JPH08110020A - Dust incinerator - Google Patents

Dust incinerator

Info

Publication number
JPH08110020A
JPH08110020A JP24915594A JP24915594A JPH08110020A JP H08110020 A JPH08110020 A JP H08110020A JP 24915594 A JP24915594 A JP 24915594A JP 24915594 A JP24915594 A JP 24915594A JP H08110020 A JPH08110020 A JP H08110020A
Authority
JP
Japan
Prior art keywords
combustion
air
flow rate
amount
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24915594A
Other languages
Japanese (ja)
Inventor
Tsukasa Yoneda
主 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP24915594A priority Critical patent/JPH08110020A/en
Publication of JPH08110020A publication Critical patent/JPH08110020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PURPOSE: To provide a dust incinerator capable of reducing the production of non-combusted gas such as carbon monoxide without lowering fire grate combustion efficiency. CONSTITUTION: This dust incinerator includes a stoker type combustion band B for combusting dust while carrying the same, a first air fan mechanism 80 for supplying combustion air from the lower part of the combustion band B, and a second air fan mechanism 6 for supplying combustion air to an upper space of the combustion band B from right and left side walls of the combustion band B. In the dust incinerator, there is further provided a flow rate adjustment mechanism 30 in which a flow rate ratio between a supply air amount from the second air fan mechanism 6 and a supply air amount from the first air fan mechanism 80 is set to be about 0.3 or lower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゴミを搬送しながら燃
焼させるストーカ式の燃焼帯と、前記燃焼帯の下方から
燃焼用の空気を供給する第一送風機構と、前記燃焼帯の
左右側壁から前記燃焼帯の上部空間に燃焼用の空気を供
給する第二送風機構を備えたゴミ焼却炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stoker type combustion zone for burning dust while conveying it, a first blower mechanism for supplying combustion air from below the combustion zone, and left and right side walls of the combustion zone. Relates to a refuse incinerator having a second blower mechanism for supplying combustion air to the upper space of the combustion zone.

【0002】[0002]

【従来の技術】この種のゴミ焼却炉は、図5に示すよう
に、燃焼帯Bの下部に風箱8bを設けて、ブロアファン
8dにより誘引した空気を送風路8eを介して風箱8b
に導くように構成した第一送風機構80と、燃焼帯Bの
左右側壁16の内部に通風路6bを形成し、ブロアファ
ン6aにより誘引した空気をその通風路6bに導いて側
壁16を冷却した後に、燃焼帯Bの上部空間に燃焼用の
空気として供給するように構成した第二送風機構6とを
設けていた。
2. Description of the Related Art As shown in FIG. 5, a waste incinerator of this type is provided with a wind box 8b at the bottom of a combustion zone B, and air drawn by a blower fan 8d is blown into the wind box 8b via a blower passage 8e.
And the first ventilation mechanism 80 configured to guide the air flow path 6b inside the left and right side walls 16 of the combustion zone B, and the air drawn by the blower fan 6a is guided to the ventilation path 6b to cool the side wall 16. After that, the second blower mechanism 6 configured to supply as combustion air to the upper space of the combustion zone B was provided.

【0003】そして、燃焼帯B上のゴミを安定燃焼させ
るために、第二送風機構6からの供給空気量と第一送風
機構80を含む全ての系(乾燥帯や後燃焼帯への送風機
構や、二次燃焼領域への送風機構等)からの供給空気量
の流量比がほぼ一定の範囲に入るように調節しつつ、側
壁16の冷却のために炉内の燃焼状態をモニタする炉出
口温度に応じて多少の増減を行う流量調節機構30を設
けていた。
In order to stably burn the dust on the combustion zone B, the amount of air supplied from the second blower mechanism 6 and all the systems including the first blower mechanism 80 (the blower mechanism to the dry zone and the post-combustion zone). And a furnace outlet for monitoring the combustion state in the furnace for cooling the side wall 16 while adjusting the flow rate ratio of the amount of air supplied from the secondary combustion region, etc.) to fall within a substantially constant range. The flow rate adjusting mechanism 30 that slightly increases or decreases according to the temperature is provided.

【0004】[0004]

【発明が解決しようとする課題】上述した従来のゴミ焼
却炉では、燃焼帯に供給する空気量、即ち、第一送風機
構からの供給空気量と第二送風機構からの供給空気量の
適正値については明確な基準がなく、炉出口温度等から
得られる燃焼状態に応じて、上述の範囲で適宜増減され
ていたために、第二送風機構からの供給空気量と第一送
風機構からの供給空気量の流量比は様々な値を採りうる
状況であった。
In the above-mentioned conventional refuse incinerator, the amount of air supplied to the combustion zone, that is, the appropriate value of the amount of air supplied from the first blower mechanism and the amount of air supplied from the second blower mechanism is appropriate. There is no clear standard for this, and the amount of air supplied from the second blower and the amount of air supplied from the first blower were changed as appropriate depending on the combustion state obtained from the furnace outlet temperature, etc. It was the situation that the flow rate ratio of quantity could take various values.

【0005】しかし、上述の流量比が大になれば、第二
送風機構からの供給空気量が増すので、それだけ拡散燃
焼が活発化して気体燃焼が促進される結果、未燃ガス濃
度が低下するという好ましい傾向があるものの、過剰供
給になると冷却作用が働いてゴミのガス化現象が弱めら
れる一方、第一送風機構からの供給空気量も少なくなる
ので固体燃焼が阻害されて燃焼速度が低下し、火格子燃
焼効率が低下するというおそれがあった。ここに、火格
子燃焼効率とは、ゴミ焼却炉における焼却効率の指標で
あり、単位時間、単位面積当たりの焼却ゴミ重量で表さ
れる。
However, if the above-mentioned flow rate ratio becomes large, the amount of air supplied from the second air blowing mechanism increases, so that diffusion combustion becomes active and gas combustion is promoted, resulting in a decrease in unburned gas concentration. However, if excessive supply is performed, the cooling action will work and the gasification phenomenon of dust will be weakened, while the amount of air supplied from the first blower mechanism will also be small, so solid combustion will be hindered and combustion speed will decrease. There was a risk that the grate combustion efficiency would decrease. Here, the grate combustion efficiency is an index of the incineration efficiency in a refuse incinerator, and is represented by the weight of incinerated refuse per unit time and unit area.

【0006】本発明の目的は、上述の問題点に鑑みて、
火格子燃焼効率を低下させることなく、一酸化炭素等の
未燃焼ガスの発生を低減できるゴミ焼却炉を提供する点
にある。
[0006] The object of the present invention, in view of the problems described above,
An object of the present invention is to provide a refuse incinerator capable of reducing the generation of unburned gas such as carbon monoxide without lowering the grate combustion efficiency.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
本発明によるゴミ焼却炉の特徴構成は、第二送風機構か
らの供給空気量と第一送風機構からの供給空気量の流量
比を約0.3以下に設定する流量調節機構を設けてある
点にある。
In order to achieve this object, the characteristic configuration of the refuse incinerator according to the present invention is such that the flow rate ratio of the supply air amount from the second blower mechanism to the supply air amount from the first blower mechanism is about. The point is that a flow rate adjusting mechanism for setting to 0.3 or less is provided.

【0008】[0008]

【作用】一般に、第一送風機構から供給される燃焼用空
気は、燃焼帯上のゴミそのものが燃焼する固体燃焼、及
び、ゴミから発生した可燃性ガスが燃焼する気体燃焼に
寄与し、第二送風機構から供給される燃焼用空気は主に
気体燃焼に寄与する。即ち、燃焼帯上で発生する可燃性
ガスは、第一送風機構から供給される燃焼用空気による
予混合火炎と、第二送風機構から供給される燃焼用空気
による拡散火炎により燃焼する。
In general, the combustion air supplied from the first blowing mechanism contributes to the solid combustion in which the dust itself on the combustion zone burns and the gas combustion in which the combustible gas generated from the dust burns. The combustion air supplied from the blower mechanism mainly contributes to gas combustion. That is, the combustible gas generated on the combustion zone is combusted by the premixed flame by the combustion air supplied from the first air blowing mechanism and the diffusion flame by the combustion air supplied by the second air blowing mechanism.

【0009】そして、第一、第二送風機構から供給され
る総空気流量が一定で、第二送風機構から供給される燃
焼用空気が増加すると、拡散燃焼により完全燃焼が促進
されて未燃ガスの発生を抑制でき、第一送風機構から供
給される燃焼用空気が増加すると、予混合燃焼が促進さ
れて火格子燃焼効率が良くなるが、その程度が著しいと
逆に拡散燃焼抑制による冷却効果が勝り燃焼温度が低下
して火格子燃焼効率が悪くなる。
When the total flow rate of air supplied from the first and second air blowing mechanisms is constant and the amount of combustion air supplied from the second air blowing mechanism increases, the complete combustion is promoted by the diffusion combustion and unburned gas If the amount of combustion air supplied from the first blower mechanism is increased, premixed combustion is promoted and the grate combustion efficiency improves, but if the extent is significant, conversely the cooling effect due to diffusion combustion suppression However, the combustion temperature drops and the grate combustion efficiency deteriorates.

【0010】そこで、第二送風機構からの供給空気量と
第一送風機構からの供給空気量の流量比を約0.3以下
に設定すると、以下に説明する実験結果により裏付けら
れるように、発生した可燃性ガスに対しては十分な拡散
燃焼を促進しながらも、火格子燃焼効率を向上させるこ
とができる。
Therefore, when the flow rate ratio of the amount of air supplied from the second air blowing mechanism to the amount of air supplied from the first air blowing mechanism is set to about 0.3 or less, the generation occurs as evidenced by the experimental results described below. It is possible to improve the grate combustion efficiency while promoting sufficient diffusion combustion for the combustible gas.

【0011】図1(イ)に示すように、実験炉20の燃
焼空間21に設けた網状のサンプル台22に水分を含ま
せたゴミサンプル23を配置し、サンプル台22の下方
及び左右の側壁から燃焼用の空気を供給しながら、電熱
線24により炉内温度を約800℃に加熱して、ゴミサ
ンプル23の燃焼実験を行った。ここに、サンプル台2
2の下方からの燃焼用空気の供給が、第一送風機構によ
る空気供給に相当し、サンプル台22の側方からの燃焼
用空気の供給が、第二送風機構による空気供給に相当す
る。
As shown in FIG. 1A, a dust sample 23 containing water is placed on a mesh-shaped sample table 22 provided in the combustion space 21 of the experimental furnace 20, and the side walls below and to the left and right of the sample table 22. While supplying the air for combustion from the above, the furnace temperature was heated to about 800 ° C. by the heating wire 24, and the combustion experiment of the dust sample 23 was conducted. Here, sample stand 2
The supply of combustion air from below 2 corresponds to the air supply by the first blower mechanism, and the supply of combustion air from the side of the sample table 22 corresponds to the air supply by the second blower mechanism.

【0012】サンプル台22の下方からの空気供給量を
Q1、サンプル台22の側方からの空気供給量をQ2と
して、Q2/Q1を可変にした場合の重量減少速度、一
酸化炭素濃度を求めると、図2(イ)、(ロ)に示すよ
うになる。ここに、重量減少速度とは、図1(ロ)に示
すように、初期重量Wの被焼却物が時間Δtの間に重量
ΔWだけ減少した場合における単位時間当たりの重量減
少率ΔW/Δtで定義される。
When the air supply amount from the lower side of the sample table 22 is Q1 and the air supply amount from the side of the sample table 22 is Q2, the weight reduction rate and the carbon monoxide concentration are obtained when Q2 / Q1 is made variable. Then, it becomes as shown in FIG. Here, the weight reduction rate is the weight reduction rate ΔW / Δt per unit time when the incineration material having the initial weight W is reduced by the weight ΔW during the time Δt, as shown in FIG. Is defined.

【0013】図2(イ)から、Q2/Q1が0、つまり
サンプル台22の側方からの空気供給量Q2を0とした
場合を基準にとると、Q2/Q1が約0.3までの間で
は重量減少速度が増してゴミサンプルの燃焼が促進さ
れ、Q2/Q1が約0.3以上では重量減少速度が低下
してゴミサンプルの燃焼が抑制されることが判明した。
さらに、図2(ロ)から、炉内温度を約800℃に加熱
維持している限りにおいて、Q2/Q1が0、つまりサ
ンプル台22の側方からの空気供給量Q2を0とした場
合を基準にとると、Q2/Q1が高くなるにつれて拡散
燃焼が促進されて一酸化炭素濃度が減少する傾向にあ
り、窒素酸化物の発生量には顕著な差異が生じないこと
が判明した。
From FIG. 2A, when Q2 / Q1 is 0, that is, when the air supply amount Q2 from the side of the sample table 22 is 0, Q2 / Q1 is up to about 0.3. It was found that during the period, the weight reduction rate was increased to promote the combustion of the dust sample, and when Q2 / Q1 was about 0.3 or more, the weight reduction rate was reduced and the combustion of the dust sample was suppressed.
Furthermore, from FIG. 2B, as long as the temperature inside the furnace is maintained at about 800 ° C., Q2 / Q1 is 0, that is, the case where the air supply amount Q2 from the side of the sample table 22 is 0. Based on the criteria, it has been found that diffusion combustion is promoted and the carbon monoxide concentration tends to decrease as Q2 / Q1 increases, and there is no significant difference in the amount of nitrogen oxides generated.

【0014】つまり、Q2/Q1は、第二送風機構から
の供給空気量と第一送風機構からの供給空気量の流量比
に相当するので、この値を約0.3以下に設定すると、
前記送風機構からのみ空気を供給する場合に比べて、重
量減少速度の増加、即ち、火格子燃焼効率の向上を確保
しながら、同時に拡散燃焼により未燃ガスの発生を防止
することができるようになる。
That is, Q2 / Q1 corresponds to the flow rate ratio of the amount of air supplied from the second air blowing mechanism to the amount of air supplied from the first air blowing mechanism. Therefore, if this value is set to about 0.3 or less,
As compared with the case where air is supplied only from the blower mechanism, it is possible to prevent the generation of unburned gas by diffusion combustion while at the same time ensuring an increase in weight reduction rate, that is, an improvement in grate combustion efficiency. Become.

【0015】[0015]

【発明の効果】本発明によれば、火格子燃焼効率を低下
させることなく、一酸化炭素等の未燃焼ガスの発生を低
減できるゴミ焼却炉を提供することができるようになっ
た。
According to the present invention, it is possible to provide a refuse incinerator which can reduce the generation of unburned gas such as carbon monoxide without lowering the grate combustion efficiency.

【0016】[0016]

【実施例】以下に実施例を説明する。ゴミ焼却炉は、図
3に示すように、焼却物たるゴミを一時的に蓄積するホ
ッパー3と、ゴミを焼却処理する燃焼室1と、燃焼室1
で焼却された灰を集める灰ピット4等を備えて構成して
ある。ホッパー3の下部には油圧機構(図示せず)によ
り往復駆動してゴミを燃焼室1へ少量づつ投入するプッ
シャ2を備えてある。
EXAMPLES Examples will be described below. As shown in FIG. 3, the refuse incinerator includes a hopper 3 for temporarily accumulating refuse as an incineration material, a combustion chamber 1 for incinerating the refuse, and a combustion chamber 1
It is configured with an ash pit 4 and the like for collecting the ash incinerated in. A pusher 2 for reciprocatingly driving a hydraulic mechanism (not shown) to throw dust into the combustion chamber 1 little by little is provided below the hopper 3.

【0017】燃焼室1は、プッシャ2により投入された
ゴミを攪拌搬送しながら乾燥させる乾燥帯A、燃焼させ
る燃焼帯B、灰化する後燃焼帯Cでなるストーカ式の焼
却処理帯5を設け、焼却処理帯5の下方から燃焼用の空
気を供給する送風機構8を設けて焼却処理する。
The combustion chamber 1 is provided with a stoker type incineration treatment zone 5 consisting of a drying zone A for drying the dust introduced by the pusher 2 while stirring and transporting it, a combustion zone B for burning, and a post combustion zone C for ashing. The incineration process is performed by providing a blower mechanism 8 that supplies combustion air from below the incineration zone 5.

【0018】焼却処理帯5の上方空間に煙道7を形成
し、その下流側に廃熱ボイラ12を設けて燃焼室1で発
生した燃焼熱エネルギーを蒸気の形で取り出して発電機
13に供するとともに、排ガスは電気集塵機等からなる
排ガス処理設備14によりばいじんや有害ガスが除去さ
れた後に煙突15から排気される。
A flue 7 is formed in the space above the incineration zone 5 and a waste heat boiler 12 is provided downstream of the flue 7 to take out the combustion heat energy generated in the combustion chamber 1 in the form of steam and supply it to the generator 13. At the same time, the exhaust gas is exhausted from the chimney 15 after the dust and harmful gas are removed by the exhaust gas treatment facility 14 such as an electric dust collector.

【0019】前記ストーカ式の焼却処理帯5は、固定火
格子と可動火格子を搬送方向に沿って交互に配し、可動
火格子を油圧機構(図示せず)で斜め上下方向に摺動す
ることによりゴミを搬送するものであり、火格子上のゴ
ミに乾燥又は燃焼用の空気を供給すべく、誘引送風機8
dからの空気を送風路8eを介して各焼却処理帯の下方
に配した風箱8a,8b,8cに供給する送風機構8を
設けてあり、送風路8eには、各風箱8a,8b,8c
への空気供給量を調節するダンパ機構8f,8g,8h
を設けてある。つまり、乾燥帯Aへは乾燥用の空気、燃
焼帯Bへは燃焼用の空気、後燃焼帯Cへは灰化のための
空気が供給されるもので、その流量はダンパ機構8f,
8g,8hの開度調節による。
In the stoker type incineration zone 5, the fixed grate and the movable grate are alternately arranged along the conveying direction, and the movable grate is slid vertically by a hydraulic mechanism (not shown). In order to supply the air for drying or burning to the dust on the grate, the induction blower 8
An air blowing mechanism 8 is provided to supply the air from d to the air boxes 8a, 8b, 8c arranged below each incineration zone through the air path 8e, and the air paths 8e are provided with the air boxes 8a, 8b. , 8c
Damper mechanism 8f, 8g, 8h for adjusting the amount of air supplied to the
Is provided. That is, the drying zone A is supplied with drying air, the combustion zone B is supplied with combustion air, and the post-combustion zone C is supplied with ashing air.
By adjusting the opening of 8g and 8h.

【0020】さらに、前記燃焼帯Bの左右側壁16の下
部には、図4に示すように、側壁へのクリンカの付着に
よる炉の損傷を回避するため、ブロアファン6aにより
誘引した空気をダンパ機構6cを介して側壁内部に形成
した通風路6bの一端に導いて側壁16を冷却する空冷
壁を形成しあり、通風路6bに供給された空気は、縦横
に配列した方形の金属小片からなる空冷壁の隙間から燃
焼帯Bの上部空間に吹き出して燃焼用の空気として供給
される。即ち、空冷壁を構成するブロアファン6a、通
風路6b、ダンパ機構6cで第二送風機構6を構成す
る。
Further, as shown in FIG. 4, in the lower portions of the left and right side walls 16 of the combustion zone B, in order to avoid damage to the furnace due to adhesion of clinker to the side walls, air drawn by the blower fan 6a is used as a damper mechanism. There is formed an air-cooling wall for cooling the side wall 16 by guiding it to one end of the ventilation passage 6b formed inside the side wall via 6c, and the air supplied to the ventilation passage 6b is an air-cooling consisting of rectangular metal pieces arranged vertically and horizontally. The air is blown from the gap between the walls into the upper space of the combustion zone B and is supplied as combustion air. That is, the blower fan 6a, the ventilation path 6b, and the damper mechanism 6c that constitute the air-cooling wall constitute the second blower mechanism 6.

【0021】前記送風機構8のうちで、燃焼帯Bへの燃
焼用空気の供給機構である誘引送風機8d、送風路8
e、風箱8b、ダンパ機構8gを第一送風機構80と
し、前記第二送風機構6からの供給空気量と前記第一送
風機構80からの供給空気量の流量比を約0.3以下に
なるようにダンパ機構8g,6cの開度を調節する流量
調節機構30を設けてある。
In the blower mechanism 8, an induction blower 8d, which is a mechanism for supplying combustion air to the combustion zone B, and a blower passage 8
e, the wind box 8b, and the damper mechanism 8g are used as the first blower mechanism 80, and the flow rate ratio between the amount of air supplied from the second blower mechanism 6 and the amount of air supplied from the first blower mechanism 80 is set to about 0.3 or less. A flow rate adjusting mechanism 30 for adjusting the opening degrees of the damper mechanisms 8g and 6c is provided so as to achieve the above.

【0022】前記流量調節機構30は、送風路8e,通
風路6bのそれぞれに設けた流量センサ30a,30b
と、ダンパ機構8g,6cの開度を調節する油圧機構3
0cと、それらセンサの値に基づいて流量比を約0.3
以下に保つように油圧機構30cを制御する制御機構3
0dとで構成してある。
The flow rate adjusting mechanism 30 includes flow rate sensors 30a and 30b provided in the air passage 8e and the air passage 6b, respectively.
And a hydraulic mechanism 3 for adjusting the opening degree of the damper mechanisms 8g, 6c.
0c and a flow rate ratio of about 0.3 based on the values of those sensors.
A control mechanism 3 that controls the hydraulic mechanism 30c so as to keep it below
And 0d.

【0023】つまり、上述の作用の項で説明したよう
に、図1(イ)に示す実験炉20における燃焼実験の結
果、前記第二送風機構6からの供給空気量と前記第一送
風機構80からの供給空気量の流量比を約0.3以下に
設定すると、図2(イ)(ロ)に示すように、発生した
可燃性ガスに対しては十分な拡散燃焼を促進しながら
も、重量減少速度の向上、つまり火格子燃焼効率の向上
を達成することができる点に着目したものである。
That is, as described in the section of the above-mentioned action, as a result of the combustion experiment in the experimental furnace 20 shown in FIG. 1A, the amount of air supplied from the second blower mechanism 6 and the first blower mechanism 80. When the flow rate ratio of the amount of air supplied from is set to about 0.3 or less, as shown in FIGS. 2 (a) and (b), while promoting sufficient diffusion combustion for the generated combustible gas, It focuses on the fact that the weight reduction rate can be improved, that is, the grate combustion efficiency can be improved.

【0024】さらに、前記制御機構30dは、燃焼室1
に設けた温度センサ(図示せず)により検出された炉出
口温度(燃焼状態を表すデータとなる)が約800℃か
ら1000℃に維持されるように、流量比を約0.3以
下に保った状態で供給量を増減し、前記排ガス処理設備
14の下流側に設けたガスセンサ(図示せず)により検
出された一酸化炭素濃度が許容範囲に収まるように、約
0.3以下の範囲で流量比を変更調節する。つまり、一
酸化炭素濃度が許容範囲であれば、重量減少速度を上昇
させるように前記流量比を調節し、一酸化炭素濃度が許
容範囲を逸脱すれば、前記流量比を上昇させて一酸化炭
素濃度を低下させるように調節するのである。ここに、
重量減少速度は、前記流量比が約0.3以下であれば、
炉出口温度が高いほど速いという実験結果から得られた
傾向に基づくものである。
Further, the control mechanism 30d includes the combustion chamber 1
Keep the flow rate ratio below about 0.3 so that the furnace outlet temperature (which becomes the data showing the combustion state) detected by the temperature sensor (not shown) provided in In this state, the supply amount is increased / decreased, and the carbon monoxide concentration detected by a gas sensor (not shown) provided on the downstream side of the exhaust gas treatment facility 14 is kept within an allowable range within about 0.3 or less. Change and adjust the flow rate ratio. That is, when the carbon monoxide concentration is within the allowable range, the flow rate ratio is adjusted so as to increase the weight reduction rate, and when the carbon monoxide concentration deviates from the allowable range, the flow rate ratio is increased and the carbon monoxide is increased. The concentration is adjusted so as to decrease. here,
If the flow rate ratio is about 0.3 or less, the weight reduction rate is
This is based on the tendency obtained from the experimental result that the higher the furnace outlet temperature is, the faster it is.

【0025】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定するものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】要部の説明図FIG. 1 is an explanatory diagram of a main part

【図2】実験結果の説明図FIG. 2 Explanatory diagram of experimental results

【図3】焼却炉の全体の概略構成図[Fig. 3] Schematic configuration diagram of the entire incinerator

【図4】焼却炉の燃焼帯の断面図[Fig. 4] Sectional view of combustion zone of incinerator

【図5】従来技術を示す燃焼帯の断面図FIG. 5 is a sectional view of a combustion zone showing a conventional technique.

【符号の説明】[Explanation of symbols]

6 第二送風機構 30 流量調節機構 80 第一送風機構 A 乾燥帯 B 燃焼帯 6 Second blower mechanism 30 Flow rate control mechanism 80 First blower mechanism A Dry zone B Combustion zone

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F23G 5/50 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location F23G 5/50 H

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ゴミを搬送しながら燃焼させるストーカ
式の燃焼帯(B)と、前記燃焼帯(B)の下方から燃焼
用の空気を供給する第一送風機構(80)と、前記燃焼
帯(B)の側壁から前記燃焼帯(B)の上部空間に燃焼
用の空気を供給する第二送風機構(6)を備えたゴミ焼
却炉であって、 前記第二送風機構(6)からの供給空気量(Q2 )と前
記第一送風機構(80)からの供給空気量(Q1 )の流
量比(Q2 /Q1 )を約0.3以下に設定する流量調節
機構(30)を設けてあるゴミ焼却炉。
1. A stoker-type combustion zone (B) for burning dust while transporting it, a first blower mechanism (80) for supplying combustion air from below the combustion zone (B), and the combustion zone. A waste incinerator having a second blower mechanism (6) for supplying combustion air from the side wall of (B) to the upper space of the combustion zone (B), wherein the second blower mechanism (6) amount supply air (Q 2) and the amount of air supplied from the first blowing mechanism (80) (Q 1) flow rate ratio of the flow rate adjusting mechanism for setting the (Q 2 / Q 1) of about 0.3 or less (30) Garbage incinerator equipped with.
JP24915594A 1994-10-14 1994-10-14 Dust incinerator Pending JPH08110020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24915594A JPH08110020A (en) 1994-10-14 1994-10-14 Dust incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24915594A JPH08110020A (en) 1994-10-14 1994-10-14 Dust incinerator

Publications (1)

Publication Number Publication Date
JPH08110020A true JPH08110020A (en) 1996-04-30

Family

ID=17188729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24915594A Pending JPH08110020A (en) 1994-10-14 1994-10-14 Dust incinerator

Country Status (1)

Country Link
JP (1) JPH08110020A (en)

Similar Documents

Publication Publication Date Title
JP4479655B2 (en) Grate-type waste incinerator and its combustion control method
JP6011295B2 (en) Waste incinerator and waste incineration method
JP2006300501A (en) Downward moving bed type furnace
JP2004084981A (en) Waste incinerator
JP2013164225A (en) Waste material incinerator and waste material incinerating method
JPH094833A (en) Refuse incinerator
JP6256859B2 (en) Waste incineration method
JP3956862B2 (en) Combustion control method for waste incinerator and waste incinerator
JP2013257065A (en) Waste incinerator, and method of incinerating waste
JP5871207B2 (en) Waste incinerator and waste incineration method
JP2955477B2 (en) Combustion air supply mechanism for garbage incinerator
JP2005226970A (en) Fire grate type waste incinerator and its operation method
JP2642568B2 (en) Secondary combustion method of refuse incinerator
JPH08110020A (en) Dust incinerator
JP2019020084A (en) Waste incineration equipment and waste incineration method
JP3210859B2 (en) Secondary combustion gas supply mechanism of garbage incinerator
JP3989333B2 (en) Operation method of waste incinerator
JPH07332642A (en) Garbage incinerator
KR100660757B1 (en) Method of operating waste incinerator and waste incinerator
JPH07233921A (en) Refuse incinerator
JPH05272733A (en) Incinerator
JP2779145B2 (en) Smokeless and odorless incinerator
JP2638698B2 (en) Air supply method of incinerator
JPH0526421A (en) Refuse combustion method in dust incinerator
KR0165921B1 (en) Spontaneous ventilation type trash burner