JPH08110317A - Integrated micro sensor - Google Patents

Integrated micro sensor

Info

Publication number
JPH08110317A
JPH08110317A JP6245899A JP24589994A JPH08110317A JP H08110317 A JPH08110317 A JP H08110317A JP 6245899 A JP6245899 A JP 6245899A JP 24589994 A JP24589994 A JP 24589994A JP H08110317 A JPH08110317 A JP H08110317A
Authority
JP
Japan
Prior art keywords
gas
flow rate
micro
integrated
gas concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6245899A
Other languages
Japanese (ja)
Inventor
Kiyomitsu Suzuki
清光 鈴木
Masayuki Miki
政之 三木
Masahiro Matsumoto
昌大 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6245899A priority Critical patent/JPH08110317A/en
Publication of JPH08110317A publication Critical patent/JPH08110317A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To detect concentration and flow rate with precision by integrating a thermal conduction type gas concentration detecting part and a thermal gas flow rate detecting part in a body. CONSTITUTION: On a thin-wall beam where a substrate 1 consisting of a silicon or photosensitive glass is etched, micro heater parts 2 and 4 and micro temperature sensor parts 3 and 5 are formed. The resistance values of conductive thin films of the sensor parts 3 and 5 are made larger than those of heaters 2 and 4, and only the latters are heated with minute current. A gas concentration detecting part consists of the heater part 2 and the sensor part 3, and, a gas flow rate detecting part consists of the heater part 4 and the sensor part 5. Thermal insulation between the heater parts 2 and 4 and the sensor parts 3 and 5 is established with numerous slits 13 in between, and, between the heater part 4 and the sensor part 5, a beam is assigned so that thermal shift is prevented at gas flaw, for detecting gas flow rate with precition. Further, the inside volume of a gas diffusion chamber 17 is made smaller, and the cross section area of a gas diffusion hole 16 is made larger for smaller constant at diffusion, for precision gas concentration detection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車の燃料タンクよ
り蒸発してくる燃料をエンジンにパージしたときの排ガ
ス対策、即ち、エバポ規制に対応するためパージガスの
濃度と流量を高感度,高精度,高応答に検出する集積型
マイクロセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a countermeasure for exhaust gas when purging fuel vaporized from a fuel tank of an automobile into an engine, that is, in order to comply with evaporative regulations, the concentration and flow rate of purge gas are highly sensitive and highly accurate. , Relating to integrated microsensor that detects with high response.

【0002】[0002]

【従来の技術】現在のところ、燃料と空気の混合したパ
ージガスの濃度と流量を同時に検出可能なセンサはな
い。また、ガス濃度を検出するセンサとして熱伝導式ゃ
酸化物半導体式などの計測器が知られているが、サイズ
が大きく低応答で使い勝手が悪いため、自動車のエバポ
規制用センサには不向きである。
2. Description of the Related Art At present, there is no sensor capable of simultaneously detecting the concentration and flow rate of a purge gas in which fuel and air are mixed. Further, as a sensor for detecting the gas concentration, a measuring device such as a heat conduction type or an oxide semiconductor type is known, but it is unsuitable as a sensor for evaporative regulation of automobiles due to its large size and low response and poor usability. .

【0003】[0003]

【発明が解決しようとする課題】自動車のエバポ規制用
センサには、小型,低コストでパージガスの濃度と流量
を高感度,高精度かつ高応答に検出する機能が要求され
る。
The evaporation control sensor for automobiles is required to have a function of detecting the concentration and flow rate of purge gas with high sensitivity, high accuracy and high response in a small size and at low cost.

【0004】[0004]

【課題を解決するための手段】白金などの金属材料より
なるマイクロヒータとマイクロ温度センサで構成される
ガス濃度検出部とガス流量検出部を基板より熱的に絶縁
した肉厚の薄いビームあるいはダイアフラム上に形成
し、両検出部を一体に集積化する。このとき、ガス濃度
検出部はガス拡散孔を有するガス拡散室内に配置され、
ビームやダイアフラムは基板をエッチングして加工され
る。
A thin beam or diaphragm in which a gas concentration detection part and a gas flow rate detection part each composed of a micro heater and a micro temperature sensor made of a metal material such as platinum are thermally insulated from a substrate. It is formed on the upper side and both detecting parts are integrated together. At this time, the gas concentration detection unit is arranged in the gas diffusion chamber having the gas diffusion holes,
The beam and diaphragm are processed by etching the substrate.

【0005】[0005]

【作用】熱伝導式のガス濃度検出部および熱式のガス流
量検出部を基板より熱的に絶縁された肉厚の薄いビーム
あるいはダイアフラム上に形成しており、これらの検出
部より基板側へ伝導する熱量を極小化できる。この結
果、マイクロヒータで発生した熱量の大半を周囲のパー
ジガス中に迅速に伝達できる故、ガス濃度とガス流量を
高感度,高応答に検出できる。ガス拡散孔を有するガス
拡散室内にガス濃度検出部を配置してパージガスを拡散
によって導入することにより、ガス濃度検出部の周辺の
流速を実質的にゼロにする。この結果、ガス濃度検出部
よりパージガス中に伝達する熱量は実質的にガス濃度の
みに依存することになり、ガス濃度を高精度に検出でき
る。ガス濃度検出部とガス流量検出部を一体に集積化す
ることにより、小型で低コストなエバポ規制対応のセン
サを実現できる。
[Function] The heat conduction type gas concentration detecting section and the heat type gas flow rate detecting section are formed on a thin beam or diaphragm which is thermally insulated from the substrate. The amount of heat conducted can be minimized. As a result, most of the heat generated by the micro-heater can be quickly transferred to the surrounding purge gas, so that the gas concentration and gas flow rate can be detected with high sensitivity and high response. By arranging the gas concentration detection unit in the gas diffusion chamber having the gas diffusion holes and introducing the purge gas by diffusion, the flow velocity around the gas concentration detection unit is made substantially zero. As a result, the amount of heat transferred from the gas concentration detector into the purge gas substantially depends only on the gas concentration, and the gas concentration can be detected with high accuracy. By integrating the gas concentration detection unit and the gas flow rate detection unit into one body, it is possible to realize a small-sized and low-cost sensor that complies with the evaporation regulation.

【0006】[0006]

【実施例】本発明によるエバポ規制対策システムに適用
可能な集積型マイクロセンサの一実施例を図1に示す。
シリコンあるいは感光性ガラスよりなる基板1をエッチ
ング加工して製作した肉厚の薄いビームの上にマイクロ
ヒータ部2,マイクロ温度センサ部3,マイクロヒータ
部4,マイクロ温度センサ部5を形成している。
FIG. 1 shows an embodiment of an integrated microsensor applicable to the evaporative regulation control system according to the present invention.
The micro heater 2, micro temperature sensor 3, micro heater 4, and micro temperature sensor 5 are formed on a thin beam produced by etching a substrate 1 made of silicon or photosensitive glass. .

【0007】これらのマイクロヒータ部やマイクロ温度
センサ部の詳細構造を図8に示した。基板1をエッチン
グ加工して得られた厚さが約数十μのビーム6の上に絶
縁膜7を形成した後、スパッタや蒸着などの方法で白金
などの金属材料よりなる導電性の薄膜8を設け、これを
保護膜9でカバーした構造になっている。なお、ビーム
6が感光性ガラスやセラミックスなどの絶縁物で構成さ
れる場合は、絶縁膜7は必ずしも必要ではない。マイク
ロヒータ部とマイクロ温度センサ部は似たような形状を
しているが、微少電流でマイクロヒータ部を自己加熱さ
せるように、一方、マイクロ温度センサ部を自己加熱さ
せないように、後者の導電性の薄膜8の電気抵抗値を前
者のものより大きな値にしている。
FIG. 8 shows the detailed structure of these micro heater part and micro temperature sensor part. After the insulating film 7 is formed on the beam 6 having a thickness of about several tens μ obtained by etching the substrate 1, a conductive thin film 8 made of a metal material such as platinum is formed by a method such as sputtering or vapor deposition. Is provided and is covered with the protective film 9. If the beam 6 is made of an insulating material such as photosensitive glass or ceramics, the insulating film 7 is not always necessary. The micro-heater section and the micro-temperature sensor section have similar shapes, but the conductivity of the latter is set so that the micro-heater section is self-heated by a minute current, while the micro-temperature sensor section is not self-heated. The electric resistance value of the thin film 8 is larger than that of the former.

【0008】ガス濃度検出部はマイクロヒータ部2とマ
イクロ温度センサ部3,ガス流量検出部はマイクロヒー
タ部4とマイクロ温度センサ部5より構成される。ガス
濃度検出部の上部は凹み10を有するキャップ11でカ
バーされ、基板1は台座12に接着されている。基板1
がシリコンで構成される場合、キャップ11と台座12
をガラスに選択することにより、基板1へキャップ11
と台座12を良く知られた陽極接合で接着することがで
きる。基板1がセラミックスなどの絶縁材料で構成され
る場合、低融点ガラス接着剤などを用いて接着される。
図に示すように、マイクロヒータ部とマイクロ温度セン
サ部は、多数のスリット13を介して基板1と熱的に絶
縁されている。なお、マイクロヒータ部とマイクロ温度
センサ部間の距離およびこれらと基板1の肉厚部分から
の距離を大きくすることにより、ビーム6をスリット1
3のない薄いダイアフラム形状にしても、基板1側へ伝
導する熱量を大幅に極少化することができる。ガス流量
検出部のマイクロヒータ部4とマイクロ温度センサ部5
の間にビーム14を設けることにより、ガス流動時の流
れに起因したマイクロヒータ部4からマイクロ温度セン
サ部5への熱移動を減少させることができ、後述するよ
うな手法でガス流量を高精度に検出することができる。
スリット13→ガス拡散室15→ガス拡散孔16→ガス
拡散室17を介して、被測定ガスが拡散によりマイクロ
ヒータ部2とマイクロ温度センサ部3よりなるガス濃度
検出部の周囲に流入してくる。即ち、ガスの拡散速度は
被測定ガスの流速より極めて小さい故、ガス濃度検出部
の周囲のガス流速が実質的にゼロの状態下で、この部分
へ被測定ガスを導入することができる。なお、ガス濃度
検出部の周辺のガス濃度が被測定ガスの濃度と同じにな
る時定数は、主にガス拡散孔16とガス拡散室17の寸
法によって決まる故、ガス拡散室17の内容積を小さく
してガス拡散孔16の横断面積を大きく、その長さを短
くすることにより、ガス拡散の時定数を数十ms以内に
することができる。従って、後述するような手法で被測
定ガスの濃度を高精度に検出することができる。ガス濃
度検出部とガス流量検出部は熱容量の極めて小さいビー
ムやダイアフラム上に形成されていること、基板1と実
質的に熱絶縁されていることにより、ガスの濃度と流量
を高感度,高応答に検出することができる。
The gas concentration detector comprises a micro heater unit 2 and a micro temperature sensor unit 3, and the gas flow rate detector unit comprises a micro heater unit 4 and a micro temperature sensor unit 5. The upper portion of the gas concentration detecting portion is covered with a cap 11 having a recess 10, and the substrate 1 is bonded to a pedestal 12. Board 1
If is made of silicon, cap 11 and pedestal 12
By selecting glass as the substrate, the cap 11
The pedestal 12 can be bonded by well-known anodic bonding. When the substrate 1 is made of an insulating material such as ceramics, it is adhered using a low melting point glass adhesive or the like.
As shown in the figure, the micro-heater section and the micro-temperature sensor section are thermally insulated from the substrate 1 through a large number of slits 13. By increasing the distance between the micro-heater portion and the micro-temperature sensor portion and the distance between them and the thick portion of the substrate 1, the beam 6 is slit 1.
Even with a thin diaphragm shape without 3, the amount of heat conducted to the substrate 1 side can be greatly minimized. Micro heater unit 4 and micro temperature sensor unit 5 of the gas flow rate detection unit
By providing the beam 14 between the two, it is possible to reduce the heat transfer from the micro heater part 4 to the micro temperature sensor part 5 due to the flow at the time of gas flow. Can be detected.
Through the slit 13 → gas diffusion chamber 15 → gas diffusion hole 16 → gas diffusion chamber 17, the gas to be measured flows into the surroundings of the gas concentration detection unit including the micro heater unit 2 and the micro temperature sensor unit 3 by diffusion. . That is, since the diffusion rate of the gas is much smaller than the flow velocity of the gas to be measured, the gas to be measured can be introduced into this portion under the condition that the gas flow velocity around the gas concentration detecting portion is substantially zero. The time constant at which the gas concentration around the gas concentration detection unit becomes the same as the concentration of the gas to be measured is mainly determined by the dimensions of the gas diffusion hole 16 and the gas diffusion chamber 17, so the internal volume of the gas diffusion chamber 17 is By making the cross-sectional area of the gas diffusion hole 16 large and making its length short by making it small, the time constant of gas diffusion can be made within several tens ms. Therefore, the concentration of the gas to be measured can be detected with high accuracy by a method described later. The gas concentration detector and the gas flow detector are formed on a beam or diaphragm having an extremely small heat capacity, and are substantially thermally insulated from the substrate 1, so that the gas concentration and flow can be detected with high sensitivity and high response. Can be detected.

【0009】本発明による集積型マイクロセンサの平面
図を図2に示す。なお、図1は図2のA−A断面を示し
たものである。ビーム6aとビーム6bは基板1の肉厚
の薄い部分22および23で支持されている。被測定ガ
スの流量を測定するとき、ガス温度による流量の測定誤
差を減少させるために使用されるマイクロ温度センサ部
5はビーム6aとその上に形成した金属薄膜8aとより
なる。マイクロヒータ部4はビーム6bとその上に形成
した金属薄膜8bとよりなる。これらの金属薄膜はリー
ド18,パッド19(図中には4組有)を介して外部の
信号処理回路と接続される。一定の電流を通電したと
き、自己発熱が主にビーム6bで発生するようにリード
18の幅を広くし、その膜厚を厚くしている。同様に、
キャップ11下のガス濃度検出部もリード20,パッド
21を介して外部の信号処理回路と接続される。
A plan view of the integrated microsensor according to the present invention is shown in FIG. Note that FIG. 1 shows a cross section taken along the line AA of FIG. The beams 6a and 6b are supported by the thin-walled portions 22 and 23 of the substrate 1. When measuring the flow rate of the gas to be measured, the micro temperature sensor unit 5 used for reducing the measurement error of the flow rate due to the gas temperature is composed of the beam 6a and the metal thin film 8a formed thereon. The micro-heater unit 4 is composed of a beam 6b and a metal thin film 8b formed on the beam 6b. These metal thin films are connected to an external signal processing circuit via leads 18 and pads 19 (four sets are shown in the figure). The width of the lead 18 is widened and the film thickness thereof is increased so that self-heating is mainly generated by the beam 6b when a constant current is applied. Similarly,
The gas concentration detection unit under the cap 11 is also connected to an external signal processing circuit via the lead 20 and the pad 21.

【0010】図3に基板1の平面図を示す。ガス流量検
出部と同様、ガス濃度検出部はビーム6c上に形成した
金属薄膜8cとビーム6d上に形成した金属薄膜8dと
より構成されている。基板1の裏面の破線で示した位置
にガス拡散孔16が設けられている。
FIG. 3 shows a plan view of the substrate 1. Similar to the gas flow rate detection unit, the gas concentration detection unit includes a metal thin film 8c formed on the beam 6c and a metal thin film 8d formed on the beam 6d. A gas diffusion hole 16 is provided on the back surface of the substrate 1 at a position indicated by a broken line.

【0011】本発明による集積型マイクロセンサの他の
実施例を図4に示す。基板24をエッチング加工して、
マイクロヒータ部4とマイクロ温度センサ部5よりなる
ガス流量検出部を形成している。同様に、マイクロヒー
タ部2とマイクロ温度センサ部3よりなるガス濃度検出
部を基板25へ形成している。スリット13を介して、
被測定ガスがガス拡散室15とガス拡散室17で囲まれ
たガス濃度検出部の周囲に拡散によって流入してくる。
この場合、スリット13がガス拡散孔の機能を有するこ
とになり、図1に示した実施例の場合よりも狭い隙間の
スリットになる。本実施例は基板24,基板25,基板
26に感光性ガラスを用いた例である。基板24と基板
25へそれぞれガス流量検出部とガス濃度検出部を形成
した後、これらの基板を積層して850℃〜900℃の
温度で結晶化する。結晶化によって感光性ガラスはセラ
ミックス化し、素材としての強度が増加する。同時に、
3枚の基板24,25,26は同時に接着,固定され
る。
Another embodiment of the integrated microsensor according to the present invention is shown in FIG. Etching the substrate 24,
A gas flow rate detection unit including the micro heater unit 4 and the micro temperature sensor unit 5 is formed. Similarly, a gas concentration detecting section including the micro heater section 2 and the micro temperature sensor section 3 is formed on the substrate 25. Through the slit 13,
The gas to be measured flows into the periphery of the gas concentration detection unit surrounded by the gas diffusion chamber 15 and the gas diffusion chamber 17 by diffusion.
In this case, the slit 13 has the function of a gas diffusion hole, and the slit has a narrower gap than that of the embodiment shown in FIG. In this embodiment, photosensitive glass is used for the substrate 24, the substrate 25, and the substrate 26. After forming the gas flow rate detecting portion and the gas concentration detecting portion on the substrate 24 and the substrate 25, respectively, these substrates are laminated and crystallized at a temperature of 850 ° C to 900 ° C. Crystallization turns the photosensitive glass into a ceramic and increases its strength as a material. at the same time,
The three substrates 24, 25 and 26 are simultaneously adhered and fixed.

【0012】図4に示した集積型マイクロセンサの平面
図を図5に示す。図に示すように、基板24上へマイク
ロヒータ部4とマイクロ温度センサ部5が形成されてい
る。ガス濃度検出部とガス流量検出部のパッドが引き出
されるように、基板24と基板25は段違いに接着され
る。なお、図4は図5のB−B断面を示した図である。
A plan view of the integrated microsensor shown in FIG. 4 is shown in FIG. As shown in the figure, the micro heater part 4 and the micro temperature sensor part 5 are formed on the substrate 24. The substrate 24 and the substrate 25 are bonded in different steps so that the pads of the gas concentration detector and the gas flow detector are pulled out. Note that FIG. 4 is a view showing a BB cross section of FIG.

【0013】図4に示した実施例の概略製造工程を図6
に示す。本実施例の特徴は、基板の結晶化時に基板同士
を接着できることにある。
FIG. 6 shows a schematic manufacturing process of the embodiment shown in FIG.
Shown in The feature of this embodiment is that the substrates can be bonded to each other when the substrates are crystallized.

【0014】次に、本集積型マイクロセンサの信号処理
回路について簡単に説明する。信号処理回路の構成例を
図7に示す。マイクロヒータの抵抗26,マイクロ温度
センサの抵抗27,固定抵抗28,固定抵抗29および
電源30でガス濃度検出部のブリッジ回路を構成する。
同様に、マイクロヒータの抵抗31,マイクロ温度セン
サの抵抗32,固定抵抗33,固定抵抗34および電源
35でガス流量検出部のブリッジ回路を構成する。これ
らのブリッジ回路の出力信号をそれぞれ増幅器36,3
7で増幅すると、ガス濃度に対応した電圧V1 およびガ
ス流量に対応した電圧V2 が得られる。この他、マイク
ロヒータの抵抗26,31がある一定値になるように、
即ち、一定の温度になるようにフィードバック制御する
信号処理回路を構成することにより、これらの抵抗に供
給した熱量がガス濃度やガス流量に依存することを利用
して検出することもできる。
Next, the signal processing circuit of this integrated microsensor will be briefly described. FIG. 7 shows a configuration example of the signal processing circuit. The resistance 26 of the micro heater, the resistance 27 of the micro temperature sensor, the fixed resistance 28, the fixed resistance 29, and the power source 30 constitute a bridge circuit of the gas concentration detector.
Similarly, the resistance 31 of the micro heater, the resistance 32 of the micro temperature sensor, the fixed resistance 33, the fixed resistance 34, and the power supply 35 constitute a bridge circuit of the gas flow rate detection unit. The output signals of these bridge circuits are fed to amplifiers 36 and 3 respectively.
When amplified at 7, a voltage V 1 corresponding to the gas concentration and a voltage V 2 corresponding to the gas flow rate are obtained. In addition to this, the resistances 26 and 31 of the micro heater are set to a certain value,
That is, by configuring a signal processing circuit that performs feedback control so that the temperature becomes constant, it is possible to detect that the amount of heat supplied to these resistors depends on the gas concentration and the gas flow rate.

【0015】本発明による集積型マイクロセンサを用い
た自動車のエバポ規制システムの概略構成を図9に示
す。スロットルバルブ40の上流にあるエアフローメー
タ38でエンジン39へ吸入される空気流量を計測し、
これに見合った燃料流量を吸気管41に取り付けた燃料
噴射弁52からエンジン39へ供給している。次に、エ
バポ規制システムに対応した部分を説明する。燃料タン
ク42で蒸発した燃料を配管44を介してキャニスタ4
3へ集める。燃料の蒸発量が増加するにつれて、キャニ
スタ43内の圧力が次第に上昇する。それ故、時々キャ
ニスタ内の燃料をエンジン39へパージしてやる必要が
ある。配管46へ取り付けたバルブ48と配管45へ取
り付けたバルブ49とを開き、配管47へ取り付けたコ
ントロールバルブ50でパージガスの流量を制御し、吸
気管41を介してエンジン39へ放出する。このとき、
燃料と空気の混合したパージガスの濃度と流量が正確に
分かっていなければ、エンジン39内での最適な燃焼は
達成できず有害な排ガス成分が発生してくる。それ故、
配管47へ取り付けた本発明による集積型マイクロセン
サ51でパージガスの濃度とその流量を高精度,高応答
に検出することにより、キャニスタ43内の燃料をパー
ジさせたときでもエンジンにおける最適な燃焼を実現で
きる。
FIG. 9 shows a schematic structure of an automobile evaporation control system using the integrated microsensor according to the present invention. An air flow meter 38 upstream of the throttle valve 40 measures the flow rate of air taken into the engine 39,
A fuel flow rate corresponding to this is supplied from the fuel injection valve 52 attached to the intake pipe 41 to the engine 39. Next, the part corresponding to the evaporation control system will be described. The fuel evaporated in the fuel tank 42 is passed through the pipe 44 to the canister 4
Collect to 3. As the amount of evaporated fuel increases, the pressure in the canister 43 gradually increases. Therefore, it is sometimes necessary to purge the engine 39 of fuel in the canister. The valve 48 attached to the pipe 46 and the valve 49 attached to the pipe 45 are opened, the flow rate of the purge gas is controlled by the control valve 50 attached to the pipe 47, and the purge gas is discharged to the engine 39 via the intake pipe 41. At this time,
If the concentration and flow rate of the purge gas, which is a mixture of fuel and air, are not known accurately, optimal combustion in the engine 39 cannot be achieved, and harmful exhaust gas components are generated. Therefore,
By detecting the concentration and flow rate of the purge gas with high accuracy and high response by the integrated microsensor 51 according to the present invention attached to the pipe 47, optimum combustion in the engine is realized even when the fuel in the canister 43 is purged. it can.

【0016】[0016]

【発明の効果】本発明による集積型マイクロセンサによ
り混合気体の濃度とその流量を同時に、高感度,高精
度,高応答に検出することができる。また、小型で低コ
ストなセンサとすることができる。本センサを自動車の
エバポ規制システムに適用することにより、蒸発燃料を
エンジンにパージさせても最適なエンジン燃焼を実現す
ることがができる。
The integrated microsensor according to the present invention can detect the concentration and flow rate of a mixed gas at the same time with high sensitivity, high accuracy and high response. Further, the sensor can be made small and low in cost. By applying this sensor to the evaporative emission control system of an automobile, it is possible to realize optimum engine combustion even if the evaporated fuel is purged into the engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による集積型マイクロセンサの一実施例
を示した説明図。
FIG. 1 is an explanatory view showing an embodiment of an integrated microsensor according to the present invention.

【図2】本発明による集積型マイクロセンサの平面図。FIG. 2 is a plan view of an integrated microsensor according to the present invention.

【図3】本発明による集積型マイクロセンサを構成する
検出基板の平面図。
FIG. 3 is a plan view of a detection substrate that constitutes an integrated microsensor according to the present invention.

【図4】本発明による集積型マイクロセンサの他の実施
例を示した説明図。
FIG. 4 is an explanatory view showing another embodiment of the integrated microsensor according to the present invention.

【図5】他の実施例の平面図。FIG. 5 is a plan view of another embodiment.

【図6】他の実施例の概略製造工程図。FIG. 6 is a schematic manufacturing process drawing of another embodiment.

【図7】集積型マイクロセンサの信号処理回路の構成を
示した説明図。
FIG. 7 is an explanatory diagram showing a configuration of a signal processing circuit of the integrated microsensor.

【図8】マイクロヒータ部,マイクロ温度センサ部の詳
細を示した説明図。
FIG. 8 is an explanatory view showing details of a micro heater unit and a micro temperature sensor unit.

【図9】エバポ規制システムのブロック図。FIG. 9 is a block diagram of an evaporation control system.

【符号の説明】[Explanation of symbols]

1…基板、2,4…マイクロヒータ部、3,5…マイク
ロ温度センサ部、15,17…ガス拡散室、16…ガス
拡散孔。
1 ... Substrate, 2, 4 ... Micro heater part, 3, 5 ... Micro temperature sensor part, 15, 17 ... Gas diffusion chamber, 16 ... Gas diffusion hole.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】熱伝導式ガス濃度検出部と熱式ガス流量検
出部を一体に集積化したことを特徴とする集積型マイク
ロセンサ。
1. An integrated microsensor, wherein a heat conduction type gas concentration detecting section and a heat type gas flow rate detecting section are integrated together.
【請求項2】請求項1において、ガス濃度検出部とガス
流量検出部は薄い膜の上に形成されたマイクロヒータ部
とマイクロ温度センサ部よりなる集積型マイクロセン
サ。
2. The integrated microsensor according to claim 1, wherein the gas concentration detecting section and the gas flow rate detecting section are composed of a micro heater section and a micro temperature sensor section formed on a thin film.
【請求項3】請求項2において、薄い膜がエッチングに
よって加工されたビームあるいはダイアフラム形状であ
る集積型マイクロセンサ。
3. The integrated microsensor according to claim 2, wherein the thin film has a beam or diaphragm shape processed by etching.
【請求項4】請求項3において、マイクロヒータとマイ
クロ温度センサが白金などの金属材料で構成される集積
型マイクロセンサ。
4. The integrated microsensor according to claim 3, wherein the microheater and the micro temperature sensor are made of a metal material such as platinum.
【請求項5】請求項4において、ガス濃度検出部はガス
拡散孔を有するガス拡散室内に配置される集積型マイク
ロセンサ。
5. The integrated microsensor according to claim 4, wherein the gas concentration detector is arranged in a gas diffusion chamber having a gas diffusion hole.
【請求項6】請求項5において、ガス濃度検出部とガス
流量検出部は同一の基板へ平面方向に集積化されたマイ
クロセンサ。
6. The microsensor according to claim 5, wherein the gas concentration detecting section and the gas flow rate detecting section are integrated in the same substrate in a planar direction.
【請求項7】請求項5において、ガス濃度検出部とガス
流量検出部は別々の基板へ形成され垂直方向に集積化さ
れたマイクロセンサ。
7. The microsensor according to claim 5, wherein the gas concentration detecting section and the gas flow rate detecting section are formed on different substrates and are vertically integrated.
【請求項8】請求項6または7において、ガス濃度検出
部とガス流量検出部は感光性ガラス材料で構成される集
積型マイクロセンサ。
8. The integrated microsensor according to claim 6, wherein the gas concentration detecting section and the gas flow rate detecting section are made of a photosensitive glass material.
【請求項9】請求項1に記載の集積型マイクロセンサを
適用した自動車のエバポ規制対応システム。
9. An evaporative regulation compliant system for automobiles, to which the integrated microsensor according to claim 1 is applied.
JP6245899A 1994-10-12 1994-10-12 Integrated micro sensor Pending JPH08110317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6245899A JPH08110317A (en) 1994-10-12 1994-10-12 Integrated micro sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6245899A JPH08110317A (en) 1994-10-12 1994-10-12 Integrated micro sensor

Publications (1)

Publication Number Publication Date
JPH08110317A true JPH08110317A (en) 1996-04-30

Family

ID=17140481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6245899A Pending JPH08110317A (en) 1994-10-12 1994-10-12 Integrated micro sensor

Country Status (1)

Country Link
JP (1) JPH08110317A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065315A1 (en) * 1999-04-27 2000-11-02 Yazaki Corporation Thermal flow sensor, method and apparatus for identifying fluid, flow sensor, and method and apparatus for flow measurement
WO2012111368A1 (en) * 2011-02-18 2012-08-23 学校法人 東北学院 Heat conduction-type sensor having influence of temperature and kind of fluid corrected therein, and heat-type flow sensor and heat-type barometric sensor using the heat conduction-type sensor
EP2645091A1 (en) * 2012-03-30 2013-10-02 NXP Semiconductors B.V. Integrated circuit comprising a gas sensor
US8771598B2 (en) 2009-01-02 2014-07-08 Sensirion Ag Ammonia storage system
US9341499B2 (en) 2010-06-04 2016-05-17 Sensirion Ag Sensor system
JP2020532750A (en) * 2017-09-05 2020-11-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Gas sensor for measuring the concentration of analytical gas
WO2020262133A1 (en) * 2019-06-28 2020-12-30 日本特殊陶業株式会社 Fuel evaporative gas sensor
CN113302501A (en) * 2019-01-17 2021-08-24 Koa株式会社 Flow sensor device and flow sensor device with housing
CN116593075A (en) * 2023-07-19 2023-08-15 浙江朗德电子科技有限公司 Hydrogen sensor detection unit, preparation method and detection method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6662121B1 (en) 1999-04-27 2003-12-09 Yazaki Corporation Thermal fluid sensor, fluid discriminating apparatus and method, flow sensor, and flow rate measuring apparatus and method
WO2000065315A1 (en) * 1999-04-27 2000-11-02 Yazaki Corporation Thermal flow sensor, method and apparatus for identifying fluid, flow sensor, and method and apparatus for flow measurement
US8771598B2 (en) 2009-01-02 2014-07-08 Sensirion Ag Ammonia storage system
US9341499B2 (en) 2010-06-04 2016-05-17 Sensirion Ag Sensor system
JP5874117B2 (en) * 2011-02-18 2016-03-02 学校法人東北学院 Thermal conductivity sensor that calibrates the effects of fluid temperature and type, thermal flow sensor and thermal pressure sensor using the same
WO2012111368A1 (en) * 2011-02-18 2012-08-23 学校法人 東北学院 Heat conduction-type sensor having influence of temperature and kind of fluid corrected therein, and heat-type flow sensor and heat-type barometric sensor using the heat conduction-type sensor
CN103364455A (en) * 2012-03-30 2013-10-23 Nxp股份有限公司 Integrated circuit comprising a gas sensor
US9263500B2 (en) 2012-03-30 2016-02-16 Ams International Ag Integrated circuit comprising a gas sensor
EP2645091A1 (en) * 2012-03-30 2013-10-02 NXP Semiconductors B.V. Integrated circuit comprising a gas sensor
US9865647B2 (en) 2012-03-30 2018-01-09 Ams International Ag Integrated circuit comprising a gas sensor
JP2020532750A (en) * 2017-09-05 2020-11-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Gas sensor for measuring the concentration of analytical gas
US11226303B2 (en) 2017-09-05 2022-01-18 Robert Bosch Gmbh Gas sensor for measuring a concentration of an analysis gas
CN113302501A (en) * 2019-01-17 2021-08-24 Koa株式会社 Flow sensor device and flow sensor device with housing
WO2020262133A1 (en) * 2019-06-28 2020-12-30 日本特殊陶業株式会社 Fuel evaporative gas sensor
CN116593075A (en) * 2023-07-19 2023-08-15 浙江朗德电子科技有限公司 Hydrogen sensor detection unit, preparation method and detection method
CN116593075B (en) * 2023-07-19 2023-10-13 浙江朗德电子科技有限公司 Hydrogen sensor detection unit, preparation method and detection method

Similar Documents

Publication Publication Date Title
KR960015067B1 (en) Silicon-based mass airflow sensor
KR960015065B1 (en) Control and detection circuitry for mass air-flow sensors
US5535614A (en) Thermal conductivity gas sensor for measuring fuel vapor content
US4703555A (en) Method of making a catalytic-burning sensor
JPS61235726A (en) Mass flowmeter and flow controller
JP4608843B2 (en) Flow measuring device
WO2000039551A1 (en) Pressure sensor
JP2009541757A (en) Layer resistor in the exhaust pipe
JP2001027558A (en) Thermal type flowrate sensor
JPH07159215A (en) Mass flowsensor
JPH08110317A (en) Integrated micro sensor
US11635401B2 (en) Sensor device, method for manufacturing a sensor device and sensor assembly
US4841769A (en) Apparatus for measuring velocity of flow
JP2006283765A (en) Physical quantity detection device for engine
US6591683B1 (en) Pressure sensor
JP3083622B2 (en) Gas sensor
US4770036A (en) Apparatus for measuring velocity of flow
KR100244360B1 (en) Process and device for measuring air flow
JPH11148849A (en) Fluid detecting sensor
US6619130B1 (en) Pressure sensor
JP3668921B2 (en) Flow detection element
JPH04348280A (en) Heater built-in hybrid ic
JP3345695B2 (en) Acceleration sensor
JPH0618465A (en) Complex sensor
JP2003106884A (en) Airflow sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060307

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090424

RD02 Notification of acceptance of power of attorney

Effective date: 20090424

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130416

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130416

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20140416