JPH08109450A - Wear resistant sintered alloy for oilless bearing - Google Patents

Wear resistant sintered alloy for oilless bearing

Info

Publication number
JPH08109450A
JPH08109450A JP6274468A JP27446894A JPH08109450A JP H08109450 A JPH08109450 A JP H08109450A JP 6274468 A JP6274468 A JP 6274468A JP 27446894 A JP27446894 A JP 27446894A JP H08109450 A JPH08109450 A JP H08109450A
Authority
JP
Japan
Prior art keywords
alloy
particles
iron
wear
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6274468A
Other languages
Japanese (ja)
Other versions
JP3342972B2 (en
Inventor
Takeshi Yanase
剛 柳瀬
Hideo Yomo
英雄 四方
Hiroshi Ishii
啓 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP27446894A priority Critical patent/JP3342972B2/en
Publication of JPH08109450A publication Critical patent/JPH08109450A/en
Application granted granted Critical
Publication of JP3342972B2 publication Critical patent/JP3342972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To produce a wear resistant sintered alloy for high bearing use hard to wear the mating member by dispersing Cu-base metallic grains and alloy particles in which the amt. and hardness are specified into an iron-carbon alloy matrix in which martensite is present and specifying the porosity. CONSTITUTION: This wear resistant sintered alloy for an oilless bearing has a martensitic iron-carbon alloy matrix contg., by weight, 0.3 to 1.5% C, 0.1 to 1.5% Cr, 0.05 to 6% W, 0.02 to 1.8% V, 7 to 30% Cu, and the balance Fe. In the same matrix, Cu or Cu alloy grains are dispersed, the hard grains of an Fe-base alloy contg. 0.6 to 1.7% C, 3 to 5% Cr, 1 to 20% W and 0.5 to 6% V and contg., at need, <=20% of one or more kinds of Mo and Co are dispersed by 5 to 30% and the porosity is regulated to 8 to 30%. Moreover, the particles of the Fe-base alloy may be substituted by the particles of Mo-Fe alloy contg. 55 to 70% Mo or the particles of Co-base alloy contg. 5 to 15% Cr, 20 to 40% Mo and 1 to 5% Si.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建設機械用のすべり軸
受のように高荷重で用いる場合に、優れた耐摩耗性を発
揮する含油軸受用焼結合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered alloy for oil-impregnated bearings which exhibits excellent wear resistance when used under a high load such as sliding bearings for construction machinery.

【0002】[0002]

【従来の技術】従来、高荷重下で使用されるすべり軸受
としては、切削加工した一般構造用炭素鋼に焼き入れお
よび焼き戻しを行ったものや、同様な合金組成および金
属組織の焼結含油合金が使用されている。マルテンサイ
ト組織の炭素鋼は、高荷重下の摺動において優れた耐摩
耗性を示すためである。
2. Description of the Related Art Conventionally, as sliding bearings used under high load, a machined carbon steel for general structure has been quenched and tempered, and a sintered oil-impregnated product having a similar alloy composition and metal structure. Alloys are used. This is because carbon steel having a martensitic structure exhibits excellent wear resistance in sliding under a high load.

【0003】[0003]

【発明が解決しようとする課題】後者の焼結合金は、前
者の構造用炭素鋼に比べて潤滑油の補給頻度が少なくて
済む半面、強度および見掛け硬さが低く、摩耗量が比較
的大きくなる欠点があった。上記の欠点を解決するた
め、鉄合金基地を強化する元素を添加した焼結合金鋼が
考えられるが、そのような合金は硬い金属間化合物が多
く存在するため、見掛け硬さが高くなり過ぎ、摺動中に
相手部材を攻撃して摩耗させるので望ましくない。この
発明は、軸受自体の摩耗が少なく、かつ摺動する相手部
材を摩耗させ難い性質を有する高面圧用の含油軸受用焼
結合金を得ることを目的とするものである。
The latter sintered alloy requires less frequent replenishment of lubricating oil than the former structural carbon steel, but has low strength and apparent hardness and a relatively large amount of wear. There was a drawback. In order to solve the above drawbacks, sintered alloy steel containing an element that strengthens the iron alloy matrix is conceivable, but since such alloys have many hard intermetallic compounds, the apparent hardness becomes too high, It is not desirable because it will attack and wear the mating member during sliding. It is an object of the present invention to obtain a sintered alloy for oil-impregnated bearings for high surface pressure, which has less wear on the bearing itself and is less likely to wear a sliding counterpart member.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の軸受用焼結合金は、合金の組織が、マル
テンサイトが存在する鉄炭素合金基地中に、Cu粒子ま
たはCu合金粒子が分散しており、Cu含有量が7〜30
重量%であると共に、前記鉄炭素合金基地より硬質な相
として、組成が重量比で(1)C:0.6〜1.7%、C
r:3〜5%、W:1〜20%、V:0.5〜6%を含有
するFe基合金粒子、(2)C:0.6〜 1.7%、
Cr:3〜5%、W:1〜20%、V:0.5〜6%、M
oまたはCoの少なくとも1種:20%以下を含有するF
e基合金粒子、(3)Mo:55〜70%を含有するMo
−Fe合金粒子、ならびに(4)Cr:5〜15%、M
o:20〜 40%、Si:1〜5%を含有するCo基合
金粒子、から選ばれるいずれかの合金粒子5〜30重量
%が分散しており、かつ気孔率が8〜30%であること
を特徴とするものである。
In order to achieve the above object, the sintered alloy for a bearing of the present invention has Cu alloy particles or Cu alloy particles in an iron-carbon alloy matrix containing martensite. Are dispersed, and the Cu content is 7 to 30.
In addition, the composition is (1) C: 0.6 to 1.7% by weight and C as a harder phase than the iron-carbon alloy matrix.
r: 3 to 5%, W: 1 to 20%, V: Fe based alloy particles containing 0.5 to 6%, (2) C: 0.6 to 1.7%,
Cr: 3-5%, W: 1-20%, V: 0.5-6%, M
o or at least one of Co: F containing 20% or less
e-based alloy particles, (3) Mo: Mo containing 55 to 70%
-Fe alloy particles, and (4) Cr: 5 to 15%, M
5 to 30% by weight of any alloy particles selected from Co-based alloy particles containing o: 20 to 40% and Si: 1 to 5% are dispersed, and the porosity is 8 to 30%. It is characterized by that.

【0005】以下、本発明を詳細に説明する。なお、組
成は重量%である。 (A)鉄炭素合金基地 基地は、従来技術で実証されているマルテンサイトを主
とする組織の鉄炭素系合金である。鉄の不可避不純物と
しては、鉄粉中に通常含まれているMnおよびSiが挙げ
られる。Cr、Mo、V等の炭化物生成元素は添加されて
いない。Cは、黒鉛の形で添加され、焼結時にFe中に
拡散して炭素鋼となり、焼き入れおよび焼戻しによって
マルテンサイト中に一部トルースタイトが認められる組
織となって、適度に強固な基地が形成される。試験荷重
25gfによるマイクロビッカース硬さは約450〜7
50程度である。鉄炭素系合金基地中のC量が0.3%
未満の添加量では、強度の向上はあまり期待できない。
また、1.5%を越えると硬さが増大して相手摺動材へ
の攻撃性が高まり、強度もあまり期待できない。これら
の点を考慮してCの添加量を0.3〜1.5%とする。
The present invention will be described in detail below. The composition is% by weight. (A) Iron-Carbon Alloy Base The base is an iron-carbon alloy having a structure mainly composed of martensite, which has been proven in the prior art. Examples of unavoidable impurities of iron include Mn and Si which are usually contained in iron powder. Carbide forming elements such as Cr, Mo and V are not added. C is added in the form of graphite, diffuses into Fe during sintering to become carbon steel, and becomes a structure in which a part of troostite is found in martensite by quenching and tempering, and a moderately strong matrix is formed. It is formed. Micro Vickers hardness at a test load of 25 gf is about 450-7
It is about 50. C content in iron-carbon alloy base is 0.3%
If the addition amount is less than this, improvement in strength cannot be expected so much.
On the other hand, if it exceeds 1.5%, the hardness is increased, the aggression to the mating sliding material is increased, and the strength cannot be expected so much. Considering these points, the addition amount of C is set to 0.3 to 1.5%.

【0006】(B)CuまたはCu合金 前記の基地中に分散する軟質のCuまたはCu合金の粒子
は、相手材への攻撃を抑える作用をする。Cuの添加に
おいては、Cu溶浸による方法では気孔を封鎖し、含油
能力を低下させるので、銅粉の形で添加することが必要
である。銅粉を用いると、焼結時に溶融した場合でも、
流出孔が形成されるので、含油能力が損なわれることは
ない。Cuは、焼結中に一部は鉄基地に拡散し、一部は
鉄を溶かし込んで銅合金となり、冷却すると基地にCu
またはCu合金相の形で分散した組織状態になる。用い
られる銅粉は、粒度が市販の100メッシュ以下のもの
でも、350メッシュ以下の量が70〜80重量%程度
のものであっても同様な作用および効果を示す。Cuの
添加量は、7%未満であるとCuがFeの中に拡散して、
Cu相またはCu合金相の量が少なすぎるため、相手摺動
材への攻撃を抑える効果は小さい。また、30%を越え
て添加した場合には、相手摺動材への攻撃を抑える効果
は高いが、基地強度を低下させる。従って、Cuの添加
量は7〜30%とする。なお、好ましくは10〜20%
であり、さらに好ましくは16〜18%である。
(B) Cu or Cu alloy The particles of soft Cu or Cu alloy dispersed in the matrix serve to suppress attack on the mating material. In addition of Cu, it is necessary to add Cu in the form of copper powder because the method of Cu infiltration blocks pores and reduces the oil impregnating ability. If copper powder is used, even if it melts during sintering,
Since the outflow holes are formed, the oil impregnation capacity is not impaired. During the sintering, a part of Cu diffuses into the iron base, and a part of it melts iron to form a copper alloy.
Alternatively, it becomes a dispersed state in the form of a Cu alloy phase. The copper powder used has the same action and effect even if the particle size is 100 mesh or less, which is commercially available, or if the amount of 350 mesh or less is about 70 to 80% by weight. If the added amount of Cu is less than 7%, Cu diffuses into Fe,
Since the amount of the Cu phase or the Cu alloy phase is too small, the effect of suppressing the attack on the mating sliding material is small. Further, when the content exceeds 30%, the effect of suppressing the attack on the mating sliding material is high, but the base strength is lowered. Therefore, the addition amount of Cu is set to 7 to 30%. In addition, preferably 10 to 20%
And more preferably 16-18%.

【0007】(C)硬質合金粒子 前述の鉄炭素系のマルテンサイト基地に銅または銅合金
相が分散した状態の組織に加えて、マルテンサイト基地
より硬さの高い合金粒子を適当量分散して含有させる
と、硬質合金粒子が基地の塑性変形を低減し、すべり摺
動時に基地合金にかかる負担が低減されて、優れた耐摩
耗性を示す焼結含油軸受合金が得られる。硬質合金粒子
の添加量が5%未満では摩耗量低減の効果が顕著でな
く、30%を越えると相手摺動材への攻撃が大きくなる
ために、硬質粒子の量は5〜30%とする。但し、硬質
合金粒子は、焼結中に変質を起こし難く、かつ焼結後に
高い硬さを有する合金となることが必要である。不適当
な例としては、高炭素工具鋼のように、焼結中に周辺の
基地に炭素が拡散して硬さが均一化してしまうものや、
Ni基硬質合金のように、相互拡散せずに硬質合金から
周辺基地部へ一方的な拡散を起こして硬質合金の硬さが
低下し、周辺基地との固着性が悪くなるものなどが挙げ
られる。好ましい硬質合金粒子としては、以下の4種類
が挙げられる。 (1)C:0.6〜1.7%、Cr:3〜5%、W:1〜
20%、V:0.5〜6%を含有するFe基合金。この合
金は、炭化物を形成する元素としてCr、W、Vを含む
高速度工具鋼(ハイス)に相当する組成であり、合金粉
の形で添加される。 (2)C:0.6〜1.7%、Cr:3〜5%、W:1〜
20%、V:0.5〜6%、MoまたはCoの少なくとも
1種:20%以下を含有するFe基合金。この合金は、
MoまたはCoを含む高速度工具鋼(ハイス)に相当する
組成であり、合金粉の形で添加される。 (3)Mo:55〜70%を含有するMo−Fe合金。こ
の合金は、JIS規格のフェロモリブデンに相当する組
成であり、Moの含有量が少ないと満足し得る硬さが得
られず、含有量が多いと硬さが高くなりすぎて相手材に
対する攻撃性を増すため、Moを55%〜70%とす
る。炭素含有量が少ないフェロモリブデン粉の形で添加
される。 (4)Cr:5〜15%、Mo:20〜40%、Si:1
〜5%を含有するCo基合金。この合金としては、肉盛
り溶射用に市販されている耐熱耐摩耗性合金粉(例え
ば、キャボット社製、商品名:コバメット)が挙げられ
る。
(C) Hard Alloy Particles In addition to the above-described structure in which copper or a copper alloy phase is dispersed in the iron-carbon martensite matrix, an appropriate amount of alloy particles having a hardness higher than that of the martensite matrix is dispersed. When included, the hard alloy particles reduce the plastic deformation of the matrix, the load on the matrix alloy during sliding is reduced, and a sintered oil-impregnated bearing alloy exhibiting excellent wear resistance is obtained. If the addition amount of the hard alloy particles is less than 5%, the effect of reducing the wear amount is not remarkable, and if it exceeds 30%, the attack on the mating sliding material becomes large, so the amount of the hard particles is set to 5 to 30%. . However, the hard alloy particles are required to be an alloy that is unlikely to undergo alteration during sintering and has a high hardness after sintering. Inappropriate examples include high carbon tool steels where carbon diffuses into the surrounding matrix during sintering and the hardness becomes uniform,
Examples include Ni-based hard alloys that cause unilateral diffusion from the hard alloys to the peripheral base portion without mutual diffusion to reduce the hardness of the hard alloys, resulting in poor adhesion to the peripheral bases. . Preferred hard alloy particles include the following four types. (1) C: 0.6 to 1.7%, Cr: 3 to 5%, W: 1 to
Fe-based alloy containing 20% and V: 0.5-6%. This alloy has a composition corresponding to high speed tool steel (high speed steel) containing Cr, W and V as elements forming carbides, and is added in the form of alloy powder. (2) C: 0.6 to 1.7%, Cr: 3 to 5%, W: 1 to
Fe-based alloy containing 20%, V: 0.5-6%, and at least one of Mo and Co: 20% or less. This alloy is
It has a composition corresponding to high speed tool steel (high speed steel) containing Mo or Co and is added in the form of alloy powder. (3) Mo-Fe alloy containing Mo: 55 to 70%. This alloy has a composition equivalent to JIS-standardized ferromolybdenum, and if the Mo content is low, satisfactory hardness cannot be obtained, and if the Mo content is high, the hardness becomes too high and aggressiveness to the mating material In order to increase the value of Mo, Mo is set to 55% to 70%. It is added in the form of ferromolybdenum powder with low carbon content. (4) Cr: 5-15%, Mo: 20-40%, Si: 1
Co-based alloys containing ~ 5%. Examples of this alloy include heat-resistant and abrasion-resistant alloy powder (for example, Cabot Co., trade name: Kobamet) which is commercially available for overlay thermal spraying.

【0008】(D)気孔率 油を含浸させるために気孔が必要であり、気孔率が8%
未満では含浸する油の量および摺動中に滲み出る油の量
が少なく、所望の潤滑効果が得られない。気孔率が30
%を越えると、焼結合金の強度が低下し、摩耗量が大き
くなるために、気孔率は8〜30%とする。
(D) Porosity Porosity is required for impregnating with oil, and the porosity is 8%.
If it is less than the above, the amount of oil to be impregnated and the amount of oil that oozes out during sliding are too small to obtain the desired lubricating effect. Porosity is 30
%, The strength of the sintered alloy decreases and the amount of wear increases, so the porosity is set to 8 to 30%.

【0009】[0009]

【実施例】次に、実施例と比較例により本発明を説明す
る。配合割合および組成は重量%である。まず、下記の
各粉末を準備した。 (1) アトマイズ鉄粉:粒度100メッシュ以下((株)神
戸製鋼所製:300M) (2) 電解銅粉:粒度100メッシュ以下(福田金属箔粉
工業(株)製:CE56) (3) 黒鉛粉:粒度200メッシュ以下 (4) 合金粉A:高速度工具鋼SKH2相当組成、粒度2
00メッシュ以下、組成Fe−4%Cr−18%W−1%
V−0.8%C (5) 合金粉B:高速度工具鋼SKH51相当組成、粒度
200メッシュ以下、組成Fe−4%Cr−5%Mo−6
%W−1%V−0.8%C、 (6) 合金粉C:組成Fe−65%Mo、粒度200メッシ
ュ以下、 (7) 合金粉D:組成Co−8.5%Cr−28%Mo−2.
5%Si、粒度200メッシュ以下(キャボット社製、
商品名:コバメット)、 (8) ステアリン酸亜鉛粉
EXAMPLES The present invention will be described with reference to Examples and Comparative Examples. The mixing ratio and composition are% by weight. First, the following powders were prepared. (1) Atomized iron powder: grain size 100 mesh or less (Kobe Steel Co., Ltd .: 300M) (2) Electrolytic copper powder: grain size 100 mesh or less (Fukuda Metal Foil & Powder Co., Ltd .: CE56) (3) Graphite Powder: Grain size 200 mesh or less (4) Alloy powder A: High speed tool steel SKH2 equivalent composition, grain size 2
00 mesh or less, composition Fe-4% Cr-18% W-1%
V-0.8% C (5) Alloy powder B: High speed tool steel SKH51 equivalent composition, grain size 200 mesh or less, composition Fe-4% Cr-5% Mo-6
% W-1% V-0.8% C, (6) Alloy powder C: Composition Fe-65% Mo, grain size 200 mesh or less, (7) Alloy powder D: Composition Co-8.5% Cr-28% Mo-2.
5% Si, grain size 200 mesh or less (manufactured by Cabot Co.,
Product name: Cobamet), (8) Zinc stearate powder

【0010】アトマイズ鉄粉80%に電解銅粉20%を
添加混合した粉末に、所定量の各種の硬質合金粉、黒鉛
粉および1%のステアリン酸亜鉛粉を添加して混合し
た。各混合粉を成形圧力2〜4ton/cm2で、円筒形状に
圧粉成形し、成形体はアンモニア分解ガス雰囲気中にお
いて1100℃で焼結を行った。各焼結体を温度850
℃の浸炭雰囲気中で60分間保持した後、焼き入れを行
い、180℃で40分間焼き戻しを行った後、切削加工
により軸受形状に成形した。含浸させた潤滑油はISO
VG56相当のタービン油である。各試料の金属組織
は、基地部分がマルテンサイトであり、基地部分の粒子
界に銅色の相が分散し、硬質合金粉を添加したものは、
添加量にほぼ見合う面積で硬質合金相が分散しており、
また気孔が認められた。硬質合金粒子のマイクロビッカ
ース硬さ(試験荷重25gf)は、合金粉AおよびBは
800〜900、合金粉Cは1400〜1500、合金
粉Dは850〜950である。軸受試料は各材料共に密
度比を80%(気孔率20%)とし、軸受試験機を用い
て100時間連続運転を行い、軸受および回転軸の摩耗
量を測定した。用いた回転軸は機械構造用炭素鋼S45
C材に焼き入れおよび焼戻しを行ったものであり、表面
硬さはHRC55である。試験機の運転条件は、周速1
5m/min、面圧30MPaである。表1に、硬質合金粉の
添加量、全体組成、軸受および軸の摩耗量を示す。
A predetermined amount of various hard alloy powders, graphite powder and 1% zinc stearate powder were added and mixed to a powder obtained by adding 20% electrolytic copper powder to 80% atomized iron powder. Each mixed powder was compacted into a cylindrical shape at a compacting pressure of 2 to 4 ton / cm 2 , and the compact was sintered at 1100 ° C. in an ammonia decomposing gas atmosphere. Temperature of each sintered body is 850
After holding in a carburizing atmosphere at 60 ° C. for 60 minutes, quenching was performed, tempering was performed at 180 ° C. for 40 minutes, and then a bearing shape was formed by cutting. The impregnated lubricating oil is ISO
It is turbine oil equivalent to VG56. The metallographic structure of each sample is that the matrix portion is martensite, the copper-colored phase is dispersed in the grain boundary of the matrix portion, and the hard alloy powder is added.
The hard alloy phase is dispersed in an area almost commensurate with the addition amount,
Porosity was also observed. The micro Vickers hardness (test load 25 gf) of the hard alloy particles is 800 to 900 for alloy powders A and B, 1400 to 1500 for alloy powder C, and 850 to 950 for alloy powder D. The bearing sample had a density ratio of 80% (porosity 20%) for each material, and was continuously operated for 100 hours using a bearing tester to measure the amount of wear of the bearing and the rotating shaft. The rotating shaft used is carbon steel S45 for machine structure.
The C material was quenched and tempered and had a surface hardness of HRC55. The operating condition of the tester is a peripheral speed of 1
The pressure is 5 m / min and the surface pressure is 30 MPa. Table 1 shows the amount of hard alloy powder added, the overall composition, and the amount of wear of the bearing and shaft.

【0011】[0011]

【表1】 [Table 1]

【0012】試料番号1〜12が本発明の合金であり、
試料番号13〜15が比較試料である。試料13は硬質
合金粉を含まないもの、試料14は硬質合金粉が少ない
もの、および試料15は硬質合金粉を過剰に含むもので
ある。本発明に係る試料1〜12は、軸受と軸の摩耗量
が少ないことが判る。試料4〜6および13〜15のデ
ータは、硬質合金粒子の量と摩耗量との関係を示してお
り、硬質粒子のないもの(試料13)および硬質粒子の
少ないもの(試料14)は軸受自身の摩耗が大きく、そ
れにより軸の摩耗も大きくなっている。硬質粒子量が4
0%の試料15は、軸の摩耗量が大きく、その結果軸受
の摩耗量も大きい傾向を示している。すなわち、相手材
を攻撃する性質があることが判る。
Sample Nos. 1 to 12 are alloys of the present invention,
Sample Nos. 13 to 15 are comparative samples. Sample 13 contains no hard alloy powder, sample 14 contains little hard alloy powder, and sample 15 contains excess hard alloy powder. It can be seen that the samples 1 to 12 according to the present invention have a small amount of wear of the bearing and the shaft. The data of Samples 4 to 6 and 13 to 15 show the relationship between the amount of hard alloy particles and the wear amount, and those without hard particles (Sample 13) and those with few hard particles (Sample 14) are bearings themselves. The wear of the shaft is large, and the wear of the shaft is also large. Hard particle amount is 4
Sample 0 of 0% has a large amount of shaft wear and, as a result, a large amount of bearing wear. That is, it can be seen that there is a property of attacking the opponent material.

【0013】次に、硬質合金粒子として前記実施例の試
料5と同じ合金粉B(SKH51相当)20%を用い、
銅粉の添加量を0〜35%の範囲で変化させた組成の軸
受試料を作製し、軸受試験を行った。試料の作製手順お
よび軸受試験方法は前記実施例と同様である。表2に、
Cu含有量と軸受および軸の摩耗量の関係を示す。
Next, as the hard alloy particles, 20% of the same alloy powder B (corresponding to SKH51) as the sample 5 of the above-mentioned example was used,
A bearing sample having a composition in which the added amount of copper powder was changed in the range of 0 to 35% was prepared and a bearing test was conducted. The sample preparation procedure and the bearing test method are the same as those in the above-mentioned embodiment. In Table 2,
The relationship between the Cu content and the amount of wear of the bearing and the shaft is shown.

【0014】[0014]

【表2】 [Table 2]

【0015】試料16は、マルテンサイト基地中に硬質
合金粒子が分散した組織を有し、銅相を含まないもので
ある。硬質粒子が分散していることにより、表1に示す
試料13の銅粒子のみを分散させた合金より摩耗量が少
ない。試料16に比べて、Cu5%の試料17は、軸受
および軸の摩耗量が減少しているが、試料16と試料1
8の摩耗量の差が大きいことから判るように、Cu量に
対する摩耗量の変化率が大きく、Cuの減少と共に摩耗
量が大きくなるので好ましくない。耐摩耗性の向上は、
Cuを含有することにより基地が強化されたこと、およ
び相手材を攻撃しない作用が現れていることによるもの
と考えられる。Cuの量が7〜25%では、軸受、軸共
に摩耗が少ない。すなわち、銅相は摺動材になじみ性を
付与していることが判る。Cuの量が30%より多くな
ると、軸を摩耗させないが、軸受摩耗量が増加する傾向
を示す。合金全体の組織構成に占める軟質な銅相が多く
なるためと考えられる。Cuの量が35%では、軸受摩
耗量が増大することが判る。また、Cuの量が30%を
越えると、焼結による寸法変化が大きくなるので好まし
くない。なお、銅粉の粒度が250メッシュ以下のもの
(福田金属箔粉工業(株)製:CE15)を用いて製作し
た合金、ならびに焼結温度を1080℃および1150
℃として製作した合金においても摩耗特性は同様な傾向
を示した。
Sample 16 has a structure in which hard alloy particles are dispersed in a martensite matrix and does not contain a copper phase. Due to the dispersion of the hard particles, the wear amount is smaller than that of the alloy in which only the copper particles of Sample 13 shown in Table 1 are dispersed. Compared with the sample 16, the sample 17 containing 5% Cu has a smaller amount of wear of the bearing and the shaft.
As can be seen from the large difference in the amount of wear of No. 8, the rate of change of the amount of wear with respect to the amount of Cu is large, and the amount of wear increases as Cu decreases, which is not preferable. The improvement of wear resistance is
It is considered that this is because the base was strengthened by containing Cu, and the action of not attacking the opponent material appeared. When the amount of Cu is 7 to 25%, wear of both the bearing and the shaft is small. That is, it can be seen that the copper phase gives the sliding material familiarity. When the amount of Cu exceeds 30%, the shaft is not worn but the bearing wear amount tends to increase. This is considered to be because the soft copper phase accounts for a large proportion of the structural constitution of the entire alloy. It can be seen that when the amount of Cu is 35%, the amount of bearing wear increases. Further, if the amount of Cu exceeds 30%, the dimensional change due to sintering becomes large, which is not preferable. An alloy produced by using a copper powder having a grain size of 250 mesh or less (manufactured by Fukuda Metal Foil & Powder Co., Ltd .: CE15) and a sintering temperature of 1080 ° C. and 1150
The wear characteristics of alloys produced at ℃ showed the same tendency.

【0016】[0016]

【発明の効果】本発明の含油軸受用焼結合金は、高面圧
摺動に優れた性能を発揮する鉄炭素系のマルテンサイト
が存在する基地に、摺動なじみ性のよい銅相または銅合
金相と、耐摩耗性のよい前記マルテンサイトより硬質な
合金粒子とが分散した複合組織からなるものであり、高
面圧下において、軸受自体が優れた耐摩耗性を有すると
共に、相手材に対する攻撃性が低いため、給油すること
なく長時間使用することができ、軸受要素の保守を省略
し得る効果が得られる。
EFFECTS OF THE INVENTION The sintered alloy for oil-impregnated bearings of the present invention has a copper phase or a copper phase having good sliding conformability at the base where iron-carbon type martensite that exhibits excellent performance in high surface pressure sliding exists. The alloy phase is composed of a composite structure in which alloy particles harder than the above-mentioned martensite having good wear resistance are dispersed, and under high surface pressure, the bearing itself has excellent wear resistance and attacks against the mating material. Since the property is low, it can be used for a long time without refueling, and the effect that maintenance of the bearing element can be omitted can be obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 全体組成が重量比でC:0.3〜1.5
%、Cr:0.1〜1.5%、W:0.05〜6%、V:
0.02〜1.8%、Cu:7〜30%、ならびに残部の
Feおよび不可避不純物からなり、その合金の組織は、
マルテンサイトが存在する鉄炭素合金基地中に、Cu粒
子またはCu合金粒子が分散していると共に、前記鉄炭
素合金基地より硬質で、組成が重量比でC:0.6〜1.
7%、Cr:3〜5%、W:1〜20%、V:0.5〜6
%を含有するFe基合金の粒子5〜30重量%が分散し
ており、かつ気孔率が8〜30%であることを特徴とす
る含油軸受用耐摩耗性焼結合金。
1. The overall composition has a weight ratio of C: 0.3 to 1.5.
%, Cr: 0.1 to 1.5%, W: 0.05 to 6%, V:
0.02 to 1.8%, Cu: 7 to 30%, and the balance Fe and unavoidable impurities, and the structure of the alloy is
Cu particles or Cu alloy particles are dispersed in the iron-carbon alloy matrix containing martensite, and the composition is harder than the iron-carbon alloy matrix and has a composition by weight ratio of C: 0.6 to 1.
7%, Cr: 3-5%, W: 1-20%, V: 0.5-6
% Of Fe-based alloy particles are dispersed, and the porosity is 8 to 30%. A wear-resistant sintered alloy for oil-impregnated bearings.
【請求項2】 全体組成が重量比でC:0.3〜1.5
%、Cr:0.1〜1.5%、W:0.05〜6%、V:
0.02〜1.8%、Cu:7〜30%、Moまたは Co
の少なくとも1種:6%以下、ならびに残部のFeおよ
び不可避不純物からなり、その合金の組織は、マルテン
サイトが存在する鉄炭素合金基地中に、Cu粒子または
Cu合金粒子が分散していると共に、前記鉄炭素合金基
地より硬質で、組成が重量比でC:0.6〜1.7%、C
r:3〜5%、W:1〜20%、V:0.5〜6%、Mo
またはCoの少なくとも1種:20%以下を含有するFe
基合金の粒子5〜30重量%が分散しており、かつ気孔
率が8〜30%であることを特徴とする含油軸受用耐摩
耗性焼結合金。
2. The total composition is C: 0.3 to 1.5 by weight ratio.
%, Cr: 0.1 to 1.5%, W: 0.05 to 6%, V:
0.02 to 1.8%, Cu: 7 to 30%, Mo or Co
At least one of: 6% or less, and the balance Fe and unavoidable impurities, and the alloy structure is such that Cu particles or Cu alloy particles are dispersed in an iron-carbon alloy matrix in which martensite is present, It is harder than the iron-carbon alloy matrix and has a composition of C: 0.6 to 1.7% by weight, C
r: 3-5%, W: 1-20%, V: 0.5-6%, Mo
Or Fe containing at least one of Co: 20% or less
A wear-resistant sintered alloy for oil-impregnated bearings, wherein particles of a base alloy are dispersed in an amount of 5 to 30% by weight and a porosity is 8 to 30%.
【請求項3】 全体組成が重量比でC:0.3〜1%、
Mo:2.8〜21%、Cu:7〜30%、ならびに残部
のFeおよび不可避不純物からなり、その合金の組織
は、マルテンサイトが存在する鉄炭素合金基地中に、C
u粒子またはCu合金粒子が分散していると共に、前記鉄
炭素合金基地より硬質で、組成が重量比でMo:55〜
70%を含有するMo−Fe合金の粒子5〜30重量%が
分散しており、かつ気孔率が8〜30%であることを特
徴とする含油軸受用耐摩耗性焼結合金。
3. The total composition is C: 0.3-1% by weight,
Mo: 2.8 to 21%, Cu: 7 to 30%, and the balance Fe and unavoidable impurities. The structure of the alloy is C in the iron-carbon alloy matrix containing martensite.
u particles or Cu alloy particles are dispersed and harder than the iron-carbon alloy matrix, and the composition is Mo: 55-by weight.
A wear-resistant sintered alloy for oil-impregnated bearings, wherein 5 to 30% by weight of particles of a Mo-Fe alloy containing 70% are dispersed and the porosity is 8 to 30%.
【請求項4】 全体組成が重量比でC:0.3〜1%、
Cr:0.2〜4.5%、Mo:1〜12%、Si:0.05
〜1.5%、Co:2〜22.2%、Cu:7〜30%、な
らびに残部のFeおよび不可避不純物からなり、その合
金の組織は、マルテンサイトが存在する鉄炭素合金基地
中に、Cu粒子またはCu合金粒子が分散していると共
に、前記鉄炭素合金基地より硬質で、組成が重量比でC
r:5〜15%、Mo:20〜40%、Si:1〜5%を
含有するCo基合金の粒子5〜30重量%が分散してお
り、かつ気孔率が8〜30%であることを特徴とする含
油軸受用耐摩耗性焼結合金。
4. The total composition is C: 0.3-1% by weight,
Cr: 0.2-4.5%, Mo: 1-12%, Si: 0.05
.About.1.5%, Co: 2 to 22.2%, Cu: 7 to 30%, and the balance Fe and unavoidable impurities, and the structure of the alloy is in the iron-carbon alloy matrix in which martensite is present. The Cu particles or Cu alloy particles are dispersed and harder than the iron-carbon alloy matrix, and the composition is C by weight ratio.
5 to 30% by weight of particles of a Co-based alloy containing r: 5 to 15%, Mo: 20 to 40%, and Si: 1 to 5% are dispersed, and the porosity is 8 to 30%. A wear-resistant sintered alloy for oil-impregnated bearings.
JP27446894A 1994-10-12 1994-10-12 Wear-resistant sintered alloy for oil-impregnated bearings Expired - Fee Related JP3342972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27446894A JP3342972B2 (en) 1994-10-12 1994-10-12 Wear-resistant sintered alloy for oil-impregnated bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27446894A JP3342972B2 (en) 1994-10-12 1994-10-12 Wear-resistant sintered alloy for oil-impregnated bearings

Publications (2)

Publication Number Publication Date
JPH08109450A true JPH08109450A (en) 1996-04-30
JP3342972B2 JP3342972B2 (en) 2002-11-11

Family

ID=17542118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27446894A Expired - Fee Related JP3342972B2 (en) 1994-10-12 1994-10-12 Wear-resistant sintered alloy for oil-impregnated bearings

Country Status (1)

Country Link
JP (1) JP3342972B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403732A (en) * 2003-05-26 2005-01-12 Komatsu Mfg Co Ltd Thermal spray material
EP1857694A1 (en) * 2006-05-18 2007-11-21 Hamilton Sundstrand Corporation Lubricated metal bearing material
WO2009016840A1 (en) * 2007-07-31 2009-02-05 Caterpillar Japan Ltd. Multi-layered sintered slide member
JP2010031373A (en) * 2008-07-30 2010-02-12 Caterpillar Japan Ltd Multi-layered sintered slide member
US7892481B2 (en) 2005-10-12 2011-02-22 Hitachi Powdered Metals Co., Ltd. Manufacturing method for wear resistant sintered member, sintered valve seat, and manufacturing method therefor
US7998238B2 (en) * 2003-07-31 2011-08-16 Komatsu Ltd. Sintered sliding member and connecting device
US8283046B2 (en) 2006-01-30 2012-10-09 Komatsu Ltd. Ferrous sintered multilayer roll-formed bushing, producing method of the same and connecting device
US8679400B2 (en) 2005-01-31 2014-03-25 Komatsu Ltd Sintered material, ferrous sintered sliding material, producing method of the same, sliding member, producing method of the same and coupling device
JP6536866B1 (en) * 2017-12-28 2019-07-03 日立化成株式会社 Sintered bearing, sintered bearing device and rotating device
JP2019207030A (en) * 2019-06-06 2019-12-05 日立化成株式会社 Sintered bearing and manufacturing method thereof
EP3686307A4 (en) * 2017-09-20 2021-01-13 Diamet Corporation Sintered oil-retaining bearing
JPWO2021145279A1 (en) * 2020-01-15 2021-07-22
CN113396233A (en) * 2019-01-04 2021-09-14 天纳克股份有限公司 Hard powder particles with improved compressibility and green strength

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216948A (en) * 1987-03-06 1988-09-09 Hitachi Powdered Metals Co Ltd Oil impregnated metal powder sintered bearing for high load use and its production
JPH0116294B2 (en) * 1985-06-18 1989-03-23 Hitachi Funmatsu Yakin Kk
JPH02500755A (en) * 1986-11-21 1990-03-15 マンガニーズ・ブロンズ・リミテッド High density sintered iron alloy
JPH0347951A (en) * 1989-07-15 1991-02-28 Riken Corp Iron-base sintered alloy for valve seat
JPH04124248A (en) * 1990-09-14 1992-04-24 Isamu Kikuchi Sintered alloy for oilless bearing and its production
JPH04259351A (en) * 1991-02-14 1992-09-14 Nissan Motor Co Ltd Manufacture of wear resistant ferrous sintered alloy
JPH05247605A (en) * 1992-03-03 1993-09-24 Fuji Oozx Kk Valve seat of internal combustion engine and its manufacture
JPH05263200A (en) * 1992-03-17 1993-10-12 Riken Corp Sintered high speed steel excellent in seizing resistance and its manufacture
JPH0633184A (en) * 1992-07-21 1994-02-08 Toyota Motor Corp Production of sintered alloy for valve seat excellent in wear resistance

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0116294B2 (en) * 1985-06-18 1989-03-23 Hitachi Funmatsu Yakin Kk
JPH02500755A (en) * 1986-11-21 1990-03-15 マンガニーズ・ブロンズ・リミテッド High density sintered iron alloy
JPS63216948A (en) * 1987-03-06 1988-09-09 Hitachi Powdered Metals Co Ltd Oil impregnated metal powder sintered bearing for high load use and its production
JPH0347951A (en) * 1989-07-15 1991-02-28 Riken Corp Iron-base sintered alloy for valve seat
JPH04124248A (en) * 1990-09-14 1992-04-24 Isamu Kikuchi Sintered alloy for oilless bearing and its production
JPH04259351A (en) * 1991-02-14 1992-09-14 Nissan Motor Co Ltd Manufacture of wear resistant ferrous sintered alloy
JPH05247605A (en) * 1992-03-03 1993-09-24 Fuji Oozx Kk Valve seat of internal combustion engine and its manufacture
JPH05263200A (en) * 1992-03-17 1993-10-12 Riken Corp Sintered high speed steel excellent in seizing resistance and its manufacture
JPH0633184A (en) * 1992-07-21 1994-02-08 Toyota Motor Corp Production of sintered alloy for valve seat excellent in wear resistance

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403732B (en) * 2003-05-26 2007-01-10 Komatsu Mfg Co Ltd Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
US7438979B2 (en) 2003-05-26 2008-10-21 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
GB2403732A (en) * 2003-05-26 2005-01-12 Komatsu Mfg Co Ltd Thermal spray material
US7648773B2 (en) 2003-05-26 2010-01-19 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
US7998238B2 (en) * 2003-07-31 2011-08-16 Komatsu Ltd. Sintered sliding member and connecting device
US8679400B2 (en) 2005-01-31 2014-03-25 Komatsu Ltd Sintered material, ferrous sintered sliding material, producing method of the same, sliding member, producing method of the same and coupling device
US7892481B2 (en) 2005-10-12 2011-02-22 Hitachi Powdered Metals Co., Ltd. Manufacturing method for wear resistant sintered member, sintered valve seat, and manufacturing method therefor
DE102006048442B4 (en) * 2005-10-12 2011-03-31 Hitachi Powdered Metals Co., Ltd., Matsudo A method of manufacturing a wear resistant sintered element, a sintered valve seat, and manufacturing methods therefor
US8283046B2 (en) 2006-01-30 2012-10-09 Komatsu Ltd. Ferrous sintered multilayer roll-formed bushing, producing method of the same and connecting device
EP1857694A1 (en) * 2006-05-18 2007-11-21 Hamilton Sundstrand Corporation Lubricated metal bearing material
JP2009035757A (en) * 2007-07-31 2009-02-19 Caterpillar Japan Ltd Multi-layered sintered slide member
US8361939B2 (en) 2007-07-31 2013-01-29 Caterpillar Japan Ltd. Multilayered sintered sliding member
WO2009016840A1 (en) * 2007-07-31 2009-02-05 Caterpillar Japan Ltd. Multi-layered sintered slide member
JP2010031373A (en) * 2008-07-30 2010-02-12 Caterpillar Japan Ltd Multi-layered sintered slide member
EP3686307A4 (en) * 2017-09-20 2021-01-13 Diamet Corporation Sintered oil-retaining bearing
US11648611B2 (en) 2017-09-20 2023-05-16 Diamet Corporation Sintered oil-impregnated bearing
JP6536866B1 (en) * 2017-12-28 2019-07-03 日立化成株式会社 Sintered bearing, sintered bearing device and rotating device
WO2019130566A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Sintered bearing and manufacturing method therefor
EP3734096A4 (en) * 2017-12-28 2021-07-21 Hitachi Chemical Company, Ltd. Sintered bearing and manufacturing method therefor
CN113396233A (en) * 2019-01-04 2021-09-14 天纳克股份有限公司 Hard powder particles with improved compressibility and green strength
JP2019207030A (en) * 2019-06-06 2019-12-05 日立化成株式会社 Sintered bearing and manufacturing method thereof
JPWO2021145279A1 (en) * 2020-01-15 2021-07-22

Also Published As

Publication number Publication date
JP3342972B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
US5462573A (en) Valve seat inserts of sintered ferrous materials
US5466276A (en) Valve seat made of secondary hardening-type high temperature wear-resistant sintered alloy
US4933008A (en) Heat resistant and wear resistant iron-based sintered alloy
JP3342972B2 (en) Wear-resistant sintered alloy for oil-impregnated bearings
JP3469435B2 (en) Valve seat for internal combustion engine
AU696267B2 (en) Wear-resistant sintered ferrous alloy for valve seat
JP2022046530A (en) Free graphite-containing powder
JPH10226855A (en) Valve seat for internal combustion engine made of wear resistant sintered alloy
GB2109004A (en) Anti-wear sintered alloy and process for the manufacture thereof
US10619229B2 (en) Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
JP2000297356A (en) High temperature wear resistant sintered alloy
JP4201830B2 (en) Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body
US5545249A (en) Sintered bearing alloy for high-temperature application and method of manufacturing an article of the alloy
JPH09242516A (en) Valve seat for internal combustion engine
US5937268A (en) Sintered sliding member and production method thereof
US5918293A (en) Iron based powder containing Mo, P and C
US5808214A (en) Powder-produced material having wear-resistance
US4840665A (en) Wear-resistant sintered iron-based alloy and process for producing the same
KR20210038691A (en) Modified high speed steel particles, powder metallurgy method using the same, and sintered parts obtained therefrom
JPH0841607A (en) Heat resistant and wear resistant sintered stainless steel
JPH01212737A (en) Wear-resistant ferrous sintered alloy
JP2661045B2 (en) Fe-based sintered alloy with excellent sliding properties
JPS61117254A (en) Ferrous sintered alloy for valve seat
EP0099067A2 (en) Wear-resistant sintered ferrous alloy and method of producing same
JPH0543998A (en) Valve seat made of metal-filled fe-base sintered alloy extremely reduced in attack on mating material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees