに対するバリヤー
性が高く、またNd−Fe−B系磁石粉末に対する密着
性もよく、従って、Nd−Fe−B系磁石粉末に対する
保護皮膜としては高分子皮膜よりも薄くすることがで
き、このSiO2 皮膜を形成した磁石粉末を用いて作製
したボンド磁石は高分子皮膜を形成した磁石粉末を用い
て作製したボンド磁石に比べて磁石粉末の体積分率を向
上させることができるので、ボンド磁石の磁気特性を向
上させることができる、などの研究結果が得られたので
ある。
Therefore, as a result of the research conducted by the present inventors to solve these problems,
(A) The physical properties of the silicon dioxide (hereinafter referred to as SiO 2 ) film do not change even in a high temperature environment within the operating temperature range of the Nd-Fe-B based bonded magnet, and therefore the corrosion resistance does not deteriorate in the high temperature environment. (B) The SiO 2 film has a higher barrier property against O 2 and H 2 O than the polymer film, and also has good adhesion to the Nd-Fe-B magnet powder, and therefore Nd-Fe-B. The protective coating for the system magnet powder can be made thinner than the polymer coating, and the bond magnet produced using this SiO 2 coating-formed magnet powder is the bond produced using the polymer-coated magnet powder. Research results have been obtained such that the volume fraction of the magnet powder can be improved as compared with the magnet, and thus the magnetic characteristics of the bonded magnet can be improved.

【0007】この発明は、かかる研究結果に基づいてな
されたものであって、(1) Nd−Fe−B系磁石粉
末の表面にSiO2 保護皮膜が形成されている耐食性に
優れたボンド磁石用Nd−Fe−B系磁石粉末、およ
び、(2) 上記(1)の磁石粉末を樹脂バインダーで
結合したボンド磁石、に特徴を有するものである。
The present invention has been made on the basis of such research results, and (1) For bonded magnets having an excellent corrosion resistance in which a SiO 2 protective film is formed on the surface of Nd-Fe-B system magnet powder. The present invention is characterized by Nd-Fe-B based magnet powder and (2) a bonded magnet in which the magnet powder of (1) above is bonded with a resin binder.

【0008】上記Nd−Fe−B系磁石粉末の表面に形
成されるSiO2 保護皮膜は、連続した緻密な膜である
ために、平均膜厚は0.1〜2μmの範囲内にあれば十
分である。
Since the SiO 2 protective film formed on the surface of the Nd-Fe-B magnet powder is a continuous and dense film, it is sufficient that the average film thickness is within the range of 0.1 to 2 μm. Is.

【0009】したがって、この発明は、(3) Nd−
Fe−B系磁石粉末の表面に、平均膜厚:0.1〜2μ
mのSiO2 保護皮膜が形成されている耐食性に優れた
ボンド磁石用Nd−Fe−B系磁石粉末にも特徴を有す
るものである。
Therefore, the present invention provides (3) Nd-
On the surface of the Fe-B magnet powder, average film thickness: 0.1 to 2 μ
The Nd—Fe—B based magnet powder for bonded magnets, which has a SiO 2 protective film of m and is excellent in corrosion resistance, is also characterized.

【0010】この発明の耐食性に優れたボンド磁石用N
d−Fe−B系磁石粉末のSiO2保護皮膜は、下記の
方法で形成する。
The N for bonded magnets according to the present invention having excellent corrosion resistance
The SiO 2 protective film of the d-Fe-B magnet powder is formed by the following method.

【0011】(I) エチルシリケートを用いたゾル・
ゲル反応によるSiO2 保護皮膜の形成方法。
(I) A sol containing ethyl silicate
Method for forming SiO 2 protective film by gel reaction.

【0012】先ず、Si(OC2 5 4 (テトラエチ
ルオルトシリケート)のアルコール溶液に加水分解反応
の触媒として少量の酸を添加したのち、撹拌し放置する
と化1に示される加水分解が起きる。
First, a small amount of acid is added to an alcohol solution of Si (OC 2 H 5 ) 4 (tetraethyl orthosilicate) as a catalyst for a hydrolysis reaction, and then the mixture is stirred and left to stand to cause the hydrolysis shown in Chemical formula 1.

【0013】[0013]

【化1】 Embedded image

【0014】この加水分解が起きた溶液をさらにアルコ
ールで希釈する。この希釈された溶液濃度はSiO2
算で0.1〜5wt%となるように希釈することが好まし
い。その理由は、溶液中のSiO2 換算濃度が0.1wt
%未満では連続した皮膜の形成が困難であり、またSi
2 換算濃度が5wt%を越えると皮膜の厚さが2μmよ
りも厚くなり、磁性体の体積分率が下がり、ボンド磁石
の磁気特性が落ちるとともに、それ以降の工程の加熱処
理時に皮膜に割れが入り、かえって耐食性改善効果が減
少するからである。
The solution in which the hydrolysis has occurred is further diluted with alcohol. The diluted solution concentration is preferably diluted to 0.1 to 5 wt% in terms of SiO 2 . The reason is that the concentration of SiO 2 in the solution is 0.1 wt.
%, It is difficult to form a continuous film.
When the concentration converted to O 2 exceeds 5 wt%, the thickness of the coating becomes thicker than 2 μm, the volume fraction of the magnetic material decreases, the magnetic properties of the bonded magnet deteriorate, and the coating cracks during the heat treatment in the subsequent steps. This is because the corrosion resistance is reduced and the effect of improving corrosion resistance is reduced.

【0015】このようにして作成した溶液に、Nd−F
e−B系磁石粉末を浸漬し、ろ別後室温で撹拌しながら
乾燥すると、磁石粉末の表面にSi(OH)4 モノマー
の皮膜が一様に形成され、このSi(OH)4 モノマー
皮膜が形成された磁石粉末を加熱するとSi(OH)4
モノマーが縮合反応し、磁石粉末の表面に緻密で連続し
たSiO2 皮膜が形成される。
The solution thus prepared was added with Nd-F.
When the e-B magnet powder is dipped, filtered and dried at room temperature with stirring, a film of Si (OH) 4 monomer is uniformly formed on the surface of the magnet powder, and this Si (OH) 4 monomer film is formed. When the formed magnetic powder is heated, Si (OH) 4
The monomer undergoes a condensation reaction to form a dense and continuous SiO 2 film on the surface of the magnet powder.

【0016】上記Si(OH)4 モノマーに縮合反応を
起こさせる加熱雰囲気は、真空またはAr,N2 などの
不活性ガス雰囲気が好ましく、その加熱温度は80〜5
00℃が好ましい。縮合反応を促進するためには80℃
以上の温度が必要であり、また磁石粉末の金属組織変化
が起こらないためには500℃以下であることが望まし
い。
The heating atmosphere for causing the condensation reaction of the Si (OH) 4 monomer is preferably vacuum or an atmosphere of an inert gas such as Ar or N 2 , and the heating temperature is 80 to 5.
00 ° C is preferred. 80 ° C to accelerate the condensation reaction
The above temperature is required, and it is preferably 500 ° C. or lower so that the metal structure of the magnet powder does not change.

【0017】(II) プラズマ化学蒸着法によるSi
2 皮膜の形成方法。
(II) Si by plasma enhanced chemical vapor deposition
Method of forming O 2 film.

【0018】真空容器内に原料ガスとして水素化シリコ
ンガス、アルキルシラン、アルコキシシラン鎖状ポリシ
ロキサン、環状ポリシロキサンなどのSi源のガスと、
2,N2 Oなどの酸素源のガスを導入し、真空ポンプ
により容器内の圧力を一定に保持しながら、電極に高周
波電力を加えて放電を起こさせてプラズマを発生させ、
その化学反応により磁石粉末表面にSiO2 皮膜を形成
する。磁石粉末表面に均一にSiO2 皮膜を形成させる
ためには、蒸着中は磁石粉末を常に転動または流動させ
る必要があり、そのための各種装置を使用する。この方
法により磁石粉末表面に形成されるSiO2 皮膜の平均
膜厚も0.1〜2μmの範囲内にあることが好ましい。
Si source gas such as silicon hydride gas, alkylsilane, alkoxysilane chain polysiloxane and cyclic polysiloxane as raw material gas in a vacuum container,
Gas of oxygen source such as O 2 and N 2 O is introduced, and while maintaining a constant pressure in the container by a vacuum pump, high frequency power is applied to the electrodes to cause discharge to generate plasma,
The chemical reaction forms a SiO 2 film on the surface of the magnet powder. In order to uniformly form a SiO 2 film on the surface of the magnet powder, it is necessary to constantly roll or flow the magnet powder during vapor deposition, and various devices for that purpose are used. The average film thickness of the SiO 2 film formed on the surface of the magnet powder by this method is also preferably within the range of 0.1 to 2 μm.

【0019】したがって、この発明は、(4) エチル
シリケートを用いたゾル・ゲル反応により、またはプラ
ズマ化学蒸着法により、Nd−Fe−B系磁石粉末表面
に二酸化ケイ素の保護皮膜を形成する耐食性に優れたボ
ンド磁石用Nd−Fe−B系磁石粉末の製造方法に特徴
を有するものである。
Therefore, the present invention provides (4) corrosion resistance for forming a protective film of silicon dioxide on the surface of Nd-Fe-B based magnet powder by a sol-gel reaction using ethyl silicate or by a plasma chemical vapor deposition method. It is characterized by an excellent method for producing Nd-Fe-B magnet powder for bonded magnets.

【0020】この発明のSiO2 皮膜を形成するための
Nd−Fe−B系磁石粉末は、粉砕磁石粉末、液体急冷
法による等方性磁石粉末、水素処理による異方性磁石粉
末のいずれの粉末でもよいが、特に耐食性が劣る粉砕磁
石粉末または水素処理磁石粉末に適用すると効果があ
る。
The Nd-Fe-B system magnet powder for forming the SiO 2 film of the present invention is any one of ground magnet powder, isotropic magnet powder by liquid quenching method, and anisotropic magnet powder by hydrogen treatment. However, it is particularly effective when applied to pulverized magnet powder or hydrogen-treated magnet powder having poor corrosion resistance.

【0021】上記(I)および(II)の方法で得られ
たこの発明のSiO2 皮膜を有するNd−Fe−B系磁
石粉末をナイロン、ポリブチレンテレフタレート、ポリ
フェニレンサルファイドなどの熱可塑性樹脂と混合し、
この混合物を射出成形または押出成形してボンド磁石を
作製することができる。
The Nd-Fe-B magnet powder having the SiO 2 coating of the present invention obtained by the above methods (I) and (II) is mixed with a thermoplastic resin such as nylon, polybutylene terephthalate or polyphenylene sulfide. ,
The mixture can be injection molded or extruded to make a bonded magnet.

【0022】また、この発明のSiO2 皮膜を有するN
d−Fe−B系磁石粉末はニトリルブチルゴムなどの合
成ゴムと混合し、これをロール法により成形して可撓性
ゴム磁石を作製することができる。
Further, N having the SiO 2 coating of the present invention
The d-Fe-B magnet powder can be mixed with a synthetic rubber such as nitrile butyl rubber and molded by a roll method to prepare a flexible rubber magnet.

【0023】さらに、この発明のSiO2 皮膜を有する
Nd−Fe−B系磁石粉末をエポキシ、ビスマレイミド
トリアジンなどの熱硬化性樹脂と混合し、これを圧縮成
形してボンド磁石を作製することもできる。
Further, the Nd-Fe-B magnet powder having the SiO 2 coating of the present invention may be mixed with a thermosetting resin such as epoxy or bismaleimide triazine, and this may be compression molded to prepare a bonded magnet. it can.

【0024】[0024]

【実施例】プラズマアーク溶解してNd:12.6at
%、Co:11.6at%、B:6.0at%、Ga:1.
0at%、Fe:残部からなる組成のインゴットを作製
し、このインゴットにAr雰囲気中、温度:1120
℃、20時間保持したのちArガスで急冷の均質化焼鈍
を施し、この均質化焼鈍したインゴットをジョークラッ
シャにより10mm角以下に粗粉砕し、この粗粉砕したも
のを真空炉に装入し、真空炉内の雰囲気を1気圧のH2
フロー雰囲気とし、真空炉内の温度を830℃まで昇温
し、同温度で3時間保持したのち真空排気を行い、1×
10-2Torrの真空度となるまで脱水素を行なったのち直
ちにArガスにより急冷し、ブラウンミルにより粉砕
し、平均粒度:約100μmのNd−Fe−B系磁石粉
末を作製した。
[Example] Plasma arc melting and Nd: 12.6 at
%, Co: 11.6 at%, B: 6.0 at%, Ga: 1.
An ingot having a composition of 0 at% and Fe: balance was prepared, and this ingot was heated in an Ar atmosphere at a temperature of 1120.
After holding at ℃ for 20 hours, homogenized annealing is performed by quenching with Ar gas, the homogenized annealed ingot is roughly crushed into 10 mm square or less by a jaw crusher, and the roughly crushed one is put into a vacuum furnace and vacuumed. The atmosphere in the furnace is set to 1 atm of H 2
In a flow atmosphere, the temperature inside the vacuum furnace is raised to 830 ° C., and the temperature is maintained for 3 hours, then vacuum exhaust is performed and 1 ×
After dehydrogenation to a vacuum of 10 -2 Torr, it was immediately quenched with Ar gas and pulverized with a brown mill to prepare Nd-Fe-B magnet powder having an average particle size of about 100 μm.

【0025】実施例1 テトラエチルオルトシリケート(以下、TEOSと記
す)をイソプロピルアルコールで溶解し、40.9wt%
TEOSアルコール溶液を作製し、この40.9wt%T
EOSアルコール溶液に対して、触媒として0.3wt%
硝酸水溶液を7.1wt%添加し撹拌したのち24時間放
置した。
Example 1 Tetraethyl orthosilicate (hereinafter referred to as TEOS) was dissolved in isopropyl alcohol to obtain 40.9% by weight.
A TEOS alcohol solution was prepared and this 40.9 wt% T
0.3 wt% as a catalyst for EOS alcohol solution
After adding 7.1 wt% of nitric acid aqueous solution and stirring, the mixture was left standing for 24 hours.

【0026】このようにして得られた溶液をイソプロピ
ルアルコールで21倍に希釈し、SiO2 換算で0.5
wt%の表面処理溶液を作製した。
The solution thus obtained was diluted 21-fold with isopropyl alcohol, and converted to 0.5 in terms of SiO 2.
A wt% surface treatment solution was prepared.

【0027】上記平均粒度:約100μmのNd−Fe
−B系磁石粉末を上記表面処理溶液に浸漬し、ろ別した
のち室温で撹拌しながら乾燥し、上記Nd−Fe−B系
磁石粉末表面にSi(OH)4 皮膜を形成し、ついで2
×10-5Torrの真空雰囲気中、温度:250℃で1時間
加熱し、SiO2 平均膜厚:1μmの本発明磁石粉末1
を作製した。
The above average particle size: Nd-Fe of about 100 μm
The -B magnet powder was immersed in the surface treatment solution, filtered, and dried at room temperature with stirring to form a Si (OH) 4 film on the surface of the Nd-Fe-B magnet powder, and then 2
In a vacuum atmosphere of × 10 -5 Torr, the magnet powder 1 of the present invention having a SiO 2 average film thickness of 1 μm was heated at a temperature of 250 ° C. for 1 hour.
Was produced.

【0028】この本発明磁石粉末1に対して2.5wt%
のビスマレイミドトリアジン樹脂を添加し混合したの
ち、配向磁界15KOeを圧縮方向と平行に印加しなが
ら圧力:6ton /cm2 で常温圧縮成形して直径:10m
m、高さ:7mmの成形体を作製し、この成形体をAr気
流中、温度:150℃、30分保持の条件で樹脂硬化さ
せ、本発明ボンド磁石1を作製した。
2.5 wt% with respect to the magnet powder 1 of the present invention
After adding and mixing the bismaleimide triazine resin of No. 1, while applying an orientation magnetic field of 15 KOe parallel to the compression direction, press-mold at room temperature at a pressure of 6 ton / cm 2 and a diameter of 10 m.
A molded body having m and a height of 7 mm was prepared, and the molded body was resin-cured under the conditions of a temperature of 150 ° C. and a holding time of 30 minutes in Ar gas flow to manufacture the bonded magnet 1 of the present invention.

【0029】実施例2 上記Nd−Fe−B系磁石粉末を真空容器内に設置され
た回転羽根方式の撹拌機により転動しながら、真空容器
内にヘキサメチルジシロキサンガスとN2 Oガスを同時
に各々50cc/min の流量で導入し、24.5MHzの
高周波プラズマにより投入電力:300Wで放電を行
い、30分間蒸着を行ない、SiO2 皮膜の平均厚さが
1μmの本発明磁石粉末2を作製した。
Example 2 Hexamethyldisiloxane gas and N 2 O gas were introduced into the vacuum container while rolling the Nd-Fe-B magnet powder by means of a rotary blade type agitator installed in the vacuum container. At the same time, each was introduced at a flow rate of 50 cc / min, discharged with a high-frequency plasma of 24.5 MHz at an input power of 300 W, and vapor-deposited for 30 minutes to prepare a magnet powder 2 of the present invention having an average SiO 2 film thickness of 1 μm. did.

【0030】この本発明磁石粉末2を用い、実施例1と
同様にして本発明ボンド磁石2を作製した。
Using this magnet powder 2 of the present invention, a bonded magnet 2 of the present invention was produced in the same manner as in Example 1.

【0031】従来例1〜3 ポリエチレン、ポリプロピレン、ポリスチレンをそれぞ
れキシレンに溶解させて樹脂濃度を調整し、溶液の粘度
を500センチポイズに調整した。これら各種溶液に上
記Nd−Fe−B系磁石粉末を浸漬した後、ろ別して緩
やかに撹拌しながらブロワーで乾燥し、平均膜厚:15
μmのポリエチレン皮膜を形成した従来磁石粉末1、平
均膜厚:15μmのポリプロピレン皮膜を形成した従来
磁石粉末2および平均膜厚:15μmのポリスチレン皮
膜を形成した従来磁石粉末3をそれぞれ作製した。さら
にこれら従来磁石粉末1,2および3を用い、実施例1
と同様にして、それぞれ従来ボンド磁石1,2および3
を作製した。
Conventional Examples 1 to 3 Polyethylene, polypropylene and polystyrene were each dissolved in xylene to adjust the resin concentration, and the viscosity of the solution was adjusted to 500 centipoise. After immersing the Nd-Fe-B magnet powder in these various solutions, it was filtered and dried with a blower while gently stirring, and the average film thickness: 15
A conventional magnet powder 1 having a polyethylene film having a thickness of μm, a conventional magnet powder 2 having a polypropylene film having an average film thickness of 15 μm, and a conventional magnet powder 3 having a polystyrene film having an average film thickness of 15 μm were prepared. Furthermore, using these conventional magnet powders 1, 2 and 3, Example 1
Similarly to the conventional bonded magnets 1, 2 and 3 respectively.
Was produced.

【0032】上記実施例1〜2および従来例1〜3で得
られた本発明磁石粉末1〜2および従来磁石粉末1〜3
をそれぞれ10g秤量し、この本発明磁石粉末1〜2お
よび従来磁石粉末1〜3を大気中、温度:65℃、温
度:95%の多湿高温雰囲気に500時間保持し、再び
重量を測定し、その差を酸化量として求め、表1に示し
た。
The magnet powders 1 and 2 of the present invention and the conventional magnet powders 1 to 3 obtained in Examples 1 to 2 and Conventional Examples 1 to 3 above.
Were weighed 10 g each, and the present magnet powders 1 and 2 and conventional magnet powders 1 to 3 were held in the atmosphere in a humid and high temperature atmosphere of temperature: 65 ° C. and temperature: 95% for 500 hours, and the weight was measured again. The difference was determined as the amount of oxidation and is shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示される結果から、平均膜厚1μm
のSiO2 皮膜を形成した本発明磁石粉末1〜2は、平
均膜厚:15μmのポリエチレン、ポリプロピレン、ポ
リスチレン皮膜をそれぞれ形成した従来磁石粉末1〜3
に比べて重量差が少ないところから耐食性に優れている
ことがわかる。
From the results shown in Table 1, the average film thickness is 1 μm.
The magnetic powders 1 to 2 of the present invention having the SiO 2 coating formed are conventional magnet powders 1 to 3 each having a polyethylene, polypropylene and polystyrene coating having an average film thickness of 15 μm.
It can be seen that the corrosion resistance is excellent from the point where the difference in weight is small compared to.

【0035】さらに、本発明ボンド磁石1〜2および従
来ボンド磁石1〜3について50KOeのパルス着磁を
施したのち、オープンフラックスを磁束計を用いて引き
抜き法により測定し、また磁気特性をBHカーブトレー
サを用いて最大印加磁界20KOeで測定し、その結果
を表2に示した。
Further, after applying 50 KOe pulse magnetization to the bonded magnets 1 to 2 of the present invention and the conventional bonded magnets 1 to 3, the open flux was measured by a drawing method using a magnetometer, and the magnetic characteristics were measured by a BH curve. The measurement was performed at a maximum applied magnetic field of 20 KOe using a tracer, and the results are shown in Table 2.

【0036】これら測定が終ったのち再び50KOeの
パルス着磁を施したこれらボンド磁石を80℃、95%
RHに保った恒温恒湿槽に装入し、500時間保持した
のち取り出して外観の発錆状態を観察し、さらにオープ
ンフラックスを測定し、恒温恒湿槽装入前後の減少率を
求めてその結果を表2に示し、耐食性の評価を行った。
さらに本発明ボンド磁石1〜2および従来ボンド磁石1
〜3について、130℃に保持された恒温槽に装入し、
500時間保持したのち取り出して恒温槽装入前後のオ
ープンフラックスを測定し、その減少率を求めてその結
果を表2に示し、耐熱性の評価を行った。
After these measurements were completed, the bonded magnets pulse-magnetized at 50 KOe were again applied at 80 ° C. and 95%.
It was charged in a thermo-hygrostat kept at RH, kept for 500 hours, taken out, and observed for rust appearance, and the open flux was measured to determine the decrease rate before and after the thermo-humidity bath was charged. The results are shown in Table 2 and the corrosion resistance was evaluated.
Further, the bonded magnets 1 to 2 of the present invention and the conventional bonded magnet 1
About ~ 3, charged into a constant temperature bath maintained at 130 ℃,
After holding for 500 hours, it was taken out and the open flux before and after charging in a constant temperature bath was measured, the reduction rate was calculated, and the results are shown in Table 2 to evaluate the heat resistance.

【0037】[0037]

【表2】 [Table 2]

【0038】表2に示される結果から、本発明磁石粉末
1〜2で作製された本発明ボンド磁石1〜2はいずれも
従来磁石粉末1〜3で作製された従来ボンド磁石1〜3
に比べて耐食耐熱性に優れていることがわかる。
From the results shown in Table 2, all of the bonded magnets 1 and 2 of the present invention made of the magnet powders 1 and 2 of the present invention are conventional bonded magnets 1 to 3 made of the conventional magnet powders 1 to 3, respectively.
It can be seen that the corrosion resistance is superior to that of

【0039】[0039]

【発明の効果】上述のように、この発明の製造方法で作
製したSiO2 皮膜を有するこの発明のボンド磁石用N
d−Fe−B系磁石粉末は、従来の高分子皮膜を有する
Nd−Fe−B系磁石粉末よりも磁気特性および耐食耐
熱性に優れたボンド磁石を製造することができ、電気電
子産業の発展に大いに貢献しうるものである。
As described above, the N for bonded magnet of the present invention having the SiO 2 film produced by the manufacturing method of the present invention is as described above.
The d-Fe-B magnet powder can manufacture a bonded magnet having magnetic properties and corrosion resistance superior to those of the conventional Nd-Fe-B magnet powder having a polymer coating. Can greatly contribute to.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 1/08 H01F 1/08 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01F 1/053 1/08 H01F 1/08 A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Nd−Fe−B系磁石粉末の表面に二酸
化ケイ素の保護皮膜が形成されていることを特徴とする
耐食性に優れたボンド磁石用Nd−Fe−B系磁石粉
末。
1. A Nd-Fe-B based magnet powder for bonded magnets having excellent corrosion resistance, characterized in that a protective film of silicon dioxide is formed on the surface of the Nd-Fe-B based magnet powder.
【請求項2】 請求項1記載の磁石粉末を樹脂バインダ
ーで結合したことを特徴とするボンド磁石。
2. A bonded magnet, wherein the magnet powder according to claim 1 is bonded with a resin binder.
【請求項3】 エチルシリケートを用いたゾル・ゲル反
応によりNd−Fe−B系磁石粉末表面に二酸化ケイ素
の保護皮膜を形成することを特徴とする耐食性に優れた
ボンド磁石用Nd−Fe−B系磁石粉末の製造方法。
3. A Nd-Fe-B for bonded magnet excellent in corrosion resistance, characterized in that a protective film of silicon dioxide is formed on the surface of an Nd-Fe-B based magnet powder by a sol-gel reaction using ethyl silicate. Method for producing a base magnet powder.
【請求項4】 プラズマ化学蒸着法によりNd−Fe−
B系磁石粉末表面に二酸化ケイ素の保護皮膜を形成する
ことを特徴とする耐食性に優れたボンド磁石用Nd−F
e−B系磁石粉末の製造方法。
4. Nd-Fe- by a plasma chemical vapor deposition method.
Nd-F for bonded magnet excellent in corrosion resistance, characterized by forming a protective film of silicon dioxide on the surface of B-based magnet powder
Method for producing e-B magnet powder.
JP6270460A 1994-10-07 1994-10-07 Nd-fe-b based magnet powder for bonded magnet excellent in corrosion resistance, bonded magnet and production of magnet powder Withdrawn JPH08111306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6270460A JPH08111306A (en) 1994-10-07 1994-10-07 Nd-fe-b based magnet powder for bonded magnet excellent in corrosion resistance, bonded magnet and production of magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6270460A JPH08111306A (en) 1994-10-07 1994-10-07 Nd-fe-b based magnet powder for bonded magnet excellent in corrosion resistance, bonded magnet and production of magnet powder

Publications (1)

Publication Number Publication Date
JPH08111306A true JPH08111306A (en) 1996-04-30

Family

ID=17486608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6270460A Withdrawn JPH08111306A (en) 1994-10-07 1994-10-07 Nd-fe-b based magnet powder for bonded magnet excellent in corrosion resistance, bonded magnet and production of magnet powder

Country Status (1)

Country Link
JP (1) JPH08111306A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367820A (en) * 2001-06-12 2002-12-20 Japan Science & Technology Corp Rare-earth bonded magnet recycling waste magnet material
WO2003088279A1 (en) * 2002-04-09 2003-10-23 The Electrodyne Company, Inc. Bonded permanent magnets
WO2010090229A1 (en) 2009-02-03 2010-08-12 戸田工業株式会社 Surface treated rare earth magnetic powder, bonded magnet resin composition that includes the rare earth magnetic powder, and bonded magnet
JP2011216659A (en) * 2010-03-31 2011-10-27 Nitto Denko Corp R-Fe-B BASED PERMANENT MAGNET
EP2497094A1 (en) * 2009-11-05 2012-09-12 Robert Bosch GmbH Method for producing a magnet, magnet, and electric machine
DE102013213494A1 (en) * 2013-07-10 2015-01-29 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet and electric machine with such a permanent magnet
CN104919546A (en) * 2012-11-14 2015-09-16 大众汽车有限公司 Method for producing a permanent magnet and permanent magnet
JP2020050904A (en) * 2018-09-26 2020-04-02 日亜化学工業株式会社 Magnetic powders and method for producing same
CN112002512A (en) * 2020-10-29 2020-11-27 宁波合力磁材技术有限公司 Anti-corrosion sintered neodymium iron boron magnetic material and preparation process thereof
JP2021055133A (en) * 2019-09-27 2021-04-08 日亜化学工業株式会社 Manufacturing method of magnetic powder

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367820A (en) * 2001-06-12 2002-12-20 Japan Science & Technology Corp Rare-earth bonded magnet recycling waste magnet material
WO2003088279A1 (en) * 2002-04-09 2003-10-23 The Electrodyne Company, Inc. Bonded permanent magnets
US6707361B2 (en) 2002-04-09 2004-03-16 The Electrodyne Company, Inc. Bonded permanent magnets
WO2010090229A1 (en) 2009-02-03 2010-08-12 戸田工業株式会社 Surface treated rare earth magnetic powder, bonded magnet resin composition that includes the rare earth magnetic powder, and bonded magnet
EP2497094A1 (en) * 2009-11-05 2012-09-12 Robert Bosch GmbH Method for producing a magnet, magnet, and electric machine
US20120319807A1 (en) * 2009-11-05 2012-12-20 Robert Bosch Gmbh Method for producing a magnet, magnet and electric machine
JP2011216659A (en) * 2010-03-31 2011-10-27 Nitto Denko Corp R-Fe-B BASED PERMANENT MAGNET
CN104919546A (en) * 2012-11-14 2015-09-16 大众汽车有限公司 Method for producing a permanent magnet and permanent magnet
US10312019B2 (en) 2012-11-14 2019-06-04 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet
DE102013213494A1 (en) * 2013-07-10 2015-01-29 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet and electric machine with such a permanent magnet
JP2020050904A (en) * 2018-09-26 2020-04-02 日亜化学工業株式会社 Magnetic powders and method for producing same
US11424055B2 (en) 2018-09-26 2022-08-23 Nichia Corporation Magnetic powder and preparation method thereof
US11710586B2 (en) 2018-09-26 2023-07-25 Nichia Corporation Magnetic powder
JP2021055133A (en) * 2019-09-27 2021-04-08 日亜化学工業株式会社 Manufacturing method of magnetic powder
US11594352B2 (en) 2019-09-27 2023-02-28 Nichia Corporation Method of producing magnetic powder
CN112002512A (en) * 2020-10-29 2020-11-27 宁波合力磁材技术有限公司 Anti-corrosion sintered neodymium iron boron magnetic material and preparation process thereof
CN112002512B (en) * 2020-10-29 2021-03-02 宁波合力磁材技术有限公司 Anti-corrosion sintered neodymium iron boron magnetic material and preparation process thereof

Similar Documents

Publication Publication Date Title
JP4525425B2 (en) Fluoride coat film forming treatment liquid, fluoride coat film forming method and magnet
US7914695B2 (en) Magnet using binding agent and method of manufacturing the same
US9566646B2 (en) Surface-treated rare earth-based magnetic particles, resin composition for bonded magnets comprising the earth-based magnetic particles and bonded magnet comprising the earth-based magnetic particles
JP3159693B1 (en) Method for producing rare earth permanent magnet having corrosion resistant coating
EP1734539B1 (en) Corrosion-resistant rare earth magnets and process for production thereof
JP2001076914A (en) Rare-earth based permanent magnet and manufacture thereof
JP2008282832A (en) Rare-earth magnet
JPH08111306A (en) Nd-fe-b based magnet powder for bonded magnet excellent in corrosion resistance, bonded magnet and production of magnet powder
JP2015032760A (en) Composite magnetic material, manufacturing method thereof, and raw material set of composite magnetic material
JP3781095B2 (en) Method for producing corrosion-resistant rare earth magnet
JP2006169618A (en) Iron based magnet alloy powder comprising rare earth element, method for producing the same, resin composition for bond magnet obtained therefrom, and bond magnet and consolidated magnet
US5905424A (en) Bonded magnet made from gas atomized powders of rare earth alloy
US11710586B2 (en) Magnetic powder
JP2021025127A (en) Dust core and method for manufacturing the same
JP2001176711A (en) Method of manufacturing for bonded magnet, method of manufacturing for bonded magnet powder, bonded magnet and bonded magnet powder
JP3904415B2 (en) Manufacturing method of bonded magnet
JP2016033971A (en) Method for manufacturing rare earth-transition metal-nitrogen based magnet powder of high weather resistance, and rare earth-transition metal-nitrogen based magnet powder of high weather resistance
WO2015122271A1 (en) Rare-earth-based magnetic powder and method for producing same, resin composition for bonded magnets, and bonded magnet
JPH097868A (en) High corrosion-resistant permanent magnet and manufacture thereof
CN115172036A (en) Neodymium iron boron magnetic material and preparation method thereof
CN112385000A (en) Improved temperature stable soft magnetic powder
CN108666125A (en) A kind of preparation method of the high corrosion resistant rare earth permanent-magnet material of low weightlessness
JPH08222463A (en) Manufacture of nd-fe-b bonded magnet of high corrosion resistance
JP2004006910A (en) Rare earth-based permanent magnet
JPH11111514A (en) Power for rare-earth bond magnet and its manufacture

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115