JPH08106633A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH08106633A
JPH08106633A JP23870194A JP23870194A JPH08106633A JP H08106633 A JPH08106633 A JP H08106633A JP 23870194 A JP23870194 A JP 23870194A JP 23870194 A JP23870194 A JP 23870194A JP H08106633 A JPH08106633 A JP H08106633A
Authority
JP
Japan
Prior art keywords
layer
substrate
magnetic recording
perpendicular magnetic
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23870194A
Other languages
Japanese (ja)
Inventor
Isao Kobayashi
功 小林
Koji Uchida
幸司 内田
Takashi Ishii
たかし 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP23870194A priority Critical patent/JPH08106633A/en
Publication of JPH08106633A publication Critical patent/JPH08106633A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a medium having low noise and high recording density by forming a soft magnetic layer at <100 deg.C substrate temp., heat treating the substrate in an inert atmosphere at 300 to 600 deg.C, and then forming a perpendicular magnetic recording layer at >200 deg.C substrate temp. CONSTITUTION: The substrate 1 is, for example, an amorphous carbon substrate of 1.89 inch diameter which is subjected to precision polishing to Ra=0.5nm. After the carbon substrate is subjected to precision cleaning (alkali cleaning, rinsing and drying with hot pure water), films are formed and heat treatment is performed under specified conditions in a specified order in an in-line passing- type sputtering device to obtain a magnetic disk shown in the figure. The magnetic recording medium obtd. by this method shows large magnetic permeability of a soft magnetic layer, high coercive force of a perpendicular magnetic recording layer, and small dispersion of perpendicular magnetic anisotropy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高記録密度対応の垂直
磁気記録媒体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a perpendicular magnetic recording medium compatible with high recording density.

【0002】[0002]

【発明の背景】垂直磁気記録方式は、例えば特公昭58
−91号公報等に記載のように、膜面に垂直方向に記録
磁化(磁化容易軸)を向けることにより磁気記録を行う
ものであり、高記録密度対応の優れた磁気記録方式であ
る。この方式では、媒体内の反磁界が減少する為、記録
再生特性に優れている。磁気記録層には、垂直磁気異方
性を有するCoCr合金膜やCoCrTa合金膜が主に
用いられる。又、CoCr合金膜の下地層としてパーマ
ロイ合金などの軟磁性層を設け、記録効率の向上、再生
出力の増大が図られている。
BACKGROUND OF THE INVENTION Perpendicular magnetic recording systems are known, for example, from Japanese Patent Publication No. Sho 58.
As described in Japanese Patent Publication No. 91, etc., magnetic recording is performed by directing recording magnetization (easy axis of magnetization) in a direction perpendicular to the film surface, which is an excellent magnetic recording system compatible with high recording density. With this method, the demagnetizing field in the medium is reduced, so that the recording and reproducing characteristics are excellent. A CoCr alloy film or a CoCrTa alloy film having perpendicular magnetic anisotropy is mainly used for the magnetic recording layer. Further, a soft magnetic layer such as a permalloy alloy is provided as an underlayer of the CoCr alloy film to improve the recording efficiency and the reproduction output.

【0003】一般的な垂直磁気記録媒体の構造を図7に
示す。基板11としてAl合金基板を用い、これに軟磁
性層12としてNiFe合金薄膜を無電解メッキし、鏡
面研磨仕上げしたものが用いられる。垂直磁気記録層1
3にはCoCr合金薄膜やCoCrTa合金薄膜が用い
られる。保護層14にはカーボン薄膜が用いられる。保
護層14の上には潤滑剤層15が設けられる。磁気へッ
ドは、磁気記録媒体に接触、あるいは接触に近い浮上状
態で記録再生を行う。
The structure of a general perpendicular magnetic recording medium is shown in FIG. An Al alloy substrate is used as the substrate 11, and a NiFe alloy thin film is electrolessly plated as the soft magnetic layer 12 on which a mirror-finished finish is used. Perpendicular magnetic recording layer 1
3 is a CoCr alloy thin film or a CoCrTa alloy thin film. A carbon thin film is used for the protective layer 14. A lubricant layer 15 is provided on the protective layer 14. The magnetic head performs recording / reproduction in contact with the magnetic recording medium or in a floating state close to contact.

【0004】ところで、更なる高記録密度化、高性能化
を考えた場合、以下の二点が課題である。 (1) 低ノイズ化。 (2) 磁気へッドと垂直磁気記録媒体のスペーシング
を極力小さくする。 上記(1)に対しては、軟磁性層(裏打ち層)の透磁
率を高めることが有効である。
By the way, when considering further higher recording density and higher performance, the following two points are problems. (1) Low noise. (2) Minimize the spacing between the magnetic head and the perpendicular magnetic recording medium. For the above (1), it is effective to increase the magnetic permeability of the soft magnetic layer (backing layer).

【0005】日本応用磁気学会誌Vol.17,No.
5,pp792〜797(1993)に示される通り、
透磁率の低い軟磁性層には縞状磁区が発生し、この磁区
は、記録データの周波数付近にノイズを生じる為、垂直
磁気記録媒体のS/Nを低下させる。しかし、高透磁率
膜では180°磁壁が発生するものの、この磁壁により
発生するスパイクノイズは、低周波数領域に現われる
為、ハイパスフィルタにより除去できる。現行でも、数
千の透磁率を有する軟磁性層が得られているが、更なる
透磁率の向上が望まれている。
Journal of Japan Applied Magnetics Vol. 17, No.
5, pp792-977 (1993),
Striped magnetic domains are generated in the soft magnetic layer having a low magnetic permeability, and this magnetic domain causes noise near the frequency of the recording data, thus reducing the S / N of the perpendicular magnetic recording medium. However, although a 180 ° domain wall is generated in the high-permeability film, spike noise generated by this domain wall appears in the low frequency region and can be removed by a high-pass filter. At present, a soft magnetic layer having a magnetic permeability of several thousands has been obtained, but further improvement in magnetic permeability is desired.

【0006】上記(2)に対しては、垂直磁気記録媒
体の表面を平滑にすることが有効である。現行では、基
板としてAl合金板を表面研磨した後、NiFe薄膜を
無電解メッキし、再度、鏡面研磨することにより、中心
線平均粗さRaを〜0.5nm程度にしている。これ
は、Al合金板を表面研磨したのみでは、Raを〜0.
5nmにすることが出来ず、かつ、表面欠陥の低減を達
成できないからである。
For the above (2), it is effective to make the surface of the perpendicular magnetic recording medium smooth. At present, the center line average roughness Ra is set to about 0.5 nm by polishing the surface of an Al alloy plate as a substrate, electrolessly plating a NiFe thin film, and then mirror-polishing again. This is because Ra is about 0.
This is because the thickness cannot be 5 nm and reduction of surface defects cannot be achieved.

【0007】更に、形成されたNiFe薄膜を直接研磨
する為、NiFe薄膜に欠陥の発生、不純物の混入、透
磁率の劣化を招く欠点がある。又、工程も複雑になる。
垂直磁気記録層については、垂直磁気異方性の小さい
初期層の薄膜化、磁性結晶粒の微細化、Crの結晶
粒界への偏析による磁性結晶粒間の磁気的相互作用の低
減、垂直磁気異方性(c軸配向)の分散性を低減する
ことが低ノイズ化の為に有効である。
Further, since the formed NiFe thin film is directly polished, there are drawbacks that the NiFe thin film causes defects, mixes impurities, and deteriorates magnetic permeability. Also, the process becomes complicated.
As for the perpendicular magnetic recording layer, the initial layer with small perpendicular magnetic anisotropy is thinned, the magnetic crystal grains are made finer, the magnetic interaction between the magnetic crystal grains is reduced by segregation of Cr to the crystal grain boundary, Reducing anisotropy (c-axis orientation) dispersibility is effective for reducing noise.

【0008】現行では、垂直磁気記録層の初期層は約3
0nmと見積もられている。初期層はノイズの発生源と
なっており、薄層化が必要である。
At present, the initial layer of the perpendicular magnetic recording layer is about 3
It is estimated to be 0 nm. The initial layer is a source of noise and needs to be thin.

【0009】[0009]

【発明の開示】本発明の目的は、低ノイズで高記録密度
対応の垂直磁気記録媒体を堤供することである。この本
発明の目的は、カーボン基板上に軟磁性層、及び垂直磁
気記録層を形成してなる磁気記録媒体の製造方法であっ
て、軟磁性層を基板温度100℃以下で形成する工程
と、形成された軟磁性層を不活性雰囲気中で300〜6
00℃で加熱処理する工程と、基板温度200℃以上で
垂直磁気記録層を形成する工程とを具備することを特徴
とする磁気記録媒体の製造方法によって達成される。
DISCLOSURE OF THE INVENTION It is an object of the present invention to provide a perpendicular magnetic recording medium having low noise and high recording density. An object of the present invention is a method of manufacturing a magnetic recording medium in which a soft magnetic layer and a perpendicular magnetic recording layer are formed on a carbon substrate, the step of forming the soft magnetic layer at a substrate temperature of 100 ° C. or lower, The formed soft magnetic layer is 300 to 6 in an inert atmosphere.
This is achieved by a method for manufacturing a magnetic recording medium, which comprises a step of heat treatment at 00 ° C. and a step of forming a perpendicular magnetic recording layer at a substrate temperature of 200 ° C. or higher.

【0010】又、カーボン基板上に軟磁性層、及び垂直
磁気記録層を形成してなる磁気記録媒体の製造方法であ
って、軟磁性層を形成する工程と、軟磁性層上に厚さが
10nm以下の垂直磁気記録層を基板温度100℃以下
で形成する工程と、前記工程で形成された垂直磁気記録
層上に所定厚さの垂直磁気記録層を基板温度200℃以
上で形成する工程とを具備することを特徴とする磁気記
録媒体の製造方法によって達成される。
A method of manufacturing a magnetic recording medium in which a soft magnetic layer and a perpendicular magnetic recording layer are formed on a carbon substrate, wherein a step of forming the soft magnetic layer, A step of forming a perpendicular magnetic recording layer of 10 nm or less at a substrate temperature of 100 ° C. or less, and a step of forming a perpendicular magnetic recording layer of a predetermined thickness on the perpendicular magnetic recording layer formed in the above step at a substrate temperature of 200 ° C. or more. And a magnetic recording medium manufacturing method.

【0011】又、カーボン基板上に軟磁性層、及び垂直
磁気記録層を形成してなる磁気記録媒体の製造方法であ
って、軟磁性層および厚さが10nm以下の垂直磁気記
録層を基板温度100℃以下で形成する工程と、形成さ
れた軟磁性層を不活性雰囲気中で300〜600℃で加
熱処理する工程と、基板温度200℃以上で所定厚さの
垂直磁気記録層を形成する工程とを具備することを特徴
とする磁気記録媒体の製造方法によって達成される。
A method of manufacturing a magnetic recording medium in which a soft magnetic layer and a perpendicular magnetic recording layer are formed on a carbon substrate, wherein the soft magnetic layer and the perpendicular magnetic recording layer having a thickness of 10 nm or less are used at the substrate temperature. A step of forming the soft magnetic layer at 100 ° C. or lower, a step of heating the formed soft magnetic layer at 300 to 600 ° C. in an inert atmosphere, and a step of forming a perpendicular magnetic recording layer having a predetermined thickness at a substrate temperature of 200 ° C. or higher. And a magnetic recording medium manufacturing method.

【0012】尚、本発明における不活性雰囲気中で加熱
とは、窒素ガスやArガス等の不活性ガス雰囲気での加
熱のみならず、真空雰囲気での加熱も含まれる。そし
て、カーボン基板と軟磁性層との間にCr,Cr合金、
Ti,Ti合金の群の中から選ばれる下地層(好ましい
厚さは30〜500nm)を形成する工程を具備するこ
とが好ましい。又、軟磁性層と垂直磁気記録層との間に
TiあるいはTi合金層(中間層、好ましい厚さは2〜
15nm)を形成する工程を具備することが好ましい。
The heating in the inert atmosphere in the present invention includes not only heating in an inert gas atmosphere such as nitrogen gas or Ar gas but also heating in a vacuum atmosphere. And, between the carbon substrate and the soft magnetic layer, Cr, Cr alloy,
It is preferable to include a step of forming an underlayer (preferably having a thickness of 30 to 500 nm) selected from the group consisting of Ti and Ti alloys. Further, a Ti or Ti alloy layer (intermediate layer, preferably having a thickness of 2 to 5) between the soft magnetic layer and the perpendicular magnetic recording layer.
15 nm) is preferably included.

【0013】本発明の磁気記録媒体の基板としてはカー
ボン基板を用いる。このカーボン基板はRa≦1nm
(より望ましくは、0.2nm≦Ra≦0.5nm)に
鏡面研磨されたものが好ましい。すなわち、Ra≦1n
mに鏡面研磨したカーボン基板を用いると、垂直磁気
記録媒体の表面平滑性を満足し、(2)磁気へッドと垂
直磁気記録媒体のスペーシングロスを極力小さくすると
言う要望を満足する。
A carbon substrate is used as the substrate of the magnetic recording medium of the present invention. This carbon substrate has Ra ≦ 1 nm
(More desirably, 0.2 nm ≦ Ra ≦ 0.5 nm) mirror-polished is preferable. That is, Ra ≦ 1n
The use of a mirror-polished carbon substrate for m satisfies the surface smoothness of the perpendicular magnetic recording medium, and (2) satisfies the requirement that the spacing loss between the magnetic head and the perpendicular magnetic recording medium be minimized.

【0014】カーボン基板上には軟磁性層(好ましい厚
さは3000〜10000nm)が形成される。特に、
基板温度100℃以下(下限温度は格別な温度コントロ
ールをしない温度、従って雰囲気温度である。例えば、
室温であっても良い。)で形成される。軟磁性層には、
NiFe,NbNiFe,MoCrFeNi,MoCu
FeNi,CrCuFeNi,MoMnFeNi,VF
eNi,CrFeNi,CuFeNi等のパーマロイ、
CoZr,CoZrMo,CoNbZr等のアモルファ
ス合金、FeSi,FeSiAl,FeSiN合金等が
用いられる。この軟磁性層を300〜600℃の不活性
雰囲気中で加熱処理すると、軟磁性層(裏打ち層)の
高透磁率化が達成され、(1)低ノイズ化の要望を満足
する。
A soft magnetic layer (preferably having a thickness of 3000 to 10000 nm) is formed on the carbon substrate. In particular,
Substrate temperature 100 ° C. or lower (the lower limit temperature is a temperature at which no particular temperature control is performed, that is, the ambient temperature.
It may be room temperature. ) Is formed. In the soft magnetic layer,
NiFe, NbNiFe, MoCrFeNi, MoCu
FeNi, CrCuFeNi, MoMnFeNi, VF
Permalloy such as eNi, CrFeNi, CuFeNi,
Amorphous alloys such as CoZr, CoZrMo, CoNbZr, FeSi, FeSiAl, FeSiN alloys, etc. are used. When this soft magnetic layer is heat-treated in an inert atmosphere at 300 to 600 ° C., the soft magnetic layer (backing layer) can have a high magnetic permeability, and (1) the requirement for low noise can be satisfied.

【0015】軟磁性層上には所定厚の垂直磁気記録層が
形成される。垂直磁気記録層には、CoCr,CoCr
Ta,CoCrPtTa,CoCrPtB等が用いられ
る。 垂直磁気異方性の小さい初期層の薄膜化は、中間層と
してTiあるいはTi合金層を形成し、次いで基板の温
度を200℃以上(上限温度は、軟磁性層の加熱処理の
場合と同じ600℃が好ましい。)にして垂直磁気記録
層を形成することにより達成される。又、このような工
程により当該記録層の垂直配向性も向上させることが出
来る。あるいは、軟磁性層を形成した後で、基板の温度
を100℃以下にして膜厚10nm以下(膜厚の下限値
は特に限定されない。)の垂直磁気記録層を形成し、次
いで基板温度を200℃以上(上限温度は、軟磁性層の
加熱処理の場合と同じ600℃が好ましい。)にして、
更に垂直磁気記録層を設けることによっても達成され
る。又、この場合でも、垂直配向性の高い磁気記録層が
得られる。
A perpendicular magnetic recording layer having a predetermined thickness is formed on the soft magnetic layer. CoCr, CoCr is used for the perpendicular magnetic recording layer.
Ta, CoCrPtTa, CoCrPtB or the like is used. To reduce the thickness of the initial layer having a small perpendicular magnetic anisotropy, a Ti or Ti alloy layer is formed as an intermediate layer, and then the temperature of the substrate is 200 ° C. or higher (the upper limit temperature is the same as that of the heat treatment of the soft magnetic layer 600 ° ℃ is preferred) to form a perpendicular magnetic recording layer. Further, the vertical alignment of the recording layer can be improved by such a process. Alternatively, after forming the soft magnetic layer, the substrate temperature is set to 100 ° C. or lower to form a perpendicular magnetic recording layer having a film thickness of 10 nm or less (the lower limit of the film thickness is not particularly limited), and then the substrate temperature is set to 200. C. or higher (the upper limit temperature is preferably 600 ° C., which is the same as in the case of heat treatment of the soft magnetic layer),
This can also be achieved by providing a perpendicular magnetic recording layer. Also in this case, a magnetic recording layer having a high vertical orientation can be obtained.

【0016】磁性結晶粒の微細化は、基板温度を10
0℃以下にして中間層や下地層(軟磁性層、Cr,Cr
合金層やTi,Ti合金層)を形成するか、下地層、中
間層及び膜厚10nm以下の垂直磁気記録層を形成し、
次いで基板温度を200℃以上にして垂直磁気記録層を
形成することにより達成される。この場合、基板を20
0℃以上とするので、磁性結晶粒径の増大が懸念された
が、実際には温度200〜600℃ではこのような増大
は見られなかった。又、垂直磁気記録層にTa,B,S
i等を添加すると、磁性結晶粒の増大抑制効果が更に顕
著となることが判った。
To make the magnetic crystal grains finer, the substrate temperature must be 10
The intermediate layer and underlayer (soft magnetic layer, Cr, Cr
Alloy layer or Ti, a Ti alloy layer), or an underlayer, an intermediate layer and a perpendicular magnetic recording layer having a thickness of 10 nm or less,
Then, the substrate temperature is set to 200 ° C. or higher to form the perpendicular magnetic recording layer. In this case, 20 substrates
Since the temperature is set to 0 ° C. or higher, there was a concern that the magnetic crystal grain size would increase, but in reality, such an increase was not observed at a temperature of 200 to 600 ° C. Moreover, Ta, B, S is added to the perpendicular magnetic recording layer.
It was found that the effect of suppressing the increase of magnetic crystal grains becomes more remarkable by adding i or the like.

【0017】Crの結晶粒界への偏析による磁性結晶
粒間の磁気的相互作用の低減については、垂直磁気記録
層を基板温度200℃以上で形成することにより達成さ
れる。 垂直磁気異方性(c軸配向)の分散性を低減させるに
は、中間層を形成せずに基板温度を100℃以下にして
膜厚10nm以下の垂直磁気記録層を形成し、次いで基
板温度を200℃以上(上限温度は、軟磁性層の加熱処
理の場合と同じ600℃が好ましい。)として更に垂直
磁気記録層を形成することにより達成される。あるい
は、TiやTi合金の中間層を形成してから、前述の工
程を実行することによっても達成される。
The reduction of the magnetic interaction between the magnetic crystal grains due to the segregation of Cr to the crystal grain boundaries can be achieved by forming the perpendicular magnetic recording layer at a substrate temperature of 200 ° C. or higher. In order to reduce the dispersibility of perpendicular magnetic anisotropy (c-axis orientation), the substrate temperature is set to 100 ° C. or lower to form a perpendicular magnetic recording layer having a film thickness of 10 nm or less, and then the substrate temperature is set. Is 200 ° C. or higher (the upper limit temperature is preferably 600 ° C., which is the same as in the heat treatment of the soft magnetic layer), and the perpendicular magnetic recording layer is further formed. Alternatively, it can also be achieved by forming an intermediate layer of Ti or a Ti alloy and then performing the above-mentioned steps.

【0018】[0018]

【実施例】【Example】

〔実施例1〕基板1として、Raが0.5nmに精密研
磨された1.89インチ径のアモルファスカーボン基板
を用いた。このカーボン基板を精密洗浄(アルカリ洗浄
→リンス→リンス→温純水乾燥)後、インライン式の通
過型スパッタ装置にて下記(1)〜(4)の条件でその
順序に成膜や加熱処理を行い、図1に示す磁気ディスク
を得た。
[Example 1] As the substrate 1, an amorphous carbon substrate having a diameter of 1.89 inches and precisely polished to Ra of 0.5 nm was used. After precision cleaning (alkali cleaning → rinse → rinse → drying with warm pure water) of this carbon substrate, film formation and heat treatment are performed in that order under the following conditions (1) to (4) with an in-line passage type sputtering device. The magnetic disk shown in FIG. 1 was obtained.

【0019】(1)軟磁性層(NiFe(82−18原
子%))2の形成 基板温度並びに雰囲気温度:28℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :500nm (2)真空中での加熱 真空度 :5×10-7Torr 加熱温度 :400℃ 加熱時間 :1分 (3)垂直磁気記録層(CoCrTa(各々の構成比率
は78−17−5原子%))3の形成 基板温度 :200℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :70nm (4)保護層(カーボン)4の形成 基板温度 :120℃ Arガス圧 :3mTorr 膜厚 :10nm 〔実施例2〕基板1として、Raが0.5nmに精密研
磨された1.89インチ径のアモルファスカーボン基板
を用いた。このカーボン基板を精密洗浄(アルカリ洗浄
→リンス→リンス→温純水乾燥)後、インライン式の通
過型スパッタ装置にて下記(1)〜(5)の条件でその
順序に成膜や加熱処理を行い、図2に示す磁気ディスク
を得た。
(1) Formation of soft magnetic layer (NiFe (82-18 at%)) Substrate temperature and ambient temperature: 28 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 500 nm (2) In vacuum Degree of heating Vacuum degree: 5 × 10 −7 Torr Heating temperature: 400 ° C. Heating time: 1 minute (3) Formation of perpendicular magnetic recording layer (CoCrTa (each constituent ratio is 78-17-5 atomic%)) 3 Substrate Temperature: 200 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 70 nm (4) Formation of protective layer (carbon) 4 Substrate temperature: 120 ° C. Ar gas pressure: 3 mTorr Film thickness: 10 nm [Example 2] Substrate As No. 1, an amorphous carbon substrate having a diameter of 1.89 inches and having a Ra precisely polished to 0.5 nm was used. After precision cleaning (alkali cleaning → rinse → rinse → drying with hot pure water) of this carbon substrate, film formation and heat treatment are performed in that order under the following conditions (1) to (5) using an in-line passage type sputtering device. The magnetic disk shown in FIG. 2 was obtained.

【0020】(1)軟磁性層(NiFe(81−19原
子%))2の形成 基板温度並びに雰囲気温度:28℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :500nm (2)垂直磁気記録層(CoCrTa(各々の構成比率
は78−17−5原子%))3aの形成 基板温度 :28℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :5nm (3)真空中での加熱 真空度 :5×10-7Torr 加熱温度 :400℃ 加熱時間 :1分 (4)垂直磁気記録層(CoCrTa(各々の構成比率
は78−17−5原子%))3bの形成 基板温度 :200℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :55nm (5)保護層(カーボン)4の形成 基板温度 :120℃ Arガス圧 :3mTorr 膜厚 :10nm 〔実施例3〕基板1として、Raが1nmに精密研磨さ
れた1.89インチ径のアモルファスカーボン基板を用
いた。このカーボン基板を精密洗浄(アルカリ洗浄→リ
ンス→リンス→温純水乾燥)後、インライン式の通過型
スパッタ装置にて下記(1)〜(5)の条件でその順序
に成膜や加熱処理を行い、図3に示す磁気ディスクを得
た。
(1) Formation of soft magnetic layer (NiFe (81-19 atom%)) 2 Substrate temperature and ambient temperature: 28 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 500 nm (2) Perpendicular magnetic field Formation of recording layer (CoCrTa (each constituent ratio is 78-17-5 atomic%)) 3a Substrate temperature: 28 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 5 nm (3) Heating in vacuum Degree of vacuum: 5 × 10 −7 Torr Heating temperature: 400 ° C. Heating time: 1 minute (4) Formation of perpendicular magnetic recording layer (CoCrTa (each constituent ratio is 78-17-5 atomic%)) 3b Substrate temperature: 200 C Ar gas pressure: 3 mTorr Substrate bias voltage: -100 V Film thickness: 55 nm (5) Formation of protective layer (carbon) 4 Substrate temperature: 120 C Ar gas pressure: 3 mTorr Film thickness: 10 nm [Example 3] As the substrate 1, an amorphous carbon substrate having a diameter of 1.89 inches and having a Ra precisely polished to 1 nm was used. After precision cleaning (alkali cleaning → rinse → rinse → drying with hot pure water) of this carbon substrate, film formation and heat treatment are performed in that order under the following conditions (1) to (5) using an in-line passage type sputtering device. The magnetic disk shown in FIG. 3 was obtained.

【0021】(1)下地層(Ti)5の形成 基板温度並びに雰囲気温度:35℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :100nm (2)軟磁性層(NiFe(81−19原子%))2の
形成 基板温度並びに雰囲気温度:35℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :500nm (3)真空中での加熱 真空度 :5×10-7Torr 加熱温度 :400℃ 加熱時間 :1分 (4)垂直磁気記録層(CoCrTa(各々の構成比率
は78−17−5原子%))3の形成 基板温度 :300℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :55nm (5)保護層(カーボン)4の形成 基板温度 :100℃ Arガス圧 :3mTorr 膜厚 :10nm 〔実施例4〕基板1として、Raが0.8nmに精密研
磨された1.89インチ径のアモルファスカーボン基板
を用いた。このカーボン基板を精密洗浄(アルカリ洗浄
→リンス→リンス→温純水乾燥)後、インライン式の通
過型スパッタ装置にて下記(1)〜(6)の条件でその
順序に成膜や加熱処理を行い、図4に示す磁気ディスク
を得た。
(1) Formation of Underlayer (Ti) 5 Substrate temperature and ambient temperature: 35 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 100 nm (2) Soft magnetic layer (NiFe (81-19 atoms) %)) 2 Substrate temperature and ambient temperature: 35 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 500 nm (3) Heating in vacuum Vacuum degree: 5 × 10 −7 Torr Heating temperature: 400 C. Heating time: 1 minute (4) Formation of perpendicular magnetic recording layer (CoCrTa (each composition ratio is 78-17-5 atom%)) 3. Substrate temperature: 300.degree. C. Ar gas pressure: 3 mTorr Substrate bias voltage: -100V film Thickness: 55 nm (5) Formation of protective layer (carbon) 4 Substrate temperature: 100 ° C. Ar gas pressure: 3 mTorr Film thickness: 10 nm [Example 4] As the plate 1, Ra is an amorphous carbon substrate 1.89 inch diameter which is precisely polished to 0.8 nm. After precision cleaning (alkali cleaning → rinse → rinse → drying with warm pure water) of this carbon substrate, film formation and heat treatment are performed in that order under the following conditions (1) to (6) with an in-line passage type sputtering device. The magnetic disk shown in FIG. 4 was obtained.

【0022】(1)下地層(Ti)5の形成 基板温度並びに雰囲気温度:32℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :100nm (2)軟磁性層(NiFe(81−19原子%))2の
形成 基板温度並びに雰囲気温度:32℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :500nm (3)垂直磁気記録層(CoCrTa(各々の構成比率
は78−17−5原子%))3aの形成 基板温度 :32℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :5nm (4)真空中での加熱 真空度 :5×10-7Torr 加熱温度 :400℃ 加熱時間 :1分 (5)垂直磁気記録層(CoCrTa(各々の構成比率
は78−17−5原子%))3bの形成 基板温度 :200℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :55nm (6)保護層(カーボン)4の形成 基板温度 :100℃ Arガス圧 :3mTorr 膜厚 :10nm 〔実施例5〕基板として、Raが0.5nmに精密研磨
された1.89インチ径のアモルファスカーボン基板を
用いた。このカーボン基板を精密洗浄(アルカリ洗浄→
リンス→リンス→温純水乾燥)後、インライン式の通過
型スパッタ装置にて下記(1)〜(5)の条件でその順
序に成膜や加熱処理を行い、図3と同様な磁気ディスク
を得た。
(1) Formation of Underlayer (Ti) 5 Substrate temperature and ambient temperature: 32 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 100 nm (2) Soft magnetic layer (NiFe (81-19 atoms) %)) Substrate temperature and ambient temperature: 32 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 500 nm (3) Perpendicular magnetic recording layer (CoCrTa (each composition ratio is 78-17-5 atoms) %)) 3a formation Substrate temperature: 32 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 5 nm (4) Heating in vacuum Vacuum degree: 5 × 10 −7 Torr Heating temperature: 400 ° C. Heating time : 1 min (5) Formation of perpendicular magnetic recording layer (CoCrTa (each composition ratio is 78-17-5 atom%)) 3b Substrate temperature: 200 ° C r Gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 55 nm (6) Formation of protective layer (carbon) 4 Substrate temperature: 100 ° C. Ar gas pressure: 3 mTorr Film thickness: 10 nm [Example 5] Ra was used as a substrate. An amorphous carbon substrate having a diameter of 1.89 inches precisely polished to 0.5 nm was used. Precision cleaning of this carbon substrate (alkali cleaning →
After rinsing, rinsing, and drying with warm pure water), film formation and heat treatment were performed in that order under the following conditions (1) to (5) using an in-line passage-type sputtering device to obtain a magnetic disk similar to that shown in FIG. .

【0023】(1)下地層(Cr)の形成 基板温度並びに雰囲気温度:30℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :30nm (2)軟磁性層(NiFe(81−19原子%))の形
成 基板温度並びに雰囲気温度:30℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :500nm (3)真空中での加熱 真空度 :5×10-7Torr 加熱温度 :400℃ 加熱時間 :1分 (4)垂直磁気記録層(CoCrTa(各々の構成比率
は78−17−5原子%))の形成 基板温度 :300℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :55nm (5)保護層(カーボン)の形成 基板温度 :110℃ Arガス圧 :3mTorr 膜厚 :10nm 〔実施例6〕基板として、Raが0.8nmに精密研磨
された1.89インチ径のアモルファスカーボン基板を
用いた。このカーボン基板を精密洗浄(アルカリ洗浄→
リンス→リンス→温純水乾燥)後、インライン式の通過
型スパッタ装置にて下記(1)〜(6)の条件でその順
序に成膜や加熱処理を行い、図4と同様な磁気ディスク
を得た。
(1) Formation of Underlayer (Cr) Substrate temperature and ambient temperature: 30 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 30 nm (2) Soft magnetic layer (NiFe (81-19 atomic% )) Substrate temperature and ambient temperature: 30 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 500 nm (3) Heating in vacuum Vacuum degree: 5 × 10 −7 Torr Heating temperature: 400 ° C. heating Time: 1 minute (4) Formation of perpendicular magnetic recording layer (CoCrTa (each composition ratio is 78-17-5 atomic%)) Substrate temperature: 300 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 55 nm (5) Formation of protective layer (carbon) Substrate temperature: 110 ° C. Ar gas pressure: 3 mTorr Film thickness: 10 nm [Example 6] As a substrate Ra is an amorphous carbon substrate 1.89 inch diameter which is precisely polished to 0.8 nm. Precision cleaning of this carbon substrate (alkali cleaning →
After rinsing → rinsing → drying with warm pure water), film formation and heat treatment were performed in that order under the following conditions (1) to (6) using an in-line passage type sputtering device to obtain a magnetic disk similar to that shown in FIG. .

【0024】(1)下地層(Cr)の形成 基板温度並びに雰囲気温度:28℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :30nm (2)軟磁性層(NiFe(81−19原子%))の形
成 基板温度並びに雰囲気温度:28℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :500nm (3)垂直磁気記録層(CoCrTa(各々の構成比率
は78−17−5原子%))の形成 基板温度並びに雰囲気温度:28℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :5nm (4)真空中での加熱 真空度 :5×10-7Torr 加熱温度 :400℃ 加熱時間 :1分 (5)垂直磁気記録層(CoCrTa(各々の構成比率
は78−17−5原子%))の形成 基板温度 :200℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :55nm (6)保護層(カーボン)の形成 基板温度 :120℃ Arガス圧 :3mTorr 膜厚 :10nm 〔実施例7〕基板1として、Raが1nmに精密研磨さ
れた1.89インチ径のアモルファスカーボン基板を用
いた。このカーボン基板を精密洗浄(アルカリ洗浄→リ
ンス→リンス→温純水乾燥)後、インライン式の通過型
スパッタ装置にて下記(1)〜(5)の条件でその順序
に成膜や加熱処理を行い、図5に示す磁気ディスクを得
た。
(1) Formation of Underlayer (Cr) Substrate temperature and ambient temperature: 28 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 30 nm (2) Soft magnetic layer (NiFe (81-19 atomic% )) Substrate temperature and atmosphere temperature: 28 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 500 nm (3) Perpendicular magnetic recording layer (CoCrTa (each constituent ratio is 78-17-5 atomic%)) Substrate temperature and ambient temperature: 28 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 5 nm (4) Heating in vacuum Vacuum degree: 5 × 10 −7 Torr Heating temperature: 400 ° C. Heating time 1 minute (5) Formation of perpendicular magnetic recording layer (CoCrTa (each constituent ratio is 78-17-5 atomic%)) Substrate temperature: 200 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 55 nm (6) Formation of protective layer (carbon) Substrate temperature: 120 ° C. Ar gas pressure: 3 mTorr Film thickness: 10 nm [Example 7] Ra as substrate 1 An amorphous carbon substrate having a diameter of 1.89 and precision-polished to 1 nm was used. After precision cleaning (alkali cleaning → rinse → rinse → drying with hot pure water) of this carbon substrate, film formation and heat treatment are performed in that order under the following conditions (1) to (5) using an in-line passage type sputtering device. The magnetic disk shown in FIG. 5 was obtained.

【0025】(1)軟磁性層(NiFe(81−19原
子%))2の形成 基板温度並びに雰囲気温度:32℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :500nm (2)中間層(Ti)6の形成 基板温度並びに雰囲気温度:32℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :5nm (3)真空中での加熱 真空度 :5×10-7Torr 加熱温度 :400℃ 加熱時間 :1分 (4)垂直磁気記録層(CoCrTa(各々の構成比率
は78−17−5原子%))3の形成 基板温度 :200℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :55nm (5)保護層(カーボン)4の形成 基板温度 :130℃ Arガス圧 :3mTorr 膜厚 :10nm 〔実施例8〕基板1として、Raが0.6nmに精密研
磨された1.89インチ径のアモルファスカーボン基板
を用いた。このカーボン基板を精密洗浄(アルカリ洗浄
→リンス→リンス→温純水乾燥)後、インライン式の通
過型スパッタ装置にて下記(1)〜(6)の条件でその
順序に成膜や加熱処理を行い、図6に示す磁気ディスク
を得た。
(1) Formation of soft magnetic layer (NiFe (81-19 atom%)) 2 Substrate temperature and ambient temperature: 32 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 500 nm (2) Intermediate layer Formation of (Ti) 6 Substrate temperature and atmospheric temperature: 32 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 5 nm (3) Heating in vacuum Vacuum degree: 5 × 10 −7 Torr Heating temperature: 400 C. Heating time: 1 minute (4) Formation of perpendicular magnetic recording layer (CoCrTa (each constituent ratio is 78-17-5 atom%)) 3 Substrate temperature: 200 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V film Thickness: 55 nm (5) Formation of protective layer (carbon) 4 Substrate temperature: 130 ° C. Ar gas pressure: 3 mTorr Film thickness: 10 nm [Example 8] Substrate As, Ra is an amorphous carbon substrate 1.89 inch diameter which is precisely polished to 0.6 nm. After precision cleaning (alkali cleaning → rinse → rinse → drying with warm pure water) of this carbon substrate, film formation and heat treatment are performed in that order under the following conditions (1) to (6) with an in-line passage type sputtering device. The magnetic disk shown in FIG. 6 was obtained.

【0026】(1)軟磁性層(NiFe(81−19原
子%))2の形成 基板温度並びに雰囲気温度:30℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :500nm (2)中間層(Ti)6の形成 基板温度並びに雰囲気温度:30℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :5nm (3)垂直磁気記録層(CoCrTa(各々の構成比率
は78−17−5原子%))3aの形成 基板温度並びに雰囲気温度:30℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :5nm (4)真空中での加熱 真空度 :5×10-7Torr 加熱温度 :400℃ 加熱時間 :1分 (5)垂直磁気記録層(CoCrTa(各々の構成比率
は78−17−5原子%))3bの形成 基板温度 :200℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :55nm (6)保護層(カーボン)4の形成 基板温度 :100℃ Arガス圧 :3mTorr 膜厚 :10nm 〔比較例1〕基板として、Raが1nmに研磨された
1.89インチ径のアモルファスカーボン基板を用い
た。このカーボン基板を精密洗浄(アルカリ洗浄→リン
ス→リンス→温純水乾燥)後、インライン式の通過型ス
パッタ装置にて下記(1)〜(3)の条件でその順序に
成膜を行い、図7と同様な磁気ディスクを得た。
(1) Formation of soft magnetic layer (NiFe (81-19 atom%)) 2 Substrate temperature and ambient temperature: 30 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 500 nm (2) Intermediate layer Formation of (Ti) 6 Substrate temperature and ambient temperature: 30 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 5 nm (3) Perpendicular magnetic recording layer (CoCrTa (each composition ratio is 78-17-5 atoms) %)) 3a formation Substrate temperature and atmospheric temperature: 30 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 5 nm (4) Heating in vacuum Vacuum degree: 5 × 10 −7 Torr Heating temperature: 400 C. Heating time: 1 minute (5) Formation of perpendicular magnetic recording layer (CoCrTa (each constituent ratio is 78-17-5 atomic%)) 3b Substrate temperature 200 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 55 nm (6) Formation of protective layer (carbon) 4 Substrate temperature: 100 ° C. Ar gas pressure: 3 mTorr Film thickness: 10 nm [Comparative Example 1] As a substrate, An amorphous carbon substrate having a diameter of 1.89 inches and having a Ra polished to 1 nm was used. After precision cleaning (alkali cleaning → rinse → rinse → drying with warm pure water) of this carbon substrate, film formation is performed in that order under the following conditions (1) to (3) using an in-line passage type sputtering device, and as shown in FIG. A similar magnetic disk was obtained.

【0027】(1)軟磁性層(NiFe(81−19原
子%))の形成 基板温度並びに雰囲気温度:35℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :500nm (2)垂直磁気記録層(CoCrTa(各々の構成比率
は78−17−5原子%))の形成 基板温度 :200℃ Arガス圧 :3mTorr 基板バイアス電圧 :−100V 膜厚 :70nm (3)保護層(カーボン)の形成 基板温度 :120℃ Arガス圧 :3mTorr 膜厚 :10nm 〔特性〕上記各例で得た磁気ディスクについて、透磁
率、保磁力、出力、ビットシフト及び半値幅Δθ50を測
定したので、その結果を表−1に示す。
(1) Formation of soft magnetic layer (NiFe (81-19 atom%)) Substrate temperature and ambient temperature: 35 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 500 nm (2) Perpendicular magnetic recording Formation of layer (CoCrTa (each constituent ratio is 78-17-5 atomic%)) Substrate temperature: 200 ° C. Ar gas pressure: 3 mTorr Substrate bias voltage: −100 V Film thickness: 70 nm (3) Formation of protective layer (carbon) Substrate temperature: 120 ° C. Ar gas pressure: 3 mTorr Film thickness: 10 nm [Characteristics] Magnetic permeability, coercive force, output, bit shift and half value width Δθ 50 of the magnetic disk obtained in each of the above examples were measured. It shows in Table-1.

【0028】軟磁性層の透磁率の測定は、8の字コイル
法による高周波薄膜透磁率測定装置(測定周波数0.5
〜100MHz)を用いて真空中での加熱処理を終えた
サンプルに対して行った。保磁力の測定は、極カー効果
測定装置により最大印加磁界15kOeで行った。電磁
変換特性については、電磁変換特性評価機(測定条件:
線記録密度80kFCI、RL(1,7)記録符号、デ
ータ検出窓幅22.3nsec)により評価した。ノイ
ズは、垂直磁気ディスクのビットシフトと比例関係があ
ることから、ビットシフトの測定により評価した。垂直
磁気異方性の分散状態については、X線回折でのc面
(002)のロッキングカーブの半値幅Δθ50により評
価した。
The permeability of the soft magnetic layer is measured by a high frequency thin film permeability measuring device (measurement frequency 0.5
.About.100 MHz) for the sample that has been heat-treated in vacuum. The coercive force was measured by a polar Kerr effect measuring device with a maximum applied magnetic field of 15 kOe. For electromagnetic conversion characteristics, an electromagnetic conversion characteristic evaluation machine (measurement conditions:
The linear recording density was 80 kFCI, the RL (1,7) recording code, and the data detection window width was 22.3 nsec. Since the noise is proportional to the bit shift of the perpendicular magnetic disk, it was evaluated by measuring the bit shift. The dispersion state of the perpendicular magnetic anisotropy was evaluated by the half value width Δθ 50 of the rocking curve of the c-plane (002) in X-ray diffraction.

【0029】 表−1 透磁率 保磁力(Oe) 出力(μV) ビットシフト(nsec) Δθ50(°) 実施例1 2060 2000 215 14.0 7.1 実施例2 2125 2200 225 10.5 4.0 実施例3 3470 2050 240 12.0 6.0 実施例4 3500 2280 245 9.8 4.5 実施例5 3180 2070 223 10.8 4.8 実施例6 3250 2300 230 9.5 4.0 実施例7 2000 2100 215 10.3 5.0 実施例8 2120 2350 228 8.9 3.2 比較例1 1000 1800 205 15.4 9.0 これによれば、本発明になる磁気記録媒体は、軟磁性層
の透磁率が大きく、かつ、垂直磁気記録層の保磁力が高
く、しかも垂直磁気異方性の分散性が小さいことが判
る。又、出力が大きく、S/Nも良好である。
Table-1 Permeability Coercive force (Oe) Output (μV) Bit shift (nsec) Δθ 50 (°) Example 1 2060 2000 215 14.0 7.1 Example 2 2125 2200 225 10.5 4.0 Example 3 3470 2050 240 12.0 6.0 Example 4 3500 2280 245 9.8 4.5 Example 5 3180 2070 223 10.8 4.8 Example 6 3250 2300 230 9.5 4.0 Example 7 2000 2100 215 10.3 5.0 Example 8 2120 2350 228 8.9 3.2 Comparative Example 1 1000 1800 205 15.4 9.0 According to the magnetic recording medium according to the present invention, the magnetic permeability of the soft magnetic layer is high, the coercive force of the perpendicular magnetic recording layer is high, and the dispersibility of perpendicular magnetic anisotropy is small. Also, the output is large and the S / N is good.

【0030】これに対して、比較例1のものは、軟磁性
層の透磁率が小さく、かつ、垂直磁気記録層の保磁力も
低く、しかも垂直磁気異方性の分散性が大きい。そし
て、出力が小さく、S/Nも劣化している。
On the other hand, in Comparative Example 1, the magnetic permeability of the soft magnetic layer is small, the coercive force of the perpendicular magnetic recording layer is low, and the dispersibility of perpendicular magnetic anisotropy is large. The output is small and the S / N is deteriorated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により得た磁気ディスクの概略図FIG. 1 is a schematic diagram of a magnetic disk obtained by the present invention.

【図2】本発明により得た磁気ディスクの概略図FIG. 2 is a schematic diagram of a magnetic disk obtained by the present invention.

【図3】本発明により得た磁気ディスクの概略図FIG. 3 is a schematic diagram of a magnetic disk obtained by the present invention.

【図4】本発明により得た磁気ディスクの概略図FIG. 4 is a schematic diagram of a magnetic disk obtained by the present invention.

【図5】本発明により得た磁気ディスクの概略図FIG. 5 is a schematic diagram of a magnetic disk obtained by the present invention.

【図6】本発明により得た磁気ディスクの概略図FIG. 6 is a schematic diagram of a magnetic disk obtained by the present invention.

【図7】従来の磁気ディスクの概略図FIG. 7 is a schematic view of a conventional magnetic disk.

【符号の説明】[Explanation of symbols]

1 基板 2 軟磁性層 3,3a,3b 垂直磁気記録層 4 保護層 5 下地層 6 中間層 1 Substrate 2 Soft Magnetic Layer 3, 3a, 3b Perpendicular Magnetic Recording Layer 4 Protective Layer 5 Underlayer 6 Intermediate Layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 カーボン基板上に軟磁性層、及び垂直磁
気記録層を形成してなる磁気記録媒体の製造方法であっ
て、軟磁性層を基板温度100℃以下で形成する工程
と、形成された軟磁性層を不活性雰囲気中で300〜6
00℃で加熱処理する工程と、基板温度200℃以上で
垂直磁気記録層を形成する工程とを具備することを特徴
とする磁気記録媒体の製造方法。
1. A method of manufacturing a magnetic recording medium comprising a soft magnetic layer and a perpendicular magnetic recording layer formed on a carbon substrate, the method comprising the steps of forming the soft magnetic layer at a substrate temperature of 100 ° C. or lower. The soft magnetic layer in an inert atmosphere at 300 to 6
A method of manufacturing a magnetic recording medium, comprising: a step of heat treatment at 00 ° C .; and a step of forming a perpendicular magnetic recording layer at a substrate temperature of 200 ° C. or higher.
【請求項2】 カーボン基板上に軟磁性層、及び垂直磁
気記録層を形成してなる磁気記録媒体の製造方法であっ
て、軟磁性層を形成する工程と、軟磁性層上に厚さが1
0nm以下の垂直磁気記録層を基板温度100℃以下で
形成する工程と、前記工程で形成された垂直磁気記録層
上に所定厚さの垂直磁気記録層を基板温度200℃以上
で形成する工程とを具備することを特徴とする磁気記録
媒体の製造方法。
2. A method of manufacturing a magnetic recording medium comprising a soft magnetic layer and a perpendicular magnetic recording layer formed on a carbon substrate, the method comprising: forming a soft magnetic layer; 1
A step of forming a perpendicular magnetic recording layer of 0 nm or less at a substrate temperature of 100 ° C. or less, and a step of forming a perpendicular magnetic recording layer of a predetermined thickness on the perpendicular magnetic recording layer formed in the above step at a substrate temperature of 200 ° C. or more. A method of manufacturing a magnetic recording medium, comprising:
【請求項3】 カーボン基板上に軟磁性層、及び垂直磁
気記録層を形成してなる磁気記録媒体の製造方法であっ
て、軟磁性層および厚さが10nm以下の垂直磁気記録
層を基板温度100℃以下で形成する工程と、形成され
た軟磁性層を不活性雰囲気中で300〜600℃で加熱
処理する工程と、基板温度200℃以上で所定厚さの垂
直磁気記録層を形成する工程とを具備することを特徴と
する磁気記録媒体の製造方法。
3. A method of manufacturing a magnetic recording medium comprising a soft magnetic layer and a perpendicular magnetic recording layer formed on a carbon substrate, the soft magnetic layer and the perpendicular magnetic recording layer having a thickness of 10 nm or less at the substrate temperature. A step of forming the soft magnetic layer at 100 ° C. or lower, a step of heating the formed soft magnetic layer at 300 to 600 ° C. in an inert atmosphere, and a step of forming a perpendicular magnetic recording layer having a predetermined thickness at a substrate temperature of 200 ° C. or higher. A method of manufacturing a magnetic recording medium, comprising:
【請求項4】 カーボン基板と軟磁性層との間にCr,
Cr合金、Ti,Ti合金の群の中から選ばれる下地層
を形成する工程を具備することを特徴とする請求項1〜
請求項3いずれかの磁気記録媒体の製造方法。
4. Between the carbon substrate and the soft magnetic layer, Cr,
A step of forming an underlayer selected from the group consisting of Cr alloy, Ti, and Ti alloy is provided.
A method of manufacturing a magnetic recording medium according to claim 3.
【請求項5】 軟磁性層と垂直磁気記録層との間にTi
あるいはTi合金層を形成する工程を具備することを特
徴とする請求項1〜請求項4いずれかの磁気記録媒体の
製造方法。
5. A Ti layer between the soft magnetic layer and the perpendicular magnetic recording layer.
Alternatively, the method of manufacturing a magnetic recording medium according to any one of claims 1 to 4, further comprising a step of forming a Ti alloy layer.
JP23870194A 1994-10-03 1994-10-03 Production of magnetic recording medium Pending JPH08106633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23870194A JPH08106633A (en) 1994-10-03 1994-10-03 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23870194A JPH08106633A (en) 1994-10-03 1994-10-03 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH08106633A true JPH08106633A (en) 1996-04-23

Family

ID=17034011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23870194A Pending JPH08106633A (en) 1994-10-03 1994-10-03 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH08106633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040557A1 (en) * 2002-10-31 2004-05-13 Showa Denko K.K. Perpendicular magnetic recording medium, production process thereof, and perpendicular magnetic recording and reproducing apparatus
JP2005353278A (en) * 2001-01-03 2005-12-22 Samsung Electronics Co Ltd Perpendicular magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353278A (en) * 2001-01-03 2005-12-22 Samsung Electronics Co Ltd Perpendicular magnetic recording medium
WO2004040557A1 (en) * 2002-10-31 2004-05-13 Showa Denko K.K. Perpendicular magnetic recording medium, production process thereof, and perpendicular magnetic recording and reproducing apparatus

Similar Documents

Publication Publication Date Title
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
US8603650B2 (en) Perpendicular magnetic recording disk and manufacturing method thereof
US5879783A (en) Low noise magnetic recording medium and method of manufacturing
US7407685B2 (en) Magnetic recording medium and the method of manufacturing the same
KR100325659B1 (en) Magnetic recording medium, method of fabricating magnetic recording medium, and magnetic storage
JP3298893B2 (en) Bicrystalline cluster magnetic recording media
JP4539282B2 (en) Disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium using the same
JP2005004945A (en) Perpendicular magnetic recording medium and its manufacturing method
US6156422A (en) High density magnetic recording medium with high Hr and low Mrt
JP4023408B2 (en) Substrate for perpendicular magnetic recording medium, perpendicular magnetic recording medium, and method for producing them
JP2003123243A (en) Magnetic recording medium and method of manufacturing the same
US20010019786A1 (en) Magnetic recording medium and magnetic recording apparatus
JP4172412B2 (en) Substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium using the same
EP0809238B1 (en) Magnetic recording media and magnetic recording system using the same
Ariake et al. Preparation of double-layered perpendicular media for fine magnetic structure
JPH08106633A (en) Production of magnetic recording medium
JPH0877544A (en) Magnetic recording medium and its production
US20110116189A1 (en) Magnetic recording medium and magnetic recording/reproducing device
JP3050305B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
JP4762485B2 (en) Perpendicular magnetic recording medium
JPH1041134A (en) Magnetic recording medium and its manufacturing method
JPWO2009044811A1 (en) Method for manufacturing perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP2001250223A (en) Magnetic recording medium and magnetic recorder
JP2000123345A (en) Magnetic recording medium and magnetic disk device
JPH1050544A (en) Manufacture of magnetic recording medium