JPH08106972A - Panel heater - Google Patents

Panel heater

Info

Publication number
JPH08106972A
JPH08106972A JP23909194A JP23909194A JPH08106972A JP H08106972 A JPH08106972 A JP H08106972A JP 23909194 A JP23909194 A JP 23909194A JP 23909194 A JP23909194 A JP 23909194A JP H08106972 A JPH08106972 A JP H08106972A
Authority
JP
Japan
Prior art keywords
heating element
panel heater
infrared rays
heating
infrared ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23909194A
Other languages
Japanese (ja)
Inventor
Katsuhiko Umeda
克彦 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jamco Corp
Original Assignee
Jamco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jamco Corp filed Critical Jamco Corp
Priority to JP23909194A priority Critical patent/JPH08106972A/en
Publication of JPH08106972A publication Critical patent/JPH08106972A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a heater excellent in heat efficiency by intensively collecting the radial directions of infrared ray. CONSTITUTION: Activated carbon fiber having high infrared ray radiating efficiency is used as a sheet-like heating element 10 being a board, and a honeycomb material 20 is attached to it. The honeycomb material 20 is a plate-like body on which hexagonal cylinders 25 made of aluminum alloy are continuously erected, and mirror surface work is performed on inside surfaces 20a of the hexagonal cylinders 25. When the sheet-like heating element 10 is heated, a part of infrared ray radiated from the activated carbon fiber is emitted as parallel lines by being guided by the hexagonal cylinders 25, but the other dispersing infrared ray is reflected by the inside surfaces on which mirror surface work is performed, and interfere with each other, and become parallel lines, and are intensively collected and radiated in the honeycomb cylinder direction. A wave length of the radiating infrared ray is almost 6.27 micron, and is absorbed in a heating object without being absorbed in air composed of nitrogen, oxygen or the like, and vibrates a water molecule, and warms the body from inside by frictional heat.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線の放射方向を集
約して暖房を効果的に行うパネルヒータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a panel heater for effectively heating by collecting infrared radiation directions.

【0002】[0002]

【従来の技術】従来より、赤外線を利用した輻射熱暖房
装置が市販されているが、これらの製品は輻射熱を放射
するが、放射する赤外線の波長が短いため、折角の輻射
熱を人体に吸収させることができない場合もあり、効率
的な暖房となっていなかった。発熱体の形状を、点ある
いは線とした暖房装置がある。点、あるいは線状の発熱
体においては、図18,図19に示すように発熱体H−
1,H−2を曲面を持った反射鏡M−1,M−2の利用
によって赤外線の反射方向を集約することができるが、
パネル状にした場合においては効果的に放射方向を集約
する方法はなかった。そこで、放射能力を確保するた
め、放射面積の不足を高い放射温度で補っている。例え
ば、放射温度が600℃を超える高温の暖房装置もある
が、この場合には、0.8ミクロンから2ミクロンとい
う短い波長の赤外線を多量に放射する。しかし、これら
の短い波長の赤外線は人体に向けて放射されても、殆ど
は反射されて直接的な暖房にはならなかった。
2. Description of the Related Art Conventionally, radiant heat heaters using infrared rays are commercially available. These products radiate radiant heat, but since the wavelength of infrared rays to radiate is short, the human body must absorb the radiant heat. In some cases, the heating was not efficient. There is a heating device in which the shape of the heating element is a dot or a line. For a point or linear heating element, as shown in FIGS. 18 and 19, the heating element H-
The reflection directions of infrared rays can be aggregated by using the reflecting mirrors M-1 and M-2 having curved surfaces 1 and H-2.
In the case of a panel, there was no effective method of collecting the radial directions. Therefore, in order to secure the radiation ability, the high radiation temperature is used to compensate for the shortage of the radiation area. For example, there is a heating device having a high radiant temperature exceeding 600 ° C., but in this case, a large amount of infrared rays having a short wavelength of 0.8 μm to 2 μm are emitted. However, even if these short-wavelength infrared rays were emitted toward the human body, most of them were reflected and did not result in direct heating.

【0003】そこで、人体に吸収される長い波長の赤外
線を放射させるため、比較的低温の面状発熱体(パネル
ヒータ)を使った製品もあるが、広い面積の面状発熱体
を発熱させると、熱膨張によりパネルヒータが変形、変
歪する不具合が生じた。また、面状発熱体から発する赤
外線はあらゆる方向に向けて四散するので、暖房効果は
ヒータからの距離の2乗に反比例して減少してしまうと
いう欠点を持っていた。さらに、放射体を立体状として
放射方向を制約しようとした製品もあるが、構造が複雑
で、重量、コストなどに問題があった。
Therefore, some products use a relatively low temperature sheet heating element (panel heater) in order to radiate a long wavelength infrared ray that is absorbed by the human body, but when a sheet heating element having a wide area is heated. The panel heater is deformed and deformed due to thermal expansion. Further, since the infrared rays emitted from the planar heating element are scattered in all directions, the heating effect has a drawback that it is inversely proportional to the square of the distance from the heater. Further, there are products that try to restrict the radiation direction by making the radiator three-dimensional, but the structure is complicated, and there are problems in weight, cost, and the like.

【0004】[0004]

【発明が解決しようとする課題】本発明は、効率的な暖
房を得るため、 (1)暖房に有効な赤外線の波長 水の分子の固有振動数と赤外線の波長との関係を重視し
て、放射する赤外線の波長を決定する。 (2)赤外線を放射する物体の温度 赤外線を放射する物体とその温度の関係を研究して、
(1)項で決定した波長の赤外線を放射するために、放
射物体の温度を決定する。 (3)赤外線を放射する物体の選定 理想黒体、炭素繊維、セラミックスなどの物質の赤外線
放射特性を研究して、放射体の材質を決定する。 (4)面状発熱体の面積 面積当たりの発熱量を決定する。 (5)面状発熱体の平面度の確保 発熱体の熱膨張による変形防止 (6)赤外線放射方向の集約 ハニカム材を利用した方向の集約方法 等の問題を解決し、効率良いヒータを提供するものであ
る。
SUMMARY OF THE INVENTION In order to obtain efficient heating, the present invention provides (1) the wavelength of infrared rays effective for heating, with an emphasis on the relationship between the natural frequency of water molecules and the wavelength of infrared rays, Determines the wavelength of infrared radiation emitted. (2) Temperature of objects that radiate infrared rays Study the relationship between objects that radiate infrared rays and their temperatures,
The temperature of the radiating object is determined in order to radiate the infrared ray having the wavelength determined in the item (1). (3) Selection of object that radiates infrared rays The material of the radiator is determined by studying the infrared radiation characteristics of substances such as ideal blackbody, carbon fiber, and ceramics. (4) Area of sheet heating element The amount of heat generated per area is determined. (5) Ensuring the flatness of the planar heating element Preventing deformation of the heating element due to thermal expansion (6) Aggregation of infrared radiation directions Problems such as the direction aggregation method using honeycomb material are solved and an efficient heater is provided. It is a thing.

【0005】[0005]

【課題を解決するための手段】本発明のパネルヒ−タ
は、炭素繊維を面状発熱体として用い、暖房に有効であ
るほぼ6.27ミクロンの波長を有する赤外線を重点的
に放射させ、放射する赤外線をハニカム材によって希望
する方向に集約させると共に、ハニカム材は面状発熱体
を補強し、熱膨張による変歪を防止する構成を具備す
る。
The panel heater according to the present invention uses carbon fiber as a sheet heating element, and mainly emits infrared rays having a wavelength of approximately 6.27 microns, which is effective for heating. The infrared rays are collected by the honeycomb material in a desired direction, and the honeycomb material reinforces the planar heating element to prevent distortion due to thermal expansion.

【0006】[0006]

【作用】空気を構成している窒素および酸素は、ともに
赤外線を吸収しない特性を持っているので、赤外線を所
望の方向に集約することができれば、暖房効果は、暖房
器から被暖房物体までの距離に無関係となり、遠隔暖房
が可能となる。そこで、内面を鏡面とした六角筒を連続
形成したハニカム(あるいはハニコーム)を面状発熱体
の一面に配設し、放射される赤外線を六角筒の内面で互
いに干渉させあって、放射方向を集約させるものであ
る。赤外線は、波長が約1ミクロンから1,000ミク
ロンの電磁波の総称であるが、暖房に有効とされる波長
は、2.66ミクロン、2.73ミクロンそして6.2
7ミクロンの赤外線である。次に、生の牛肉を使用し
て、有効な赤外線の波長と吸収率の関係をみる(図16
参照)。このグラフから波長が6ミクロンから10ミク
ロン(14ミクロンまでもある程度の効果を有する)の
赤外線が牛肉の温度上昇に効果的であることが判明し
た。これらの事柄から、生の牛肉と同種素材の人体に向
けて照射した場合、反射、透過、吸収が起き、波長が6
ミクロンから14ミクロンの赤外線が、人体を温めるに
有効であることが推測される。この波長帯の赤外線は
「遠赤外線」と称される範囲に入る。
[Function] Since both nitrogen and oxygen that compose air have a characteristic that they do not absorb infrared rays, if infrared rays can be concentrated in a desired direction, the heating effect from the heater to the object to be heated can be improved. Remote heating is possible regardless of distance. Therefore, a honeycomb (or honeycomb) in which hexagonal cylinders whose inner surface is a mirror surface is continuously formed is arranged on one surface of the planar heating element, and the emitted infrared rays are caused to interfere with each other on the inner surface of the hexagonal cylinder, and the radiation directions are aggregated. It is what makes me. Infrared is a general term for electromagnetic waves with wavelengths of about 1 to 1,000 microns, but the effective wavelengths for heating are 2.66 microns, 2.73 microns and 6.2.
It is an infrared ray of 7 microns. Next, using raw beef, the relationship between the effective infrared wavelength and the absorption rate will be examined (Fig. 16).
reference). From this graph, it was found that infrared rays having a wavelength of 6 to 10 microns (having a certain effect even up to 14 microns) are effective in increasing the temperature of beef. From these things, when irradiating a human body of the same material as raw beef, reflection, transmission and absorption occur, and the wavelength is 6
It is speculated that infrared rays from micron to 14 micron are effective in warming the human body. Infrared rays in this wavelength band fall within a range called “far infrared rays”.

【0007】次に、輻射熱による暖房の理論に遡り、輻
射熱の放射など、効率の良い暖房を実現するための理論
的な根拠を説明する。 [遠赤外線による輻射熱暖房の理論(図14参照)]水
の分子は水素(H)2個と、酸素(O)1個が結合して
おり、酸素に対して水素は運動している。これらの運動
は水の分子の固有振動を基本としている。水の分子の固
有振動数は極めて高く、周波数で表現することは難しい
ので、波長で説明する。水の分子が持つ固有振動数の波
長は2.66ミクロン、2.73ミクロン、6.27ミ
クロン、および12.24cm(2,450MHz:電
子レンジ)となっている。そこで、この固有振動数と同
じ振動数の電磁波を与えることにより、水の分子を共振
させることができる。波長が2.66ミクロン、2.7
3ミクロン、6.27ミクロンの電磁波は赤外線と呼ば
れ、12.24cm(2,450MHz)の電磁波は電
波と呼ばれる。ここで、水の分子の固有振動数と同数の
波長の電磁波を照射して、水の分子の振動の変化を見
る。 (a)2.66ミクロンの波長の赤外線を照射すると、
水素(H)は酸素(O)の方向に振動する。 (b)2.73ミクロンの波長の赤外線を照射すると、
水素(H)は酸素(O)の周りに回転振動する。 (c)6.27ミクロンの波長の赤外線を照射すると、
1個、1個の水素(H)は羽ばたくように揺動し、振動
形態としては最も激しい動きをする。 (d)12.24cm(2,450MHz)の電波を照
射すると、酸素(O)を中心として、2個の水素(H)
が上下に移動する。 以上の実験から、波長が12.24cmの電子レンジで
の振動は危険なため除外して、比較的長い波長である
6.27ミクロンの波長を持つ赤外線を、水分を含む被
照射物体に照射すると、物体中に深く浸透し、浸透した
部位の水の分子を激しく共振させて、発熱させることが
わかる。従って、6.27ミクロンの波長を持つ赤外線
を豊富に照射する方法が、暖房に有効な手段となる。
Next, going back to the theory of heating by radiant heat, the theoretical basis for realizing efficient heating such as radiation of radiant heat will be described. [Theory of radiant heating by far infrared rays (see FIG. 14)] Two hydrogen (H) molecules and one oxygen (O) molecule are bonded to each other, and hydrogen is moving with respect to oxygen. These movements are based on the natural vibrations of water molecules. Since the natural frequency of water molecules is extremely high and it is difficult to express it in frequency, we will explain it in terms of wavelength. The wavelengths of natural frequencies of water molecules are 2.66 microns, 2.73 microns, 6.27 microns, and 12.24 cm (2,450 MHz: microwave oven). Therefore, by giving an electromagnetic wave having the same frequency as this natural frequency, the water molecules can be made to resonate. Wavelength is 2.66 microns, 2.7
Electromagnetic waves of 3 microns and 6.27 microns are called infrared rays, and electromagnetic waves of 12.24 cm (2,450 MHz) are called radio waves. Here, an electromagnetic wave having the same number of wavelengths as the natural frequency of the water molecule is irradiated to see the change in the vibration of the water molecule. (A) When irradiating with infrared rays having a wavelength of 2.66 microns,
Hydrogen (H) vibrates in the direction of oxygen (O). (B) When irradiated with infrared rays having a wavelength of 2.73 microns,
Hydrogen (H) rotationally oscillates around oxygen (O). (C) When it is irradiated with infrared rays having a wavelength of 6.27 microns,
Each hydrogen (H) flutters like flapping and makes the most violent movement. (D) When irradiated with a radio wave of 12.24 cm (2,450 MHz), two hydrogen (H) atoms centered on oxygen (O)
Moves up and down. From the above experiment, vibration in a microwave oven with a wavelength of 12.24 cm is dangerous and is excluded, and when infrared rays having a relatively long wavelength of 6.27 microns are irradiated to an object to be irradiated containing water, It can be seen that it penetrates deeply into the object and causes the water molecules in the penetrated part to resonate violently and generate heat. Therefore, a method of abundantly irradiating infrared rays having a wavelength of 6.27 microns is an effective means for heating.

【0008】ここで、6.27ミクロンの波長を持つ赤
外線を効率良く放射する方法について、理想物体の温度
と赤外線放射特性の関係から説明する。図15は、理想
物体の赤外線放射特性を示すグラフである。このグラフ
から、理想放射物体の単位面積あたりの赤外線放射量
は、絶対温度の4乗に比例して増加する(ステファン・
ボルツマンの法則)ことがわかる。しかし、600℃を
超える高温物体からの赤外線放射は、3ミクロン程度の
短い波長の赤外線が多く含まれていて、これら短い波長
の赤外線は人体に吸収されずに、反射されたり、衣服に
吸収されるので、暖房の見地からは有効ではない。10
0℃の物体では、人体中に含まれる水の分子を振動させ
て昇温させるのに有効な前記の6ミクロンから14ミク
ロンの遠赤外線を最も多く放射することもわかる。この
ことから、赤外線放射体の温度を100℃近くに抑える
ことによって、加熱エネルギーを人体の昇温に有効な輻
射熱エネルギーに効率良く変換できることが分る。しか
し、発熱体からの放射レベルが低下するので、効果的な
暖房を期待する場合、放射体の形状は、点や線ではな
く、大きな面積を持つ面状発熱体が必要である。ここ
で、大きな面積を持つ面状発熱体として適用する炭素繊
維面状発熱体について説明する。
Here, a method of efficiently radiating infrared rays having a wavelength of 6.27 microns will be described from the relationship between the temperature of an ideal object and infrared radiation characteristics. FIG. 15 is a graph showing an infrared radiation characteristic of an ideal object. From this graph, the amount of infrared radiation per unit area of an ideal radiating object increases in proportion to the fourth power of the absolute temperature (Stephan
Boltzmann's law). However, infrared radiation from a high-temperature object exceeding 600 ° C includes a large amount of infrared rays having a short wavelength of about 3 microns, and these short-wavelength infrared rays are not absorbed by the human body but are reflected or absorbed by clothes. Therefore, it is not effective in terms of heating. 10
It can also be seen that an object at 0 ° C. emits most of the far-infrared rays of 6 μm to 14 μm, which is effective for vibrating water molecules contained in the human body to raise the temperature. From this, it can be understood that the heating energy can be efficiently converted into the radiant heat energy effective for raising the temperature of the human body by suppressing the temperature of the infrared radiator near 100 ° C. However, since the radiation level from the heating element is reduced, the shape of the heating element is not a point or a line, but a planar heating element having a large area is required when expecting effective heating. Here, a carbon fiber planar heating element applied as a planar heating element having a large area will be described.

【0009】[炭素繊維面状発熱体の特徴]金属類は熱
しても赤外線を殆ど放射しないが、600℃以上に熱す
ると僅かながら可視光線や2ミクロン程度の短い波長の
赤外線を発する。しかし、前述のように、これらの可視
光線や短い波長の赤外線は暖房に役立たない。赤外線を
豊富に放射する材料として、炭素や各種のセラミックス
が知られているが、中でも炭素は短い波長から長い波長
までの赤外線を豊富に放射する優良な放射物体である。
そして、炭素を繊維状にした炭素繊維は、良き放射体で
ある上、電気の良導体で、通電することによって発熱体
となり、取扱も容易である。炭素繊維を一方向あるいは
縦横の布状に織り、通電することにより面状発熱体とな
り、その上放射体となって豊富な赤外線を放射する。同
じ温度の炭素繊維発熱体からの放射量は炭素繊維の表面
積に比例するので布を密にする必要があるが、炭素繊維
の表面を活性化した活性炭素繊維の表面積は、通常の繊
維の10,000倍にも達し、低温での赤外線放射には
活性炭素繊維の利用が有効である。次に、広い面積を有
する面状発熱体は、発熱に伴っての膨張により発熱面を
変形するので、補強材が必要となる。
[Characteristics of carbon fiber sheet heating element] Metals emit almost no infrared rays even if they are heated, but when they are heated to 600 ° C or higher, they emit a slight amount of visible rays or infrared rays having a short wavelength of about 2 microns. However, as described above, these visible rays and infrared rays having a short wavelength do not serve for heating. Carbon and various ceramics are known as materials that radiate abundant infrared rays. Among them, carbon is a good radiant substance that radiates abundant infrared rays from a short wavelength to a long wavelength.
The carbon fiber, which is made of fibrous carbon, is a good radiator, is a good conductor of electricity, and becomes a heating element when energized, and is easy to handle. By weaving carbon fibers in a unidirectional or vertical-horizontal cloth form and turning on electricity, it becomes a planar heating element, and on top of that it becomes a radiator and emits abundant infrared rays. The amount of radiation from the carbon fiber heating element at the same temperature is proportional to the surface area of the carbon fiber, so it is necessary to make the cloth dense. However, the surface area of the activated carbon fiber that activated the surface of the carbon fiber is 10 times that of a normal fiber. The use of activated carbon fiber is effective for infrared radiation at low temperatures. Next, since the planar heating element having a large area deforms the heating surface due to expansion accompanying heat generation, a reinforcing material is required.

【0010】[発熱面の変形防止]発熱体の一面を補強
して変形を防止する。すなわち、面状発熱体にハニカム
材を組み合わせることにより、板状の発熱体を補強し、
剛性を持たせることにより変歪を防止する。また、面状
発熱体からの赤外線放射は四散するので、これらを集約
する方法が必要となる。
[Prevention of Deformation of Heating Surface] One surface of the heating element is reinforced to prevent deformation. That is, by combining the planar heating element with a honeycomb material, the plate-shaped heating element is reinforced,
Prevents distortion by providing rigidity. Further, since the infrared radiation from the planar heating element is scattered, it is necessary to integrate these.

【0011】[放射方向の集約]光が2枚の平行する鏡
の間を進むと、鏡に反射しあい、さらに、お互いに干渉
し合って平行光線に近づく。この事実に基づいて、六角
筒を連続的に立設するハニカム材を利用した光の集約装
置は実用化されており、旅客機の客室における非常脱出
扉付近の常夜灯などにその例を見ることができる。地上
でも特殊な照明のルーバーとして実用化されていること
から、可視光線に対するハニカム材の集光効果は実証さ
れている。光と言われる可視光線は、0.36ミクロン
から0.83ミクロンの波長をもつ電磁波であり、赤外
線や遠赤外線においても、波長は異なるが同じ電磁波で
あることから同じ干渉特性が得られることが期待され
る。そこで、本発明では、可視光線と遠赤外線の特性上
の近似に着目し、波長の相違を勘案して実験を進めた結
果、ハニカム材の持つ六角筒の対辺距離、長さ、内面の
研磨状態などによって前記波長帯の遠赤外線に対して
も、放射方向が集約することが確認できた。例えば、六
角筒の対辺距離を6mm〜8mm、長さを30mm〜50mm、
内面を鏡面とすることにより、放射方向を集約させるこ
とができた。
[Aggregation of Radiation Direction] When light travels between two parallel mirrors, the light is reflected by the mirrors and further interferes with each other to approach parallel rays. Based on this fact, a light aggregating device using a honeycomb material in which hexagonal tubes are continuously erected has been put into practical use, and an example can be seen in a night light near an emergency exit door in a passenger cabin. . Since it has been put to practical use as a louver for special lighting on the ground, the effect of condensing the honeycomb material on visible light has been verified. Visible light, which is called light, is an electromagnetic wave having a wavelength of 0.36 to 0.83 micron. Even in infrared rays and far infrared rays, the same interference characteristics can be obtained because they are the same electromagnetic wave. Be expected. Therefore, in the present invention, focusing on the approximation of the characteristics of visible light and far infrared, as a result of proceeding the experiment in consideration of the difference in wavelength, the opposite side distance of the hexagonal cylinder of the honeycomb material, the length, the polishing state of the inner surface As a result, it was confirmed that the radiation directions are concentrated even for far infrared rays in the above wavelength band. For example, the distance between opposite sides of a hexagonal cylinder is 6 mm to 8 mm, the length is 30 mm to 50 mm,
By making the inner surface a mirror surface, the radiation directions could be integrated.

【0012】[0012]

【実施例】図1,図2は本発明のパネルヒータの要部の
構成を示すもので、パネルヒータユニット1は、面状の
発熱体10と、発熱体10の一側面にとりつけられるハ
ニカム材20で構成される。面状発熱体10は、例えば
炭素繊維を布状に構成したもので、加熱により良好な波
長の遠赤外線を放射する。ハニカム材20は、例えばア
ルミ合金製の六角筒25を連続的に立設したハニカム構
造をなす板状材であって、六角筒25の内面20aは鏡
面に仕上げたものを用いる。面状発熱体から放射された
遠赤外線Rは、六角筒25の鏡加工の内面20aに案内
されて、あるいは反射して互いに干渉しあって、面状発
熱体20に垂直な方向(矢印Aで示す)に指向性をもっ
て放射される。
1 and 2 show the construction of the main part of a panel heater according to the present invention. The panel heater unit 1 is a planar heating element 10 and a honeycomb material attached to one side surface of the heating element 10. It consists of 20. The sheet heating element 10 is made of, for example, carbon fiber in a cloth shape, and radiates far infrared rays having a favorable wavelength by heating. The honeycomb material 20 is a plate-shaped material having a honeycomb structure in which hexagonal cylinders 25 made of, for example, an aluminum alloy are continuously erected, and the inner surface 20a of the hexagonal cylinder 25 is a mirror finished surface. Far infrared rays R radiated from the sheet heating element are guided by the mirror-finished inner surface 20a of the hexagonal tube 25 or are reflected and interfere with each other, and are in a direction perpendicular to the sheet heating element 20 (indicated by an arrow A). (Shown) is emitted with directivity.

【0013】図3,図4はパネルヒータユニット1を組
込んだパネルヒータの概要を示す説明図である。パネル
ヒータ100は、パネルヒータユニット1を囲むフレー
ム120を有し、上面のカバー110と下面に設けられ
る反射板130を有する。面状発熱体10はコード15
0を介して供給される電力で加熱される。パネルヒータ
100の厚さはほぼ30mmから50mmとすると、放射効
率が良好となる。図5は電気パネルヒータ200のより
具体的な構造を示すもので、フレーム210内に装備さ
れたパネルヒータユニット1の両端部に電極230,2
32が設けられ、コード250から電力が供給される。
この電力により炭素繊維製の面状発熱体は加熱され、遠
赤外線を放射する。パネルヒータユニットの温度のはハ
ニカム材の内部に装備されたサーモスタット220によ
り検知され、サーモスタット220が電気回路をオン、
オフすることによって所定の温度範囲内に制御される。
3 and 4 are explanatory views showing the outline of a panel heater incorporating the panel heater unit 1. As shown in FIG. The panel heater 100 has a frame 120 surrounding the panel heater unit 1, and has a cover 110 on the upper surface and a reflection plate 130 provided on the lower surface. The sheet heating element 10 has a code 15
It is heated by the electric power supplied through 0. When the thickness of the panel heater 100 is approximately 30 mm to 50 mm, the radiation efficiency becomes good. FIG. 5 shows a more specific structure of the electric panel heater 200. The electrodes 230, 2 are provided at both ends of the panel heater unit 1 installed in the frame 210.
32 is provided and power is supplied from the cord 250.
This electric power heats the sheet heating element made of carbon fiber and radiates far infrared rays. The temperature of the panel heater unit is detected by a thermostat 220 provided inside the honeycomb material, and the thermostat 220 turns on an electric circuit.
By turning off, the temperature is controlled within a predetermined temperature range.

【0014】図6以下に本発明のパネルヒータの具体的
な使用例を示す。パネルヒータ200は、単体で使用で
きるので、床等に置いて使用することができる。図6
は、本発明のパネルヒータ200を机500の下面に設
けた例を示す。また、椅子505の前脚部にパネルヒー
タ200を装備してもよい。図7は、堀りごたつ510
の掘り下げ部515の壁面にパネルヒータ200を設け
たり、こたつのテーブルに520の下面にパネルヒータ
200を設けた例を示す。図8は、キッチン530に本
発明のパネルヒータを設置する例を示す。キッチン53
0の暖房には、従来は例えば、床面537に電気カーペ
ット等を敷いて暖房する形式のものが多かった。しか
し、キッチン530は、上水道のカラン531やシンク
532からの水滴が床面537上に降下し、電気カーペ
ット等を漏らす問題があった。本発明にあっては、キッ
チンのユニット533や側壁535等の垂直面にパネル
ヒータ200を設けることができるので、快適な暖房を
得ることができる。図9は、本発明を家畜やペットA−
1等の小屋540に適用する例を示す。小屋540の側
壁543や天井545の内面にパネルヒータ200を設
けることにより小量のエネルギーで家畜やペットH−1
を寒さから守ることができる。図10は、本発明を工作
機械等のオペレータの暖房に適用する例を示す。ロボッ
ト600は工場等に設備されるが、広大な空間をもつ工
場全体を暖房するには多大のコストを要する。そこで、
ロボット600の制御装置610の全面にパネルヒータ
200をとりつけることによって、オペレータのみを局
所暖房し、省エネルギーを達成できる。図11は、本発
明のパネルヒータの解凍機能を利用して、解凍器700
内の棚板710にパネルヒータ200を装備したもので
ある。棚板710を抜き出し可能に設けて、食材の出し
入れを容易とし、使い易い解凍器を構成することができ
る。図12は、家屋800の屋根上に積る雪を部分的に
溶かして雪降しを容易とする装置に関する。家屋800
の屋根810上は瓦820により覆われる。パネルヒー
タ200を瓦820の下面に敷設し、加熱すると遠赤外
線は瓦820上の雪S−1を効果的に溶かし、雪の自重
により自動的に雪降しが達成できる。図13は、本発明
のパネルヒータ200を自動車900のインストルメン
トパネル910の上面にとりつけたものである。パネル
ヒータから放射された遠赤外線はフロントガラス920
上に付着した霜S−2を効果的に溶かす。したがって、
ワイパーを作動させることによって、速やかに前方視界
を得ることができる。
FIG. 6 and below show specific examples of use of the panel heater of the present invention. Since the panel heater 200 can be used alone, it can be placed on the floor or the like for use. Figure 6
Shows an example in which the panel heater 200 of the present invention is provided on the lower surface of the desk 500. Further, the panel heater 200 may be mounted on the front leg of the chair 505. FIG. 7 shows a moat Gotatsu 510.
An example in which the panel heater 200 is provided on the wall surface of the dug-down portion 515 or the panel heater 200 is provided on the lower surface of the kotatsu table 520 will be described. FIG. 8 shows an example in which the panel heater of the present invention is installed in the kitchen 530. Kitchen 53
Conventionally, the 0-type heating has been of a type in which, for example, an electric carpet or the like is laid on the floor surface 537 for heating. However, in the kitchen 530, there is a problem in that water drops from the water supply curran 531 and the sink 532 drop onto the floor surface 537 and leak the electric carpet and the like. In the present invention, since the panel heater 200 can be provided on the vertical surface of the kitchen unit 533, the side wall 535, etc., comfortable heating can be obtained. FIG. 9 shows the present invention for livestock and pets A-
An example applied to a hut 540 such as 1st class is shown. By providing the panel heater 200 on the side wall 543 of the hut 540 and the inner surface of the ceiling 545, livestock and pets H-1 can be consumed with a small amount of energy.
Can protect you from the cold. FIG. 10 shows an example in which the present invention is applied to heating of an operator such as a machine tool. Although the robot 600 is installed in a factory or the like, it requires a great deal of cost to heat the entire factory having a vast space. Therefore,
By attaching the panel heater 200 to the entire surface of the control device 610 of the robot 600, it is possible to locally heat only the operator and achieve energy saving. FIG. 11 shows a decompressor 700 using the defrosting function of the panel heater of the present invention.
The inner shelf plate 710 is equipped with a panel heater 200. The shelf plate 710 can be provided so as to be able to be pulled out, so that food can be taken in and out easily, and an easy-to-use defroster can be configured. FIG. 12 relates to a device for facilitating snowfall by partially melting snow accumulated on the roof of the house 800. House 800
The roof 810 is covered with a roof tile 820. When the panel heater 200 is laid on the lower surface of the roof tile 820 and heated, the far infrared rays effectively melt the snow S-1 on the roof tile 820, and snowfall can be automatically achieved by the weight of the snow. FIG. 13 shows the panel heater 200 of the present invention mounted on the upper surface of an instrument panel 910 of an automobile 900. Far infrared rays emitted from the panel heater are windshield 920.
Effectively melts the frost S-2 attached on top. Therefore,
By operating the wiper, it is possible to quickly obtain a front view.

【0015】なお、以上の実施例においてはハニカムの
材料として、研磨したアルミニュムを使用した例を述べ
たが、非金属のハニカムでも、表面の円滑さが条件を満
していれば、同様の効果を示す。さらに、六角筒を円筒
に変えても、集約効率は低下するが、実用に供すること
は可能である。
In the above embodiments, an example in which a polished aluminum is used as the material of the honeycomb has been described, but the same effect can be obtained even if the surface smoothness is satisfied even in the case of a non-metallic honeycomb. Indicates. Further, even if the hexagonal cylinder is changed to a cylinder, the aggregation efficiency is lowered, but it can be put to practical use.

【0016】[0016]

【発明の効果】以上説明したように、本発明のパネルヒ
ータは赤外線の放射効率の高い素材を広い面積に用いて
形成しているので、暖房効率が高い。また、空気を構成
している窒素および酸素は、ともに赤外線を吸収しない
特性を持っているので、赤外線を希望する方向に集約す
ることにより、暖房器から被暖房物体までの距離に無関
係とすることができ、遠隔暖房が可能となると共に、従
来困難であった場所での暖房が可能となり、効率の良い
暖房ができる。また、被暖房物体は吸収した赤外線によ
る摩擦熱で温められるので、燃焼による空気汚染などの
ない、快適な暖房効果が得られる。
As described above, since the panel heater of the present invention is formed by using a material having a high infrared radiation efficiency in a wide area, it has a high heating efficiency. Also, since nitrogen and oxygen that make up the air both have the property of not absorbing infrared rays, they should be irrelevant to the distance from the heater to the object to be heated by collecting infrared rays in the desired direction. In addition to being able to perform remote heating, it is possible to perform heating in places that were difficult in the past, and efficient heating can be performed. Further, since the object to be heated is heated by the frictional heat of the absorbed infrared rays, a comfortable heating effect without air pollution due to combustion can be obtained.

【0017】さらに、発熱体は低温でよいので、電力の
消費が少量で十分な暖房効果が期待され、省エネルギー
が達成されると同時に、安全なヒータとなる。また、板
状の構成とすることにより、取付、軽量で持ち運びが容
易となる。
Furthermore, since the heating element can be at a low temperature, a small amount of power consumption is expected to have a sufficient heating effect, energy saving can be achieved, and at the same time, a safe heater can be obtained. Further, by adopting a plate-like configuration, it is easy to mount, lightweight and easy to carry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のパネルヒータの基本構成を示す斜視
図。
FIG. 1 is a perspective view showing a basic configuration of a panel heater of the present invention.

【図2】本発明のパネルヒータの基本構成を示す断面
図。
FIG. 2 is a sectional view showing a basic configuration of a panel heater of the present invention.

【図3】パネルヒータの標準的な構成を示す斜視図。FIG. 3 is a perspective view showing a standard configuration of a panel heater.

【図4】パネルヒータの標準的な構成を示す断面説明
図。
FIG. 4 is an explanatory sectional view showing a standard configuration of a panel heater.

【図5】パネルヒータの電気配線を示す説明図。FIG. 5 is an explanatory diagram showing electric wiring of a panel heater.

【図6】本発明のパネルヒータの暖房器具としての使用
例を示す説明図。
FIG. 6 is an explanatory diagram showing an example of use of the panel heater of the present invention as a heating appliance.

【図7】本発明のパネルヒータの暖房器具としての使用
例を示す説明図。
FIG. 7 is an explanatory diagram showing an example of use of the panel heater of the present invention as a heating appliance.

【図8】本発明のパネルヒータの暖房器具としての使用
例を示す説明図。
FIG. 8 is an explanatory diagram showing an example of use of the panel heater of the present invention as a heating appliance.

【図9】本発明のパネルヒータの暖房器具としての使用
例を示す説明図。
FIG. 9 is an explanatory diagram showing an example of use of the panel heater of the present invention as a heating appliance.

【図10】本発明のパネルヒータの暖房器具としての使
用例を示す説明図。
FIG. 10 is an explanatory diagram showing an example of use of the panel heater of the present invention as a heating appliance.

【図11】本発明のパネルヒータの解凍器具としての使
用例を示す説明図。
FIG. 11 is an explanatory view showing an example of use of the panel heater of the present invention as a defrosting device.

【図12】本発明のパネルヒータの溶雪器具としての使
用例を示す説明図。
FIG. 12 is an explanatory view showing an example of use of the panel heater of the present invention as a snow melting device.

【図13】本発明のパネルヒータの溶霜器具としての使
用例を示す説明図。
FIG. 13 is an explanatory diagram showing an example of use of the panel heater of the present invention as a frosting instrument.

【図14】水分の運動状態の説明図。FIG. 14 is an explanatory diagram of a motion state of water.

【図15】赤外線放射の特性を示すグラフ。FIG. 15 is a graph showing characteristics of infrared radiation.

【図16】牛肉の赤外線の吸収を示すグラフ。FIG. 16 is a graph showing infrared absorption of beef.

【図17】従来の器具の説明図。FIG. 17 is an explanatory view of a conventional device.

【図18】従来の器具の説明図。FIG. 18 is an explanatory view of a conventional device.

【符号の説明】[Explanation of symbols]

1 パネルヒータユニット 10 面状発熱体 20 ハニカム材 20a 内面 100 パネルヒータ 1 Panel Heater Unit 10 Planar Heating Element 20 Honeycomb Material 20a Inner Surface 100 Panel Heater

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 波長の長い赤外線を放射する赤外線放射
材を有する面状発熱体と、面状発熱体の一面に配設する
ハニカム材とを備え、 ハニカム材は内面を鏡面とした六角筒を連続的に立設
し、面状発熱体から放射される赤外線の放射方向を集約
させてなるパネルヒータ。
1. A planar heating element having an infrared radiation material that radiates infrared rays having a long wavelength, and a honeycomb material disposed on one surface of the planar heating element, wherein the honeycomb material is a hexagonal tube whose inner surface is a mirror surface. A panel heater that is continuously erected and aggregates the radiation directions of infrared rays emitted from a planar heating element.
【請求項2】 面状発熱体が放射する赤外線の波長はほ
ぼ6.27ミクロンであることを特徴とする請求項1記
載のパネルヒータ。
2. The panel heater according to claim 1, wherein the infrared rays emitted by the planar heating element have a wavelength of approximately 6.27 microns.
【請求項3】 赤外線を放射する面状発熱体の温度はほ
ぼ100度(摂氏)とする請求項1記載のパネルヒー
タ。
3. The panel heater according to claim 1, wherein the temperature of the sheet heating element that emits infrared rays is approximately 100 degrees Celsius.
【請求項4】 面状発熱体の赤外線放射材は、活性炭素
繊維を使用してなる請求項1記載のパネルヒータ。
4. The panel heater according to claim 1, wherein the infrared radiation material of the sheet heating element is made of activated carbon fiber.
【請求項5】 ハニカム材は面状発熱体の補強材とし
て、面状発熱体の熱膨張による変歪を防止してなる請求
項1記載のパネルヒータ。
5. The panel heater according to claim 1, wherein the honeycomb material serves as a reinforcing material for the planar heating element to prevent distortion due to thermal expansion of the planar heating element.
JP23909194A 1994-10-03 1994-10-03 Panel heater Pending JPH08106972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23909194A JPH08106972A (en) 1994-10-03 1994-10-03 Panel heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23909194A JPH08106972A (en) 1994-10-03 1994-10-03 Panel heater

Publications (1)

Publication Number Publication Date
JPH08106972A true JPH08106972A (en) 1996-04-23

Family

ID=17039687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23909194A Pending JPH08106972A (en) 1994-10-03 1994-10-03 Panel heater

Country Status (1)

Country Link
JP (1) JPH08106972A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277380A (en) * 1996-11-25 1998-10-20 L'air Liquide System and method for control distribution of liquefied gas
KR100644765B1 (en) * 2005-04-29 2006-11-14 김태철 radiation plate
US20100065686A1 (en) * 2008-04-28 2010-03-18 Tauscher Kurt M Aircraft heated floor panel
JP2018538660A (en) * 2015-10-23 2018-12-27 ナノコンプ テクノロジーズ,インク. Oriented infrared radiation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277380A (en) * 1996-11-25 1998-10-20 L'air Liquide System and method for control distribution of liquefied gas
JP4531873B2 (en) * 1996-11-25 2010-08-25 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Controlled distribution system and method for liquefied gas
KR100644765B1 (en) * 2005-04-29 2006-11-14 김태철 radiation plate
US20100065686A1 (en) * 2008-04-28 2010-03-18 Tauscher Kurt M Aircraft heated floor panel
JP2018538660A (en) * 2015-10-23 2018-12-27 ナノコンプ テクノロジーズ,インク. Oriented infrared radiation device

Similar Documents

Publication Publication Date Title
US5010350A (en) Anti-icing and de-icing system for reflector-type microwave antennas
CA2467078A1 (en) Solar collector panel for heating ventilation air
US3356829A (en) Radiant heating device
US4563572A (en) High-efficiency task heater
JPH08106972A (en) Panel heater
JP2004330930A (en) Heat shield and heat release structure for automobile
DE59402770D1 (en) CABIN WITH A FLAT HEATING
US4915154A (en) Counter reflector and method of drying a web with the aid of same
CN101010550A (en) Drying unit using far infrared rays, drying apparatus using the unit and waveguide for the apparatus
JP2003053887A (en) Composite panel
KR100666052B1 (en) Drying Apparatus Using Far Infrared Rays
CN105246717A (en) Vehicle with a heating device
CN109237593A (en) Greenhouse instrument component, preparation method and the greenhouse instrument with it
JPH08261475A (en) Heater device
JP3336591B2 (en) Insulation device
CN209147198U (en) Greenhouse instrument component and greenhouse instrument with it
JP2987354B2 (en) Far infrared heating system
JP2003212056A (en) Panel structure
JP4306246B2 (en) Vehicle heat dissipation device and vehicle using this device
JP2009152163A (en) Flat plate heating device which radiates a lot of stable far infrared rays
CN209054799U (en) A kind of radiation refrigeration cover
CN220169903U (en) Heating mechanism and drying device
CN211311468U (en) General anhydrous dry-type resuscitator for cell cryopreservation products
CN115568043A (en) Intelligent automobile glass defogging device based on infrared radiation and working method
JPH1128240A (en) Collapsible sauna bathroom

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518