JPH08110186A - Spiral pipe for cooling, its manufacture, and cooling device employing it - Google Patents

Spiral pipe for cooling, its manufacture, and cooling device employing it

Info

Publication number
JPH08110186A
JPH08110186A JP24625794A JP24625794A JPH08110186A JP H08110186 A JPH08110186 A JP H08110186A JP 24625794 A JP24625794 A JP 24625794A JP 24625794 A JP24625794 A JP 24625794A JP H08110186 A JPH08110186 A JP H08110186A
Authority
JP
Japan
Prior art keywords
pipe
spiral
cooling
flat
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24625794A
Other languages
Japanese (ja)
Inventor
Masayasu Yasuoka
正泰 安岡
Junsuke Yasuoka
純介 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YASUOKA KK
Original Assignee
YASUOKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YASUOKA KK filed Critical YASUOKA KK
Priority to JP24625794A priority Critical patent/JPH08110186A/en
Publication of JPH08110186A publication Critical patent/JPH08110186A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • F28D1/0473Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled the conduits having a non-circular cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: To enable forming a flat cooling passageway in a spiral with good accuracy and in a simple manner by winding a flat pipe in a spiral around an axis making right angles to the directions in which the pipe is flat and by forming ridges and troughs extending radially from the axis of the spiral in the surface of the pipe. CONSTITUTION: In a ridge-and-trough-forming process 11 a pair of metal molds 15 which are put close to and separated from each other are placed past feeding rolls 14 and made to compress a pipe 2 to form ridges and troughs 5 in its surface. A bending process 12 comprises a forward bending step 12a for bending the pipe 2 into a gentle right-angled bend and a spirally bending step 12b for winding the bent pipe 2 around a guide shaft in a spiral. Between these forward bending step 12a and spirally bending step 12b of the bending process 12 a crushing process 13 is provided, wherein metal molds 22, 23 designed to work in a pair and in a manner of being put close together and separated are made to compress the pipe 2 into a flat product by a technique of drawing. As a result, compared with, for example, a spiral pipe consisting of a plain, circular pipe wound in a spiral, the surface area of the cooling passageway is enlarged, a greater effect can be achieved in discharge of heat, and the cooling is effected with good efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、オイルや水等の流体
を冷却するための螺旋管とその製造方法、及びその螺旋
管を用いた冷却装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spiral tube for cooling a fluid such as oil or water, a method for manufacturing the spiral tube, and a cooling device using the spiral tube.

【0002】[0002]

【従来の技術】自動車等の輸送機械や各種の産業機械に
は、オイルや水等の流体を冷却するための冷却装置が多
く装備されている。
2. Description of the Related Art Many transport machines such as automobiles and various industrial machines are equipped with cooling devices for cooling fluids such as oil and water.

【0003】この種の冷却装置は、熱媒体となる流体を
流通させるための曲線状又は螺旋状に屈曲させた冷却用
の通路を備え、その通路内部に流体を移動させること
で、放熱作用によって流体から熱を奪い、冷却するよう
になっている。
This type of cooling device is provided with a curved or spirally bent cooling passage for circulating a fluid serving as a heat medium, and by moving the fluid inside the passage, a heat radiating action is provided. It takes heat from the fluid and cools it.

【0004】上記の冷却装置においては、大きな放熱効
果を得る上で冷却通路の内部表面積が出来る限り大きい
ことが求められ、また、機械内部に組込むための全体が
コンパクトな形状におさまることが要求される。さら
に、自動車等の輸送機械では、冷却装置が出来るだけ軽
量であることが求められる。
In the above cooling device, it is required that the internal surface area of the cooling passage is as large as possible in order to obtain a large heat radiation effect, and that the whole of the cooling passage to be incorporated into the machine should be compact in shape. It Further, in transportation machines such as automobiles, the cooling device is required to be as light as possible.

【0005】このような要求に応える手段として、冷却
用通路を扁平な形状とし、かつその通路を出来るだけ小
さい径で螺旋状に巻き付ける方法があり、これにより、
通路の内部表面積を大きくし、全体形状をコンパクトに
形成することができる。
As a means to meet such a demand, there is a method in which the cooling passage has a flat shape and the passage is spirally wound with a diameter as small as possible.
The internal surface area of the passage can be increased and the overall shape can be made compact.

【0006】[0006]

【発明が解決しようとする課題】ところが、扁平にした
金属パイプ等の管部材は、その扁平にした方向の機械的
強度が増大するため、その管部材を小さな径で螺旋状に
巻き付けることは難しく、全体形状が大きくなりやすい
問題がある。
However, since a flattened pipe member such as a metal pipe has an increased mechanical strength in the flattened direction, it is difficult to spirally wind the pipe member with a small diameter. However, there is a problem that the entire shape tends to be large.

【0007】逆に、管部材を螺旋状に巻き付けた後、押
しつぶして扁平な形状にする方法もあるが、螺旋状に曲
げられた管部材の内周面には強い圧縮応力が作用してい
るため、管部材を強く押しつぶすと、内周面に異常変形
や割れ等が生じやすく、充分に薄い扁平な形状に成形で
きない不具合がある。
On the contrary, there is also a method in which the pipe member is spirally wound and then crushed into a flat shape, but a strong compressive stress acts on the inner peripheral surface of the spirally bent pipe member. Therefore, when the pipe member is strongly crushed, abnormal deformation and cracks easily occur on the inner peripheral surface, and there is a problem that it cannot be formed into a sufficiently thin flat shape.

【0008】一方、上記のような問題を解決するものと
して、特開平6−159888号公報には、図9に示す
ように直線管41の外側に、螺旋状に変形させた2枚の
板材42、43を巻き付けて接合し、その板材42、4
3の間に扁平な冷却用通路44を形成したものが提案さ
れている。
On the other hand, as a solution to the above problem, Japanese Patent Laid-Open No. 6-159888 discloses that two plate members 42, which are spirally deformed, are formed on the outside of the straight pipe 41 as shown in FIG. , 43 are wound and joined, and the plate members 42, 4
It is proposed that a flat cooling passage 44 is formed between the three.

【0009】この提案の構造では、確かに扁平な冷却用
通路44を小さな径の螺旋で積層させることができる利
点があるが、各板材41、42の端部は溶接等によって
接合させる必要があるため、製造に多くの手間とコスト
がかかる問題がある。
The proposed structure has the advantage that the flat cooling passages 44 can be stacked with a spiral having a small diameter, but the ends of the plate members 41 and 42 must be joined by welding or the like. Therefore, there is a problem that manufacturing requires a lot of labor and cost.

【0010】また、各板材41、42の端部全周を溶接
等によって液密に接合することは難しく、冷却用通路4
4内の流体が外部に漏れやすい欠点がある。
Further, it is difficult to liquid-tightly join the entire circumferences of the end portions of the plate members 41 and 42 by welding or the like, and the cooling passage 4
There is a drawback that the fluid in 4 easily leaks to the outside.

【0011】そこで、この発明は、上記の問題を解決
し、簡単な方法により扁平で螺旋状の冷却用通路を精度
よく形成できる冷却用螺旋管と、その製造方法を提供す
ることを目的としている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above problems and provide a cooling spiral tube capable of accurately forming a flat spiral cooling passage by a simple method, and a manufacturing method thereof. .

【0012】また、この発明の他の目的は、上記の螺旋
管を用いて高い放熱効果を発揮できる冷却装置を提供す
ることである。
Another object of the present invention is to provide a cooling device which can exhibit a high heat radiation effect by using the above spiral tube.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
め、この発明の冷却用螺旋管は、扁平なパイプを、その
扁平方向とは直交する軸を中心として螺旋状に巻き付
け、そのパイプの表面に、螺旋の中心軸から放射方向に
延びる複数の凹凸が形成されているものとしたのであ
る。
In order to solve the above-mentioned problems, the cooling spiral tube of the present invention has a flat pipe spirally wound around an axis orthogonal to the flat direction of the flat pipe. A plurality of irregularities extending from the central axis of the spiral in the radial direction are formed on the surface.

【0014】また、この発明の螺旋管の製造方法は、パ
イプの表面に長さ方向に沿って複数の凹凸を形成する凹
凸成形工程と、上記パイプを螺旋状に巻き付ける曲げ工
程と、上記パイプを螺旋が進む方向とは直交する方向に
扁平にしぼり込むつぶし工程とから成る方法を採用した
のである。
Further, in the method for manufacturing a spiral pipe according to the present invention, a concavo-convex forming step of forming a plurality of concavities and convexities along the length direction on the surface of the pipe, a bending step of spirally winding the pipe, and the pipe The method comprises a squeezing step of flattening in a direction orthogonal to the direction in which the spiral advances.

【0015】なお、上記の製造方法にあっては、凹凸成
形工程において、パイプの表面全周を一定のピッチで拡
径又は縮径させて凹凸を形成し、全体としてジャバラ管
状のパイプを成形したり、パイプの表面に不等ピッチで
凹凸を形成することができる。
In the above-mentioned manufacturing method, in the concavo-convex forming step, the entire circumference of the surface of the pipe is expanded or reduced at a constant pitch to form concavities and convexities, and a bellows tubular pipe is molded as a whole. Alternatively, irregularities can be formed on the surface of the pipe at unequal pitches.

【0016】一方、この発明の第1の冷却装置は、上記
の構造から成る冷却用螺旋管の両側の端部に、それぞれ
熱媒体の流出入口を形成し、上記螺旋管の内部に熱媒体
を流通させるようにしたのである。
On the other hand, according to the first cooling device of the present invention, the heat medium inflow and outflow ports are respectively formed at both ends of the cooling spiral tube having the above structure, and the heat medium is provided inside the spiral tube. I decided to distribute it.

【0017】また、第2の冷却装置は、上記構造の冷却
用螺旋管の内側に、直線管を挿通させ、その直線管とそ
れを取り巻く螺旋管の内周とを連通させ、上記直線管の
両側の端部にそれぞれ熱媒体の流出入口を形成したので
ある。
In the second cooling device, a straight pipe is inserted inside the cooling spiral pipe having the above structure, and the straight pipe and the inner circumference of the spiral pipe surrounding the straight pipe are communicated with each other, and The inlet and outlet of the heat medium are formed at both ends.

【0018】[0018]

【作用】上記の冷却用螺旋管及びその製造方法において
は、パイプの表面に複数の凹凸を設けることにより、パ
イプを変形させた際、その各凹凸部分が伸び縮みをし、
パイプ表面を柔軟に屈曲させる関節部として機能する。
In the above-described cooling spiral tube and its manufacturing method, by providing a plurality of irregularities on the surface of the pipe, when the pipe is deformed, each irregularity part expands and contracts,
It functions as a joint that flexibly bends the pipe surface.

【0019】このため、パイプを小さな力で薄い扁平な
形状につぶしたり、小さな径で螺旋状に巻き付かせるこ
とが可能となり、表面に割れ等がなくコンパクトな螺旋
管を形成することができる。
Therefore, the pipe can be crushed into a thin flat shape with a small force, or can be spirally wound with a small diameter, and a compact spiral tube having no cracks on the surface can be formed.

【0020】また、連続したパイプを螺旋状に巻き付け
るため、溶接等による接合部がなく、流体の漏れがない
冷却用通路を形成することができる。
Further, since the continuous pipe is spirally wound, there is no joint by welding or the like, and a cooling passage without fluid leakage can be formed.

【0021】一方、上記第1及び第2の冷却装置におい
ては、流体を流通させる螺旋管が扁平な形状をし、かつ
表面に複数の凹凸が形成されているため、冷却用通路の
内部表面積が著しく大きくなり、大きな放熱効果を発揮
することができる。
On the other hand, in the first and second cooling devices described above, since the spiral tube through which the fluid flows has a flat shape and a plurality of irregularities are formed on the surface, the internal surface area of the cooling passage is small. It becomes remarkably large, and a large heat dissipation effect can be exhibited.

【0022】[0022]

【実施例】以下、この発明の実施例を添付図面に基づい
て説明する。図1は実施例の冷却用螺旋管を示してい
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a cooling spiral tube of the embodiment.

【0023】この螺旋管1は、扁平に成形されたパイプ
2を、その扁平方向とは直交する軸Aを中心として螺旋
状に巻き付けてあり、そのパイプ2の一端に熱媒体であ
る流体の導入口3が、他端に流体の排出口4が形成され
ている。
In this spiral tube 1, a flatly shaped pipe 2 is spirally wound around an axis A orthogonal to the flattening direction, and a fluid as a heat medium is introduced into one end of the pipe 2. A port 3 and a fluid discharge port 4 are formed at the other end.

【0024】また、パイプ2の表面には、上記螺旋の中
心軸Aから放射方向に延びる多数の凹凸5が形成されて
いる。その凹凸5は、扁平になったパイプ2の上下面
に、それぞれパイプ2の内径から外径側へ連続する形で
成形されており、隣接する各凹凸5のピッチは、内径側
が接近し、外径側が拡がるように形成されている。
On the surface of the pipe 2, a large number of irregularities 5 extending in the radial direction from the central axis A of the spiral are formed. The concavities and convexities 5 are formed on the upper and lower surfaces of the flattened pipe 2 so as to be continuous from the inner diameter of the pipe 2 to the outer diameter side. It is formed so that the radial side expands.

【0025】次に、上記の螺旋管1を製造する方法につ
いて説明する。
Next, a method for manufacturing the above spiral tube 1 will be described.

【0026】図2は、実施例の製造方法の全体の工程を
示し、この方法は、パイプ2の表面に複数の凹凸5を形
成する凹凸成形工程11と、その成形したパイプ2を螺
旋状に巻き付ける曲げ工程12と、上記パイプ2を扁平
にしぼり込むつぶし工程13とから構成される。
FIG. 2 shows the entire steps of the manufacturing method of the embodiment. In this method, the concavo-convex forming step 11 for forming a plurality of concavities and convexities 5 on the surface of the pipe 2 and the molded pipe 2 are spirally formed. It consists of a bending step 12 of winding and a crushing step 13 of flattening the pipe 2.

【0027】上記凹凸成形工程11の前工程には、図示
を省略したが、平板をロール曲げしてパイプ状に成形す
る加工や、その成形したパイプ状物の合わせ部を溶接し
て接合する造管工程を設け、造管されたパイプ2を連続
して成形工程11に供給するようにする。
Although not shown in the figure, a process for forming a pipe by rolling a flat plate, or a process for welding and joining the mating portions of the formed pipe-shaped product is omitted in the preceding step of the concavo-convex forming step 11. A pipe process is provided so that the pipe 2 produced can be continuously supplied to the forming process 11.

【0028】上記凹凸成形工程11では、図3に示すよ
うに、送りロール14、14の後方に互いに接近離反す
る対の金型15、15を配置し、その金型15、15を
パイプ2に圧着することにより、パイプ表面に凹凸5を
形成する。
In the concavo-convex forming step 11, as shown in FIG. 3, a pair of metal molds 15 and 15 approaching and separating from each other are arranged behind the feed rolls 14 and 14, and the metal molds 15 and 15 are attached to the pipe 2. By pressure bonding, the unevenness 5 is formed on the pipe surface.

【0029】上記各金型15、15の圧着面には、半円
形をした複数の突起16と溝17が交互に形成され、パ
イプ2の送りと同期させて各金型15、15をパイプに
圧着させることで、パイプ2の表面には一定のピッチで
環状の大径部6と小径部7が連続的に形成され、全体と
してジャバラ管状のパイプ2が成形されるようになって
いる。
A plurality of semicircular projections 16 and grooves 17 are alternately formed on the crimping surface of each of the molds 15 and 15, and the molds 15 and 15 are attached to the pipe in synchronization with the feeding of the pipe 2. By crimping, an annular large-diameter portion 6 and a small-diameter portion 7 are continuously formed at a constant pitch on the surface of the pipe 2, and the bellows tubular pipe 2 is formed as a whole.

【0030】一方、曲げ工程12は、図4及び図6に示
すように、パイプ2を大きく直角方向に屈曲させる前曲
げ工程12aと、その屈曲したパイプ2をガイド軸18
の回りに螺旋状に巻き付かせる螺旋曲げ工程12bとか
ら成り、この2つの工程12a、12bを組合せること
により、パイプ2を所要の内径で小さく螺旋状に変形さ
せる。
On the other hand, in the bending step 12, as shown in FIGS. 4 and 6, a pre-bending step 12a for bending the pipe 2 in a direction at a large angle and a guide shaft 18 for bending the bent pipe 2 are provided.
And a spiral bending step 12b in which the pipe 2 is spirally wound around, and the pipe 2 is deformed into a small spiral shape with a required inner diameter by combining these two steps 12a and 12b.

【0031】なお、図4及び図6では、前曲げ工程12
aに2つの駆動ロール19と1つの案内ロール20を、
また、螺旋曲げ工程12bに3つの駆動ロール20と1
つの案内害と21を配置したが、これに限定されず、パ
イプ2の直径や螺旋の径に応じてロールやガイドの数や
配置を任意に選択することができる。
In FIGS. 4 and 6, the pre-bending step 12 is performed.
Two drive rolls 19 and one guide roll 20 are attached to a.
Also, in the spiral bending step 12b, three drive rolls 20 and 1 are used.
Although two guide damages and 21 are arranged, the number and arrangement of rolls and guides can be arbitrarily selected according to the diameter of the pipe 2 or the diameter of the spiral.

【0032】この曲げ工程12においては、凹凸成形工
程11でパイプ2表面に多数の大径部6と小径部7が交
互に形成されているため、各駆動ロール19、21やガ
イド22でパイプ2に曲げ力を加えた場合、凹凸5の各
小径部7が螺旋の内径側で縮み、外径側で拡がって、パ
イプ2を柔軟に屈曲させる。すなわち、各小径部7がパ
イプの圧縮と膨張を吸収するため、パイプ2は各凹凸5
が関節部となってスムーズに屈曲する。このため、凹凸
が成形された上記パイプ2は、小さな力で任意の形状に
変形させることができ、凹凸を持たない通常の丸形パイ
プに比べて、小さな曲率の螺旋形に巻き付けることがで
きる。
In this bending step 12, since a large number of large-diameter portions 6 and small-diameter portions 7 are alternately formed on the surface of the pipe 2 in the concavo-convex forming step 11, the pipe 2 is formed by the drive rolls 19 and 21 and the guide 22. When a bending force is applied to, the small-diameter portions 7 of the unevenness 5 contract on the inner diameter side of the spiral and expand on the outer diameter side to flex the pipe 2 flexibly. That is, since each small-diameter portion 7 absorbs the compression and expansion of the pipe, the pipe 2 has each unevenness 5
Becomes a joint and bends smoothly. Therefore, the pipe 2 having the unevenness can be deformed into an arbitrary shape with a small force, and can be wound into a spiral shape having a smaller curvature than an ordinary round pipe having no unevenness.

【0033】上記つぶし工程13は、図2及び図5に示
すように、曲げ工程12における前曲げ工程12aと螺
旋曲げ工程12bの間に配置されており、接近離反する
対の金型22、23をパイプ2に圧着することにより、
パイプ2を扁平にしぼり加工する。
As shown in FIGS. 2 and 5, the crushing step 13 is arranged between the pre-bending step 12a and the spiral bending step 12b in the bending step 12, and the pair of molds 22 and 23 approaching and separating from each other. By crimping to the pipe 2,
The pipe 2 is flattened and pressed.

【0034】このつぶし工程13においては、パイプ2
の表面が凹凸5を持っているため、金型22、23でパ
イプ2を押しつぶした場合、各凹凸5の小径部7が拡径
してパイプ表面の無理な変形を吸収することになり、全
体としてパイプ2のスムーズな変形を可能にする。この
ため、パイプ2の表面に割れや異常な変形を生じさせる
ことなく、パイプ2を薄い扁平な形状に変形させること
ができる。
In this crushing step 13, the pipe 2
When the pipe 2 is crushed by the molds 22 and 23, the small diameter portion 7 of each unevenness 5 expands and absorbs the excessive deformation of the pipe surface. As a result, the pipe 2 can be smoothly deformed. Therefore, the pipe 2 can be deformed into a thin flat shape without causing cracks or abnormal deformation on the surface of the pipe 2.

【0035】なお、上記のつぶし工程13は、曲げ工程
12の途中ではなく、前曲げ工程12aの前側、又は螺
旋曲げ工程12bの後側に配置するようにしてもよい。
The crushing step 13 may be arranged not in the middle of the bending step 12 but on the front side of the front bending step 12a or the rear side of the spiral bending step 12b.

【0036】上記のような方法で形成される螺旋管1
(図1参照)は、パイプ2の内部に形成される冷却用通
路8が扁平で螺旋状に巻き付けられ、かつ表面全体に多
数の凹凸5が形成されているため、冷却用通路8の表面
積は、丸パイプを螺旋状に巻き付けた従来の螺旋管や、
特開平6−159888号公報で提案された螺旋管に比
べて著しく大きくなる。このため、熱媒体であるオイル
や水等の流体を導入口3から冷却用通路8に導入し、そ
の通路8内部を流通させた場合、大きな放熱作用が得ら
れ、効率のよい冷却を行なうことができる。
The spiral tube 1 formed by the above method
In (see FIG. 1), since the cooling passage 8 formed inside the pipe 2 is flat and spirally wound and a large number of irregularities 5 are formed on the entire surface, the surface area of the cooling passage 8 is , A conventional spiral tube in which a round pipe is wound spirally,
The size is significantly larger than that of the spiral tube proposed in JP-A-6-159888. Therefore, when a fluid such as oil or water, which is a heat medium, is introduced from the inlet 3 into the cooling passage 8 and circulated in the passage 8, a large heat radiation effect is obtained and efficient cooling is performed. You can

【0037】また、パイプ2は、丸形のパイプから連続
的に成形され、周面に溶接部などの接合部分を持たない
ため、冷却用通路8から流体が漏れ出すことがない。
Further, since the pipe 2 is continuously formed from a round pipe and has no joint portion such as a welded portion on the peripheral surface, the fluid does not leak from the cooling passage 8.

【0038】図7はパイプ表面に形成する凹凸の他の実
施例を示しており、図7(a)のものは、パイプ2表面
に不等ピッチで凹凸5を形成したものである。また、図
7(b)のものは、パイプ2表面に螺旋状の突起9を形
成し、全体を凹凸形状としたものである。
FIG. 7 shows another embodiment of the unevenness formed on the surface of the pipe. In FIG. 7A, the unevenness 5 is formed on the surface of the pipe 2 at an unequal pitch. Further, in FIG. 7 (b), a spiral projection 9 is formed on the surface of the pipe 2 so that the entire surface has an uneven shape.

【0039】このように、凹凸を不等ピッチとしたり、
螺旋形としても、各凹凸の大径部と小径部がパイプ表面
の圧縮と膨張を吸収するため、スムーズで無理のないパ
イプの屈曲を行なうことができる。
In this way, the unevenness has an uneven pitch,
Even in the spiral shape, since the large diameter portion and the small diameter portion of each unevenness absorb the compression and expansion of the pipe surface, the pipe can be bent smoothly and comfortably.

【0040】一方、図8は、実施例の冷却装置を示して
いる。この装置は、前述の方法で形成された螺旋管1の
内側に直線管31を挿入し、その直線管31と螺旋管1
の内周面に開口32を設け、両者の内部を連通させてい
る。
On the other hand, FIG. 8 shows a cooling device of the embodiment. In this device, a straight tube 31 is inserted inside the spiral tube 1 formed by the above-described method, and the straight tube 31 and the spiral tube 1 are inserted.
An opening 32 is provided on the inner peripheral surface of the so as to communicate the insides of both.

【0041】また、直線管31の両端部にそれぞれ流体
の導入口33と排出口34を設け、流体を直線管31と
螺旋管1の内部に環流させるようになっている。
Further, a fluid inlet 33 and a fluid outlet 34 are provided at both ends of the straight tube 31 so that the fluid is circulated into the straight tube 31 and the spiral tube 1.

【0042】[0042]

【効果】以上のように、この発明は、パイプ表面に複数
の凹凸を設け、その凹凸で変形を吸収してパイプをスム
ーズに変形させるので、扁平でかつ小さな曲率で巻かれ
た冷却用螺旋管を精度よく形成することができる。
As described above, according to the present invention, a plurality of irregularities are provided on the surface of the pipe, and the irregularities absorb the deformation to smoothly deform the pipe, so that the cooling spiral tube is flat and wound with a small curvature. Can be accurately formed.

【0043】また、パイプ表面に設けた凹凸によりパイ
プの表面積が大きくなり、パイプ自体に溶接等の接合部
分がないため、冷却用通路の内部表面積を著しく大きく
でき、通路からの流体の漏れ出しも完全に防止できる。
Further, the surface area of the pipe is increased due to the unevenness provided on the surface of the pipe, and since the pipe itself has no joint portion such as welding, the internal surface area of the cooling passage can be remarkably increased, and leakage of fluid from the passage is also prevented. Can be completely prevented.

【0044】したがって、この発明の螺旋管を用いれ
ば、コンパクトで放熱効果の大きい冷却用通路を形成で
き、極めて効率のよい冷却を行なうことができる。
Therefore, by using the spiral tube of the present invention, it is possible to form a compact cooling passage having a large heat dissipation effect, and it is possible to perform extremely efficient cooling.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の冷却用螺旋管を示す斜視図FIG. 1 is a perspective view showing a cooling spiral tube according to an embodiment.

【図2】実施例の製造方法の全体工程を示す図FIG. 2 is a diagram showing an overall process of a manufacturing method according to an embodiment.

【図3】同上の凹凸成形工程を示す斜視図FIG. 3 is a perspective view showing a concavo-convex forming process of the same.

【図4】前曲げ工程を示す斜視図FIG. 4 is a perspective view showing a front bending step.

【図5】つぶし工程を示す斜視図FIG. 5 is a perspective view showing a crushing process.

【図6】螺旋曲げ工程を示す斜視図FIG. 6 is a perspective view showing a spiral bending process.

【図7】(a)(b)はそれぞれ他の凹凸成形例を示す
7 (a) and 7 (b) are views showing other examples of concavo-convex molding.

【図8】冷却装置の他の実施例を示す断面図FIG. 8 is a sectional view showing another embodiment of the cooling device.

【図9】従来例を示す断面図FIG. 9 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 螺旋管 2 パイプ 3 導入口 4 排出口 5 凹凸 6 大径部 7 小径部 8 冷却用通路 9 突起 11 凹凸成形工程 12 曲げ工程 13 つぶし工程 1 spiral pipe 2 pipe 3 inlet 4 discharge 5 unevenness 6 large diameter part 7 small diameter part 8 cooling passage 9 protrusion 11 unevenness forming process 12 bending process 13 crushing process

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29D 31/00 2126−4F F28D 1/047 A F28F 1/08 Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B29D 31/00 2126-4F F28D 1/047 A F28F 1/08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 扁平なパイプを、その扁平方向とは直交
する軸を中心として螺旋状に巻き付け、そのパイプの表
面には、螺旋の中心軸から放射方向に延びる複数の凹凸
が形成されていることを特徴とする冷却用螺旋管。
1. A flat pipe is spirally wound around an axis orthogonal to the flat direction, and a plurality of irregularities extending from the central axis of the spiral in a radial direction are formed on the surface of the pipe. A spiral tube for cooling, which is characterized in that
【請求項2】 パイプの表面に長さ方向に沿って複数の
凹凸を形成する凹凸成形工程と、上記パイプを螺旋状に
巻き付ける曲げ工程と、上記パイプを螺旋が進む方向と
は直交する方向に扁平にしぼり込むつぶし工程とから成
ることを特徴とする冷却用螺旋管の製造方法。
2. A concavo-convex forming step of forming a plurality of concavities and convexities along a length direction on a surface of the pipe, a bending step of winding the pipe in a spiral shape, and a direction orthogonal to a spiral traveling direction of the pipe. A method of manufacturing a spiral spiral tube for cooling, comprising a flattening step.
【請求項3】 上記凹凸成形工程において、パイプの表
面全周を一定のピッチで拡径又は縮径させて凹凸を形成
し、全体としてジャバラ管状のパイプを成形することを
特徴とする請求項2に記載の冷却用螺旋管の製造方法。
3. The concavo-convex forming step, wherein the entire circumference of the surface of the pipe is enlarged or reduced at a constant pitch to form concavities and convexities, and a bellows tubular pipe as a whole is molded. A method for manufacturing the spiral spiral tube for cooling according to.
【請求項4】 上記凹凸成形工程において、パイプの表
面に不等ピッチで凹凸を形成することを特徴とする請求
項2に記載の冷却用螺旋管の製造方法。
4. The method for manufacturing a spiral tube for cooling according to claim 2, wherein in the unevenness forming step, unevenness is formed on the surface of the pipe at unequal pitches.
【請求項5】 請求項1に記載の冷却用螺旋管の両側の
端部に、それぞれ熱媒体の流出入口を形成し、上記螺旋
管の内部に熱媒体を流通させるようにしたことを特徴と
する冷却装置。
5. The cooling medium pipe according to claim 1, characterized in that heat medium outlets and inlets are formed at both ends of the cooling spiral pipe so that the heat medium can be circulated inside the spiral pipe. Cooling system.
【請求項6】 請求項1に記載の冷却用螺旋管の内側
に、直線管を挿通させ、その直線管とそれを取り巻く螺
旋管の内周とを連通させ、上記直線管の両側の端部にそ
れぞれ熱媒体の流出入口を形成したことを特徴とする冷
却装置。
6. A straight pipe is inserted into the cooling spiral pipe according to claim 1, and the straight pipe and the inner circumference of the spiral pipe surrounding the straight pipe are communicated with each other, and both ends of the straight pipe are connected. The cooling device is characterized in that the heat medium inflow and outflow ports are formed in the respective.
JP24625794A 1994-10-12 1994-10-12 Spiral pipe for cooling, its manufacture, and cooling device employing it Withdrawn JPH08110186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24625794A JPH08110186A (en) 1994-10-12 1994-10-12 Spiral pipe for cooling, its manufacture, and cooling device employing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24625794A JPH08110186A (en) 1994-10-12 1994-10-12 Spiral pipe for cooling, its manufacture, and cooling device employing it

Publications (1)

Publication Number Publication Date
JPH08110186A true JPH08110186A (en) 1996-04-30

Family

ID=17145836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24625794A Withdrawn JPH08110186A (en) 1994-10-12 1994-10-12 Spiral pipe for cooling, its manufacture, and cooling device employing it

Country Status (1)

Country Link
JP (1) JPH08110186A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1195572A2 (en) * 2000-10-06 2002-04-10 Cohnen Beteiligungs-GmbH & Co. KG Cooler, more particularly for automotive vehicle
WO2007096013A1 (en) * 2006-02-21 2007-08-30 Siemens Ag Österreich Heat sink comprising a tube through which cooling medium flows
CN102397927A (en) * 2011-10-31 2012-04-04 浙江摩多巴克斯汽配有限公司 Elbow pipe device of EGR (exhaust gas recirculation) pipe fitting and forming technique thereof
CN111272530A (en) * 2018-12-05 2020-06-12 中广核工程有限公司 Manufacturing method of coil pipe of nuclear power high-temperature sampling cooler
CN112045006A (en) * 2020-07-10 2020-12-08 张家港市昆仑管业有限公司 Bending method of reverse-rotation spiral pipe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1195572A2 (en) * 2000-10-06 2002-04-10 Cohnen Beteiligungs-GmbH & Co. KG Cooler, more particularly for automotive vehicle
EP1195572A3 (en) * 2000-10-06 2002-10-16 Cohnen Beteiligungs-GmbH & Co. KG Cooler, more particularly for automotive vehicle
WO2007096013A1 (en) * 2006-02-21 2007-08-30 Siemens Ag Österreich Heat sink comprising a tube through which cooling medium flows
CN102397927A (en) * 2011-10-31 2012-04-04 浙江摩多巴克斯汽配有限公司 Elbow pipe device of EGR (exhaust gas recirculation) pipe fitting and forming technique thereof
CN111272530A (en) * 2018-12-05 2020-06-12 中广核工程有限公司 Manufacturing method of coil pipe of nuclear power high-temperature sampling cooler
CN111272530B (en) * 2018-12-05 2023-04-18 中广核工程有限公司 Manufacturing method of coil pipe of nuclear power high-temperature sampling cooler
CN112045006A (en) * 2020-07-10 2020-12-08 张家港市昆仑管业有限公司 Bending method of reverse-rotation spiral pipe
CN112045006B (en) * 2020-07-10 2022-02-15 张家港市昆仑管业有限公司 Bending method of reverse-rotation spiral pipe

Similar Documents

Publication Publication Date Title
US4799540A (en) Heat exchanger
JP2001507114A (en) Heat exchanger
WO2006077657A1 (en) Double pipe heat exchanger and method of manufacturing the same
JP2001523577A (en) How to assemble a heat exchanger
JPH08110186A (en) Spiral pipe for cooling, its manufacture, and cooling device employing it
US6260271B1 (en) Tubular body having integral branch tubes and method for producing the same
JP4440574B2 (en) Double tube heat exchanger and manufacturing method thereof
KR20130038187A (en) Tube-type heat exchanger and method for producing same
JP5709733B2 (en) Double pipe
KR20010101414A (en) A coiled heat exchanger and a method for making a coiled heat exchanger
KR0166400B1 (en) Kit and method for producing a connector for fluid-conducting elements
JP7174339B2 (en) Pipe bender and metal round pipe bending method
JP2009025002A (en) Heat exchanger
JP3947833B2 (en) Heat exchanger
JP2020531790A (en) Double tube for heat exchange
CN109282675B (en) Sleeve type heat exchanger, method and mold for manufacturing same
US5979202A (en) Method and apparatus for making pipe line steel grooved-end fittings
US3650322A (en) Heat exchanger
JP4412795B2 (en) Heat exchanger
JPH0221198A (en) Heat exchanger
JPH0825150A (en) Manufacture of heat exchanger and heat exchanger
JP2004009087A (en) Flat tube, its roll-forming method, and device
KR100254321B1 (en) Tube for heat exchanger and the manufacturing method
JP6844791B2 (en) Manufacturing method of double tube heat exchanger
JP2005214471A (en) Plate-type heat exchanger, and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115