JPH08106352A - Spatial coordinate detecting device - Google Patents

Spatial coordinate detecting device

Info

Publication number
JPH08106352A
JPH08106352A JP24150594A JP24150594A JPH08106352A JP H08106352 A JPH08106352 A JP H08106352A JP 24150594 A JP24150594 A JP 24150594A JP 24150594 A JP24150594 A JP 24150594A JP H08106352 A JPH08106352 A JP H08106352A
Authority
JP
Japan
Prior art keywords
light
receiving element
light receiving
spot
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24150594A
Other languages
Japanese (ja)
Other versions
JP3416291B2 (en
Inventor
Ichiro Morishita
一郎 森下
Yuichi Yasuda
勇一 安田
Yuichi Umeda
裕一 梅田
Arao Satou
荒尾 佐藤
Junichi Saito
潤一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP24150594A priority Critical patent/JP3416291B2/en
Priority to GB9510424A priority patent/GB2289756B/en
Priority to US08/452,453 priority patent/US5627565A/en
Publication of JPH08106352A publication Critical patent/JPH08106352A/en
Application granted granted Critical
Publication of JP3416291B2 publication Critical patent/JP3416291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To detect not only the relative tilt angles and rotational angles of both a light emission part and a detection part to the axis connecting them, but also the relative distances of both the parts in a Z-axial direction and a Y-axial direction with high precision through simple structure. CONSTITUTION: The detection part is arranged at an operation member which is manually operated by an operator. At the light emission part 10, two light sources 12 and 13 which emit mutually distinctive lights are arranged at a specific interval, and the detection part 11 is provided with two stop openings 15a and 15b which are arrayed at a specific interval in the Y-axial direction when a Z axis extending to before the detection part 1 and X-Y orthogonal coordinates crossing it at right angles are set, and 1st and 2nd light receiving elements 17 and 18 which face each other. The 1st light receiving element 17 has two light reception parts which are divided in the Y-axial direction, and they are irradiated with different spot lights. The 2nd light receiving element 18 has four light reception parts which are divided in the X-axial and Y-axial directions, and they are irradiated with different spot lights.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光源を有する発光部
と、該光源からの光を受光検知する検出部とを備え、入
力装置に用いて好適な空間座標検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spatial coordinate detecting device which is suitable for an input device and which is equipped with a light emitting portion having a light source and a detecting portion for receiving and detecting light from the light source.

【0002】[0002]

【従来の技術】従来より、各種映像が表示される画面に
対して外部から情報を入力する入力装置としては、ジョ
イスティックが付いたコントローラや、マトリクス配列
されたスイッチ素子を有する平面的な座標入力装置等が
主なものとなっている。前記ジョイスティックが付いた
コントローラは、アクションゲームにおいて画面でのキ
ャラクタの移動や動作指示を行う操作等を行う場合には
適しているが、画面の任意の場所に現れる釦にカーソル
マークを合わせる等の操作には不向きである。また、こ
の種のコントローラはコード式のものであるため、画面
の近くでしか操作できないという難点がある。一方、従
来の平面的な座標入力装置は、画面の手前に平面的な指
示盤を設置するスペースが広く必要になり、また、構造
も複雑でコストの高いものとなっている。
2. Description of the Related Art Conventionally, a controller having a joystick or a planar coordinate input device having switch elements arranged in a matrix is used as an input device for inputting information from the outside to a screen on which various images are displayed. Etc. are the main ones. The controller with the joystick is suitable for moving characters on the screen in the action game and for performing operation instructions, but operations such as matching the cursor mark to a button appearing anywhere on the screen Not suitable for. Further, since this type of controller is of a cord type, it has a drawback that it can be operated only near the screen. On the other hand, the conventional planar coordinate input device requires a large space for installing a planar pointing panel in front of the screen, and has a complicated structure and high cost.

【0003】そこで、最近では図10に示すような超音
波を使用した入力装置が考えられている。この入力装置
は、機器本体の画面1の両側等に水平軸(X軸)方向に
間隔を開けて配置された音源2a,2bが設けられてい
る。オペレータが手で持って操作する操作部材3には、
前記音源2aと2bから発せられる超音波を検知する検
出部が設けられている。音源2a,2bからは、超音波
が互いに位相をずらしてパルス変調されて発せられる。
操作部材3の検出部では、音源2aと2bからの超音波
を識別して受信し、受信された各超音波の位相差等から
音源2aとの距離Laと音源2bとの距離Lbとが算出
され、これにより、操作部材3の水平面(Hx−Hz
面)上での座標が検出されるようになっている。操作部
材3を水平面(Hx−Hz面)にて移動させ、必要に応
じて操作釦を押すと、操作部材3にて受信された情報が
有線または無線で機器本体に与えられ、機器本体ではH
x−Hz面での操作部材3の位置が演算され、例えば機
器本体の画面1に現れたカーソルマーク4が移動させら
れる。
Therefore, recently, an input device using ultrasonic waves as shown in FIG. 10 has been considered. This input device is provided with sound sources 2a and 2b arranged on both sides of the screen 1 of the device body at intervals along the horizontal axis (X axis). The operation member 3 that the operator holds and operates by hand,
A detection unit for detecting the ultrasonic waves emitted from the sound sources 2a and 2b is provided. From the sound sources 2a and 2b, ultrasonic waves are emitted by being pulse-modulated with their phases shifted from each other.
The detection unit of the operation member 3 identifies and receives the ultrasonic waves from the sound sources 2a and 2b, and calculates the distance La from the sound source 2a and the distance Lb from the sound source 2b from the phase difference between the received ultrasonic waves. As a result, the horizontal plane of the operating member 3 (Hx-Hz
The coordinates on the surface are detected. When the operation member 3 is moved on the horizontal plane (Hx-Hz surface) and the operation button is pressed as necessary, the information received by the operation member 3 is given to the device body by wire or wirelessly, and the device body H
The position of the operation member 3 on the x-Hz plane is calculated, and for example, the cursor mark 4 appearing on the screen 1 of the device body is moved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図10
に示す従来の入力装置では、水平面(Hx−Hz面)上
での操作部材3の座標を検出し、その情報を機器本体に
与えることは可能であるが、操作部材3をHx−Hz平
面上のある位置に停止させた状態で、該操作部材3をθ
xあるいはθy方向へ傾けたとしても、その傾き角度を
検出することはできない。また、操作部材3のθz方向
への回転角度を検出することも不可能であった。さら
に、超音波は簡単な構成で実現できるが、温度に対する
安定性が悪く、しかも外乱ノイズが多い等、信頼性の面
で多くの問題が残されている。なお、超音波以外でも交
流磁界を利用し、3次元空間での位置と角度を求める方
法も提案されているが、このものは装置が大型化し、非
常に高価である。
However, as shown in FIG.
Although it is possible to detect the coordinates of the operating member 3 on the horizontal plane (Hx-Hz plane) and give the information to the device body in the conventional input device shown in FIG. With the operation member 3 stopped at a certain position,
Even if tilted in the x or θy direction, the tilt angle cannot be detected. Further, it is also impossible to detect the rotation angle of the operation member 3 in the θz direction. Further, although ultrasonic waves can be realized with a simple configuration, there are many problems in terms of reliability, such as poor stability with respect to temperature and a large amount of disturbance noise. It should be noted that there has been proposed a method of obtaining a position and an angle in a three-dimensional space by utilizing an AC magnetic field other than ultrasonic waves, but this is very expensive because the device is large.

【0005】本発明は、このような従来技術の実情に鑑
みてなされたものであり、その目的は、発光部と検出部
との相対的な回転角度や距離を簡単な構造で高精度に検
出できるようにした空間座標検出装置を提供することに
ある。
The present invention has been made in view of the circumstances of the prior art as described above, and an object thereof is to detect a relative rotation angle or distance between a light emitting portion and a detecting portion with a simple structure and with high accuracy. An object of the present invention is to provide a spatial coordinate detection device that can be used.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、発光部と検出部とが離れた位置に配置さ
れ、前記発光部には、識別可能な光を発する2個の光源
が間隔を開けて配置され、前記検出部には、前記両光源
から発せられた光を所定面積のスポット光に絞る複数の
開口と、各開口に対向し前記スポット光を受光する複数
組の受光素子とが設けられ、前記各開口は任意のX−Y
直交座標を設定した時にY軸方向に沿って配置され、前
記各受光素子の1組は前記スポット光のY軸方向の移動
を検出するY側受光素子であり、残りの組は前記スポッ
ト光のX軸とY軸方向の移動を検出するX−Y側受光素
子であることを、最も主要な特徴としている。上記の空
間座標検出装置には、前記Y側受光素子と前記X−Y側
受光素子のY側受光部からの受光光量に基づいて、これ
らY側受光素子とX−Y側受光素子に照射される各スポ
ット光の位置を求める演算部が設けられている。また、
上記の空間座標検出装置には、前記X−Y側受光部のX
側およびY側受光部からの受光光量に基づいて、該X−
Y側受光素子に照射される両スポット光の位置を求める
演算部が設けられている。前記Y側受光素子としてY軸
方向に分割された2分割受光素子を、前記X−Y側受光
素子としてX軸およびY軸方向に分割された4分割受光
素子をそれぞれ用いることができ、このような分割受光
素子を用いた場合は、前記開口は各分割受光素子にそれ
ぞれ1個ずつ対応すれば良いため、合計2個の開口が必
要となる。
In order to achieve the above-mentioned object, the present invention has a structure in which a light emitting section and a detecting section are arranged at a distance from each other, and the light emitting section is provided with two identifiable lights. Light sources are arranged at intervals, and in the detection unit, a plurality of openings for narrowing the light emitted from the both light sources into spot lights of a predetermined area, and a plurality of sets facing the respective openings and receiving the spot lights are provided. A light receiving element is provided, and each of the openings is an arbitrary XY
When the Cartesian coordinates are set, they are arranged along the Y-axis direction, one set of each of the light-receiving elements is a Y-side light-receiving element that detects the movement of the spot light in the Y-axis direction, and the rest of the sets are of the spot light. The most important feature is that it is an XY-side light receiving element that detects movement in the X-axis and Y-axis directions. In the above spatial coordinate detection device, the Y-side light receiving element and the XY side light-receiving element are irradiated with light based on the amount of light received from the Y-side light receiving portion of the Y-side light receiving element and the XY side light-receiving element. An arithmetic unit is provided for obtaining the position of each spot light. Also,
In the above spatial coordinate detection device, the X-Y side light-receiving unit is provided with X-axis.
Based on the amount of light received from the side and Y side light receiving portions, the X-
An arithmetic unit is provided for obtaining the positions of both spot lights applied to the Y-side light receiving element. As the Y-side light receiving element, a two-division light receiving element divided in the Y-axis direction can be used, and as the XY side light-receiving element, a four-division light receiving element divided in the X-axis and the Y-axis direction can be used. If such a divided light receiving element is used, it is sufficient that each of the divided light receiving elements corresponds to one of the divided light receiving elements, so that a total of two openings are required.

【0007】[0007]

【作用】発光部にて間隔を開けて配置された2個の光源
から識別可能な光が発せられ、これら光は検出部にて複
数の開口を通過してそれぞれ所定の面積のスポット光と
なり、各スポット光が複数組の受光素子にて受光され
る。これら受光素子の1組はスポット光のY軸方向の移
動を検出するY側受光素子であり、残りの組はスポット
光のX軸とY軸方向の移動を検出するX−Y側受光素子
である。ここで、前記2個の光源と複数組の受光素子と
の組み合わせにより、両光源からの光がY側受光素子と
X−Y側受光素子に照射される光学系と、両光源からの
光がX−Y側受光素子に照射される光学系とに分けるこ
とができる。
The identifiable light is emitted from the two light sources arranged at intervals in the light emitting part, and these lights pass through the plurality of openings in the detecting part to become spot lights of predetermined areas, respectively. Each spot light is received by a plurality of sets of light receiving elements. One set of these light-receiving elements is a Y-side light-receiving element that detects the movement of the spot light in the Y-axis direction, and the remaining set is an XY-side light-receiving element that detects the movement of the spot light in the X-axis and Y-axis directions. is there. Here, by combining the two light sources and a plurality of sets of light receiving elements, an optical system in which light from both light sources is applied to the Y-side light receiving element and the XY side light receiving element, and light from both light sources are provided. It can be divided into an optical system for irradiating the XY side light receiving element.

【0008】前者の光学系では、Y側受光素子に照射さ
れる両スポット光のY軸方向の移動量と、X−Y側受光
素子に照射される両スポット光のY軸方向の移動量とを
検出し、その検出結果に基づいて、例えば検出部に設定
した座標上での両光源の位置を求めることができる。両
光源の座標が決定されると、両光源を通る直線の傾きに
より、発光部と検出部の相対角度θyが求められる。ま
た、この角度θyと同じだけ回転させた回転座標を設定
し、両光源の中点の座標を回転座標系に変換することに
より、発光部と検出部の相対的なY軸方向のずれ量と、
発光部と検出部の相対的なZ軸方向のずれ量が求められ
る。
In the former optical system, the amount of movement of both spot lights applied to the Y-side light receiving element in the Y-axis direction and the amount of movement of both spot lights applied to the XY side light-receiving element in the Y-axis direction. Can be detected, and the positions of both light sources on the coordinates set in the detection unit can be obtained based on the detection result. When the coordinates of both light sources are determined, the relative angle θy between the light emitting unit and the detection unit is obtained from the inclination of the straight line passing through both light sources. Further, by setting the rotation coordinate rotated by the same amount as this angle θy and converting the coordinates of the midpoint of both light sources into the rotation coordinate system, the relative displacement amount in the Y-axis direction between the light emitting unit and the detection unit can be obtained. ,
The relative shift amount of the light emitting unit and the detecting unit in the Z-axis direction is obtained.

【0009】後者の光学系では、X−Y側受光素子に照
射される両スポット光のX軸方向の移動量とY軸方向の
移動量とを検出し、その検出結果に基づいて、両スポッ
ト光の位置を求めることができる。両スポット光の位置
から両スポット光の中心を通る直線の傾きが求められ、
発光部と検出部を結ぶ線に対する両部の相対的な回転角
度θzが求められる。また、両スポット光の中点の座標
をθzだけ回転した時の回転座標系に変換することによ
り、発光部と検出部の相対的な傾き角度θx,θyが求
められる。さらに、両スポット光の位置と両光源間の距
離から三角測量の原理により、発光部と検出部の相対的
なZ軸方向のずれ量が求められる。
In the latter optical system, the amount of movement in the X-axis direction and the amount of movement in the Y-axis direction of both spot lights applied to the XY side light receiving element are detected, and both spots are detected based on the detection result. The position of light can be determined. From the position of both spot light, the inclination of the straight line passing through the center of both spot light is obtained,
The relative rotation angle θz of both parts with respect to the line connecting the light emitting part and the detecting part is obtained. Further, the relative tilt angles θx and θy between the light emitting section and the detection section are obtained by converting the coordinates of the midpoint of both spot lights into a rotating coordinate system when rotated by θz. Further, from the positions of both spot lights and the distance between both light sources, the relative amount of deviation in the Z-axis direction between the light emitting part and the detecting part is obtained by the principle of triangulation.

【0010】[0010]

【実施例】以下、本発明の実施例を図に基づいて説明す
る。図1は本発明の実施例に係る空間座標検出装置の基
本構造を示す斜視図、図2は該空間座標検出装置に備え
られる1つの光学系を示す断面図、図3は該空間座標検
出装置に備えられる他の光学系を示す断面図、図4は該
空間座標検出装置に備えられる第1の受光素子の平面
図、図5は該空間座標検出装置に備えられる第2の受光
素子の平面図、図6は図3の光学系を模式的に示す説明
図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 is a perspective view showing a basic structure of a spatial coordinate detecting apparatus according to an embodiment of the present invention, FIG. 2 is a sectional view showing one optical system provided in the spatial coordinate detecting apparatus, and FIG. 3 is the spatial coordinate detecting apparatus. FIG. 4 is a cross-sectional view showing another optical system provided in FIG. 4, FIG. 4 is a plan view of a first light receiving element provided in the spatial coordinate detecting device, and FIG. 5 is a plane of a second light receiving element provided in the spatial coordinate detecting device. 6 and 6 are explanatory diagrams schematically showing the optical system of FIG.

【0011】本実施例に係る空間座標検出装置は発光部
10と検出部11とを備えており、この発光部10は例
えばコンピュータやAV機器またはゲーム機本体等の表
示画面を有する機器本体に設置され、一方、検出部11
は例えばリモートコントローラ等のオペレータが手で持
って移動する操作部材に設置されている。前記発光部1
0は互いに識別可能な光を発する2個の光源12,13
を有しており、これら光源12,13は所定の間隔を開
けて配置されている。各光源12,13は例えば赤外線
発光ダイオードからなり、各光源12,13からは同じ
周波数(周期)で且つ位相が180度ずれた変調光が出
力される。これら各光源12,13は、発光部10の中
心Oを通過する水平軸をX軸、中心Oを通過する垂直軸
をY軸とした時に、Y軸上にて中心Oに対して等距離a
/2離れた位置に設けられている(図2,3参照)。前
記検出部11は可視光カットフィルタ14と絞り板15
および受光素子群16とからなり、図2,3に示すよう
に、これら可視光カットフィルタ14と絞り板15およ
び受光素子群16は両光源12,13側から順に互いに
並行に設けられている(ただし、図1は可視光カットフ
ィルタ14を省略してある)。
The spatial coordinate detecting apparatus according to the present embodiment comprises a light emitting section 10 and a detecting section 11. The light emitting section 10 is installed in a device body having a display screen such as a computer, an AV device or a game machine body. On the other hand, the detection unit 11
Is installed on an operation member such as a remote controller that an operator holds and moves by hand. The light emitting unit 1
0 is two light sources 12 and 13 that emit lights that can be distinguished from each other.
And the light sources 12 and 13 are arranged with a predetermined interval. Each of the light sources 12 and 13 is composed of, for example, an infrared light emitting diode, and the modulated light having the same frequency (cycle) and a phase difference of 180 degrees is output from each of the light sources 12 and 13. When the horizontal axis passing through the center O of the light emitting unit 10 is the X axis and the vertical axis passing through the center O is the Y axis, these light sources 12 and 13 are equidistant a from the center O on the Y axis.
It is provided at a position separated by / 2 (see FIGS. 2 and 3). The detection unit 11 includes a visible light cut filter 14 and a diaphragm plate 15.
2 and 3, the visible light cut filter 14, the diaphragm plate 15, and the light receiving element group 16 are sequentially provided in parallel with each other from the light sources 12 and 13 side (see FIG. 2 and FIG. 3). However, the visible light cut filter 14 is omitted in FIG. 1).

【0012】前記受光素子群16の受光面に垂直となる
軸をZ軸とし、検出部11にてこのZ軸に直交するX−
Y直交座標を設定すると、前記絞り板15には矩形状の
第1および第2の絞り口15a,15bがY軸方向に所
定の間隔を保って開設されている。一方、前記受光素子
群16は前記各絞り口15a,15bに対向する第1お
よび第2の受光素子17,18より構成され、これら各
受光素子17,18は例えばピンホトダイオードからな
る。図4に示すように、上方の絞り口15aに対向する
第1の受光素子17はY軸方向に2分割された分割受光
部17a,17bを有する。また、図5に示すように、
下方の絞り口15bに対向する第2の受光素子18は4
分割された分割受光部18a,18b,18c,18d
を有し、分割受光部の18a,18bの組と18c,1
8dの組とはY軸方向分割され、18a,18cの組と
18b,18dの組とはX軸方向に分割されている。
The axis perpendicular to the light-receiving surface of the light-receiving element group 16 is defined as the Z-axis, and the detector 11 uses the X-axis orthogonal to the Z-axis.
When the Y orthogonal coordinates are set, the diaphragm plate 15 is provided with rectangular first and second diaphragm openings 15a and 15b at predetermined intervals in the Y-axis direction. On the other hand, the light receiving element group 16 is composed of first and second light receiving elements 17 and 18 facing the apertures 15a and 15b, and these light receiving elements 17 and 18 are, for example, pin photodiodes. As shown in FIG. 4, the first light receiving element 17 facing the upper aperture 15a has divided light receiving portions 17a and 17b divided into two in the Y-axis direction. Also, as shown in FIG.
The second light receiving element 18 facing the lower aperture 15b has four
Divided divided light receiving portions 18a, 18b, 18c, 18d
And a pair of divided light receiving portions 18a, 18b and 18c, 1
The set of 8d is divided in the Y-axis direction, and the set of 18a, 18c and the set of 18b, 18d are divided in the X-axis direction.

【0013】前記各光源12,13からそれぞれ異なる
タイミング(異なる周期)で発せられた赤外光は、前記
可視光カットフィルタ14を透過した後、前記絞り板1
5の各絞り口15a,15bにより絞られ、第1および
第2の受光素子17,18の受光面上にそれぞれ矩形ス
ポット光として照射される。その際、可視光カットフィ
ルタ14が設けられることにより、受光素子群16にお
いて赤外光の矩形スポット以外の外光ノイズ成分が可能
な限り遮断されるようになっている。図4では、光源1
2から発せられた赤外光スポット光をS12Aで示し、
光源13から発せられた赤外光スポット光をS13Aで
示している。図5では、光源12から発せられた赤外光
スポット光をS12Bで示し、光源13から発せられた
赤外光スポット光をS13Bで示している。
Infrared light emitted from the light sources 12 and 13 at different timings (different periods) passes through the visible light cut filter 14 and then the diaphragm plate 1.
The apertures 15a and 15b of No. 5 illuminate the light receiving surfaces of the first and second light receiving elements 17 and 18 as rectangular spot light. At this time, the visible light cut filter 14 is provided so that the external light noise component other than the rectangular spot of infrared light is blocked in the light receiving element group 16 as much as possible. In FIG. 4, the light source 1
The infrared spot light emitted from 2 is indicated by S12A,
The infrared spot light emitted from the light source 13 is indicated by S13A. In FIG. 5, the infrared light spot light emitted from the light source 12 is indicated by S12B, and the infrared light spot light emitted by the light source 13 is indicated by S13B.

【0014】第1および第2の受光素子17,18のそ
れぞれの分割受光部では、スポット光の照射面積と照射
光強度に基づいて光電変換された検出電流が得られる。
処理回路については後述するが、この検出電流は電圧に
変換されて演算処理される。そこで、第1の受光素子1
7の分割受光部17a,17bでのスポット光S12
A,S13Aの照射面積に基づく検出出力を、図4にお
いてU,Dで示し、第2の受光素子18の各分割受光部
18a〜18dでのスポット光S12B,S13Bの照
射面積に基づく検出出力を、図5においてLu,Ru,
Ld,Rdで示す。前述したように、各光源12,13
からは異なるタイミングで赤外光が発せられるため、第
1の受光素子17にてスポット光S12Aが検出される
時刻とスポット光S13Aが検出される時刻が異なり、
処理回路にて時分割することによりスポット光S12
A,S13Aごとに前記U,Dの検出出力が得られる。
同様に、第2の受光素子18に照射されるスポット光S
12B,S13Bごとに前記Lu,Ru,Ld,Rdの
検出出力が得られる。
In each of the divided light receiving portions of the first and second light receiving elements 17 and 18, a detection current photoelectrically converted based on the irradiation area of spot light and the irradiation light intensity is obtained.
Although the processing circuit will be described later, this detected current is converted into a voltage and processed. Therefore, the first light receiving element 1
Spot light S12 at the split light receiving units 17a and 17b of No. 7
The detection outputs based on the irradiation areas of A and S13A are indicated by U and D in FIG. 4, and the detection outputs based on the irradiation areas of the spot lights S12B and S13B at the respective divided light receiving portions 18a to 18d of the second light receiving element 18 are shown. , In FIG. 5, Lu, Ru,
It is shown by Ld and Rd. As described above, each light source 12, 13
Since infrared light is emitted at different timings from the above, the time when the spot light S12A is detected by the first light receiving element 17 is different from the time when the spot light S13A is detected,
Spot light S12 by time division in the processing circuit
The detection outputs of U and D are obtained for each of A and S13A.
Similarly, the spot light S emitted to the second light receiving element 18
The detection outputs of Lu, Ru, Ld, and Rd are obtained for each of 12B and S13B.

【0015】このように構成された空間座標検出装置
は、機能的に見ると図2と図3に示す2つの光学系に分
けることができ、以下、それぞれの光学系について検出
原理を説明する。
The spatial coordinate detection device thus constructed can be functionally divided into two optical systems shown in FIGS. 2 and 3. Hereinafter, the detection principle of each optical system will be described.

【0016】まず、図2の光学系について説明すると、
両光源12,13からそれぞれ異なるタイミングで発せ
られた赤外光は、絞り口15bにより絞られた後、図5
に示すように、第2の受光素子18の各分割受光部18
a〜18dにそれぞれスポット光S12B,S13Bと
して照射される。図5において、検出部11側のX−Y
直交座標上での光源12からのスポット光S12Bの中
心座標をI1(X1,Y1)、光源13からのスポット光
S13Bの中心座標をI2(X2,Y2)、発光部10の
中心Oと絞り口15bの中心とを結ぶ直線Ojが第2の
受光素子18の受光面で交わる交点の座標をOa
(X0,Y0)とすると、OaはI1とI2の中間に位置す
る。図5の検出状態は、検出部11側のX−Y直交座標
のY軸に対し、光源12と13とが配置された発光部1
0側のY軸が角度θzだけ相対的に回転した状態を示し
ており、この場合、Z軸まわりの回転角θzはI1とI2
を通る直線の傾きに等しく、 tanθz=(X2−X1)/(Y2−Y1) であるから、 θz=tan~1〔(X2−X1)/(Y2−Y1)〕……………… として表せられる。ここで、上記式におけるX1とX2
は、スポット光S12BとS13Bに対し、X軸方向に
分割された分割受光部18b,18dの組の受光光量
と、分割受光部18a,18cの組の受光光量との差か
ら求められる。また、Y1とY2は、スポット光S12B
とS13Bに対し、Y軸方向に分割された分割受光部1
8a,18bの組の受光光量と、分割受光部18c,1
8dの組の受光光量との差から求められる。すなわち、
各分割受光部18a〜18dでの受光出力Lu,Ru,
Ld,Rdと座標X1,X2,Y1,Y2とは比例関係にあ
り、 X1,X2∝〔(Ru+Rd)−(Lu+Ld)〕/(Ru+Lu+Rd+Ld)〕 Y1,Y2∝〔(Ru+Lu)−(Rd+Ld)〕/(Ru+Lu+Rd+Ld)〕 …………………… として表せられる。したがって、第2の受光素子18の
各分割受光部18a〜18dからの受光出力Lu,R
u,Ld,Rdに対して上記式の演算を施し、さらに
上記式の計算を行うことにより、検出部11のZ軸に
対する相対的な回転角度θzを求めることができる。
First, the optical system of FIG. 2 will be described.
The infrared light emitted from the light sources 12 and 13 at different timings is narrowed down by the aperture 15b, and then the infrared light shown in FIG.
As shown in, each divided light receiving portion 18 of the second light receiving element 18
The spot lights a to 18d are irradiated with spot lights S12B and S13B, respectively. In FIG. 5, XY on the detection unit 11 side
The center coordinates of the spot light S12B from the light source 12 on the rectangular coordinates are I 1 (X 1 , Y 1 ), the center coordinates of the spot light S13B from the light source 13 are I 2 (X 2 , Y 2 ), and the light emitting unit 10 A line Oj connecting the center O of the light receiving surface of the second light receiving element 18 to the center of the aperture 15b is Oa.
If (X 0 , Y 0 ), Oa is located between I 1 and I 2 . In the detection state of FIG. 5, the light emitting unit 1 in which the light sources 12 and 13 are arranged with respect to the Y axis of the XY orthogonal coordinates on the detecting unit 11 side.
It shows a state in which the Y-axis on the 0 side relatively rotates by an angle θz. In this case, the rotation angle θz about the Z-axis is I 1 and I 2
Equal to the slope of the line passing through, tanθz = (X 2 -X 1 ) / from a (Y 2 -Y 1), θz = tan ~ 1 [(X 2 -X 1) / ( Y 2 -Y 1) ] ……………… is represented as. Where X 1 and X 2 in the above equation
Is obtained from the difference between the received light amount of the group of divided light receiving units 18b and 18d and the received light amount of the group of divided light receiving units 18a and 18c that are divided in the X-axis direction with respect to the spot lights S12B and S13B. In addition, Y 1 and Y 2 are the spot light S12B.
And S13B, the divided light receiving unit 1 is divided in the Y-axis direction.
Amount of received light of a set of 8a and 18b and divided light receiving parts 18c and 1
It is obtained from the difference with the received light amount of the 8d group. That is,
Light-receiving outputs Lu, Ru, at the divided light-receiving units 18a to 18d
Ld, Rd and the coordinates X 1 , X 2 , Y 1 , Y 2 are in a proportional relationship, and X 1 , X 2 ∝ [(Ru + Rd)-(Lu + Ld)] / (Ru + Lu + Rd + Ld)] Y 1 , Y 2 ∝ [ (Ru + Lu) − (Rd + Ld)] / (Ru + Lu + Rd + Ld)] …………………………. Therefore, the light receiving outputs Lu and R from the respective divided light receiving portions 18a to 18d of the second light receiving element 18 are received.
The relative rotation angle θz of the detection unit 11 with respect to the Z axis can be obtained by performing the calculation of the above equation on u, Ld, and Rd, and further performing the calculation of the above equation.

【0017】また、図2において、前述した直線Ojと
Z軸とがなす傾き角度のX方向およびY方向成分をそれ
ぞれθx(ラジアン),θy(ラジアン)とし、発光部
10側のX−Y直交座標を基準とした座標Oa(X0
0)のX軸方向とY軸方向の位置ずれ量をそれぞれΔ
x,Δyとし、さらに、絞り板15と受光素子群16の
受光面までの距離をdとすると、dは微少であるから、 Δx=d・tanθx≒d・θx Δy=d・tanθy≒d・θy となり、 θx=Δx/d θy=Δy/d……………… として表せる。ここで、図5の検出状態は、検出部11
がZ軸に対して相対的に角度θzだけ回転した状態であ
るため、検出部11側のX−Y直交座標は発光部10側
のX−Y直交座標(空間に対して固定されたX−Y直交
座標)に対して角度θzだけ回転している。そこで、図
5において、検出部11側に固定されたX−Y直交座標
に対して角度θzだけ回転した回転座標を設定すると、
この回転座標上でのΔx,Δyは、 Δx=X0cosθz+Y0sinθz Δy=−X0sinθz
+Y0cosθz……………………… となる。また、X0とY0は、 X0=(X1+X2)/2 Y0=(Y1+Y2)/2………… として求められる。これら〜式においてdは既知で
あるため、第2の受光素子18の各分割受光部18a〜
18dの受光出力Lu,Ru,Ld,Rdから上記式
によりX1,X2,Y1,Y2を演算し、その演算結果に基
づいて上記〜式の計算を行うことにより、発光部1
0側のX−Y直交座標に対するZ軸の傾きθxとθyを
求めることができる。
Further, in FIG. 2, the X-direction component and the Y-direction component of the inclination angle formed by the above-mentioned straight line Oj and the Z-axis are defined as θx (radian) and θy (radian), respectively, and the light-emitting portion 10 side is orthogonal to XY. Coordinates based on the coordinates Oa (X 0 ,
The amount of positional deviation of Y 0 ) in the X-axis direction and the Y-axis direction is Δ
If x and Δy and the distance between the diaphragm plate 15 and the light receiving surface of the light receiving element group 16 is d, d is very small. Therefore, Δx = d · tan θx≈d · θx Δy = d · tan θy≈d · θy, which can be expressed as θx = Δx / d θy = Δy / d. Here, the detection state of FIG.
Is rotated relative to the Z axis by an angle θz, the XY Cartesian coordinates on the side of the detection unit 11 are the XY Cartesian coordinates on the side of the light emitting unit 10 (X-Y fixed to the space). It is rotated by an angle θz with respect to the Y orthogonal coordinate. Therefore, in FIG. 5, when the rotation coordinates rotated by the angle θz with respect to the XY orthogonal coordinates fixed on the detection unit 11 side are set,
Δx and Δy on this rotation coordinate are Δx = X 0 cos θz + Y 0 sin θz Δy = −X 0 sin θz
+ Y 0 cos θz …………………………. Further, X 0 and Y 0 are calculated as X 0 = (X 1 + X 2 ) / 2 Y 0 = (Y 1 + Y 2 ) / 2. In these expressions, since d is known, each divided light receiving portion 18a of the second light receiving element 18
By calculating X 1 , X 2 , Y 1 , and Y 2 from the received light outputs Lu, Ru, Ld, and Rd of 18d by the above formulas and calculating the above formulas based on the calculation results, the light emitting unit 1
The inclinations θx and θy of the Z axis with respect to the XY orthogonal coordinates on the 0 side can be obtained.

【0018】さらに、図2において、発光部10と検出
部11とのZ軸方向の距離をL、第2の受光素子18の
受光面でのI1とI2間の距離をbとすると、これらL,
bと前述したa(両光源12,13間の距離),d(絞
り板15と受光素子群16の受光面までの距離)との関
係は、 L/d=a/b であるから、 L=a・d/b……………… として表せる。この式において、aとdは既知であ
り、bは検出部11側のX−Y直交座標上のI1(X1
1)とI2(X2,Y2)の位置から、 b=√〔(X1−X22+(Y1−Y22〕…………… として表せる。したがって、第2の受光素子18の各分
割受光部18a〜18dの受光出力Lu,Ru,Ld,
Rdから上記式によりX1,X2,Y1,Y2を演算し、
その演算結果に基づいて上記式によりbを求め、さら
に上記式から距離Lを求めることができる。また、こ
の距離LがL1からL2に変化した時の変位量ΔLは、 ΔL=L2−L1 として求めることができる。
Further, in FIG. 2, when the distance between the light emitting portion 10 and the detecting portion 11 in the Z-axis direction is L, and the distance between I 1 and I 2 on the light receiving surface of the second light receiving element 18 is b, These L,
Since the relationship between b and a (the distance between both light sources 12 and 13) and d (the distance from the diaphragm plate 15 to the light receiving surface of the light receiving element group 16) is L / d = a / b = A · d / b ……………… In this equation, a and d are known, and b is I 1 (X 1 , X 1 on the XY orthogonal coordinates on the detection unit 11 side,
From the positions of Y 1 ) and I 2 (X 2 , Y 2 ), it can be expressed as b = √ [(X 1- X 2 ) 2 + (Y 1- Y 2 ) 2 ] ... Therefore, the light receiving outputs Lu, Ru, Ld, of the respective divided light receiving portions 18a to 18d of the second light receiving element 18 are
X 1 , X 2 , Y 1 and Y 2 are calculated from Rd by the above formula,
Based on the calculation result, b can be obtained from the above equation, and the distance L can be obtained from the above equation. Further, the displacement amount ΔL when the distance L changes from L 1 to L 2 can be obtained as ΔL = L 2 −L 1 .

【0019】次に、図3の光学系について説明すると、
両光源12,13からそれぞれ異なるタイミングで発せ
られた赤外光は、絞り口15a,15bにより絞られた
後、第1の受光素子17の両分割受光部17a,17b
にスポット光S12A,S13Aとして照射され、第2
の受光素子18の各分割受光部18a〜18dにスポッ
ト光S12B,S13Bとして照射される。図6は検出
部11がある姿勢にある時の図3の光学系を模式的に示
すものであり、ここでは便宜上、検出部11側にZ−Y
直交座標を設定してある。
Next, the optical system of FIG. 3 will be described.
The infrared light emitted from the light sources 12 and 13 at different timings is narrowed down by the aperture openings 15a and 15b, and then the split light receiving portions 17a and 17b of the first light receiving element 17 are separated.
To the second spot light S12A, S13A,
The divided light receiving portions 18a to 18d of the light receiving element 18 are irradiated with spot lights S12B and S13B. FIG. 6 schematically shows the optical system of FIG. 3 when the detection unit 11 is in a certain posture.
Cartesian coordinates are set.

【0020】図6において、検出部11側のZ−Y直交
座標上での光源12の座標をP1(Z1,Y1)、光源1
3の座標をP2(Z2,Y2)、第1の受光素子17と第
2の受光素子18のY軸方向の間隔をm、両光源12,
13から発せられた赤外光の光軸とY軸とがなす角度を
それぞれα1,α2,β1,β2とすると、スポット光S1
2Aからα1、スポット光S12Bからα2、スポット光
S13Aからβ1、スポット光S13Bからβ2がそれぞ
れ求められる。すなわち、図4に示す第1の受光素子1
7上でのスポット光S12Aとスポット光S13Aの位
置ずれ量Δyは、 Δy∝(U−D)/(U+D) として表せられるため、α1=Δy/d,β1=Δy/d
の式中に、第1の受光素子17の両分割受光部17a,
17bの受光出力U,Dと既知のdを代入することによ
り、角度α1とβ1を求めることができる。また、図5に
示す第2の受光素子18上でのスポット光S12Bとス
ポット光S13Bの位置ずれ量Δyは、 Δy∝〔(Ru+Lu)−(Rd+Ld)〕/(Ru+Lu+Rd+Ld)〕 として表せられるため、α2=Δy/d,β2=Δy/d
の式中に、第2の受光素子18の各分割受光部18a〜
18dの受光出力Lu,Ru,Ld,Rdと既知のdを
代入することにより、角度α2とβ2を求めることができ
る。このようにしてα1,α2,β1,β2が求められる
と、既知のmとα1,α2の値から三角測量の原理により
1(Z1,Y1)の座標が求められ、同様にm,β1,β
2の値からP2(Z2,Y2)の座標が求められる。
In FIG. 6, the coordinates of the light source 12 on the Z-Y orthogonal coordinates on the detection unit 11 side are P 1 (Z 1 , Y 1 ),
3 is P 2 (Z 2 , Y 2 ), the distance between the first light receiving element 17 and the second light receiving element 18 in the Y-axis direction is m, both light sources 12,
If the angles formed by the optical axis of the infrared light emitted from 13 and the Y axis are α 1 , α 2 , β 1 , β 2 , respectively, the spot light S1
2A to α 1 , spot light S12B to α 2 , spot light S13A to β 1 , and spot light S13B to β 2 . That is, the first light receiving element 1 shown in FIG.
The positional deviation amount Δy between the spot light S12A and the spot light S13A on the No. 7 is expressed as Δy∝ (U−D) / (U + D), so α 1 = Δy / d, β 1 = Δy / d
In the formula, both split light receiving parts 17a of the first light receiving element 17 are
By substituting the light reception outputs U and D of 17b and the known d, the angles α 1 and β 1 can be obtained. Further, since the positional deviation amount Δy between the spot light S12B and the spot light S13B on the second light receiving element 18 shown in FIG. 5 is expressed as Δy∝ [(Ru + Lu) − (Rd + Ld)] / (Ru + Lu + Rd + Ld)], α 2 = Δy / d, β 2 = Δy / d
In the formula, each divided light receiving portion 18a of the second light receiving element 18
The angles α 2 and β 2 can be obtained by substituting the received light outputs Lu, Ru, Ld, and Rd of 18d and the known d. When α 1 , α 2 , β 1 , β 2 are obtained in this way, the coordinates of P 1 (Z 1 , Y 1 ) are obtained from the known values of m and α 1 , α 2 by the principle of triangulation. Similarly, m, β 1 , β
From the value of 2 , the coordinates of P 2 (Z 2 , Y 2 ) can be obtained.

【0021】このようにしてP1とP2の座標が決定され
ると、発光部10と検出部11の相対角度θyと、両部
10,11の相対的なY軸方向のずれ量Q、および両部
10,11の相対的なZ軸方向のずれ量Lが求められ
る。まず、θyはP1とP2を通る直線の傾きに等しく、 tanθy=(Y1−Y2)/(Z1−Z2) であるから、 θy=tan~1〔(Y1−Y2)/(Z1−Z2)〕…………… として表せられる。したがって、この式に第1の受光
素子17の受光出力U,Dと第2の受光素子18の受光
出力Lu,Ru,Ld,Rdから演算されたZ1,Z2
1,Y2の値を代入することにより、発光部10と検出
部11の相対角度θyが求められる。また、P1とP2
中点の座標をP0(Z0,Y0)とすると、 Z0=(Z1+Z2)/2,Y0=(Y1+Y2)/2 として表せられる。したがって、QとLの値は回転座標
系に変換すると、 Q=−Z0sinθy+Y0cosθy L=Z0cosθy+
0sinθy…………………………… となり、この式に前述したZ1,Z2,Y1,Y2から演
算されたZ0,Y0と、上記式で演算されたθyの値を
代入することにより、発光部10と検出部11の相対的
なY軸方向のずれ量Qと、両部10,11の相対的なZ
軸方向のずれ量Lが求められる。
When the coordinates of P 1 and P 2 are determined in this way, the relative angle θy between the light emitting portion 10 and the detecting portion 11 and the relative deviation Q in the Y-axis direction between the two portions 10 and 11, And the relative amount L of displacement of the two parts 10 and 11 in the Z-axis direction is obtained. First, θy is equal to the slope of a straight line passing through P 1 and P 2, and tan θy = (Y 1 −Y 2 ) / (Z 1 −Z 2 ), so θy = tan ~ 1 [(Y 1 −Y 2 ) / (Z 1 −Z 2 )] ………………. Therefore, in this equation, Z 1 , Z 2 , calculated from the light receiving outputs U, D of the first light receiving element 17 and the light receiving outputs Lu, Ru, Ld, Rd of the second light receiving element 18,
By substituting the values of Y 1 and Y 2 , the relative angle θy between the light emitting unit 10 and the detection unit 11 can be obtained. If the coordinates of the midpoint of P 1 and P 2 are P 0 (Z 0 , Y 0 ), Z 0 = (Z 1 + Z 2 ) / 2, Y 0 = (Y 1 + Y 2 ) / 2 To be Therefore, when the values of Q and L are converted to the rotating coordinate system, Q = −Z 0 sin θy + Y 0 cos θy L = Z 0 cos θy +
Y 0 sin θy …………………………, and Z 0 and Y 0 calculated from Z 1 , Z 2 , Y 1 and Y 2 described above in this equation and θy calculated by the above equation By substituting the value of, the relative displacement amount Q in the Y-axis direction between the light emitting unit 10 and the detection unit 11 and the relative Z amount between the both units 10 and 11.
The shift amount L in the axial direction is obtained.

【0022】図7と図8は上記実施例に係る空間座標検
出装置において使用される回路構成について示してい
る。前記両光源12,13からは、互いに位相が180
度相違した赤外光が同じ周波数にて間欠発光する。した
がって、第1の受光素子17の各分割受光部17a,1
7bまたは第2の受光素子18の各分割受光部18a〜
18dでは、前記パルス周期に対応したほぼサイン曲線
変化の受光出力が得られる。
7 and 8 show the circuit configuration used in the spatial coordinate detecting apparatus according to the above embodiment. The two light sources 12 and 13 have a phase of 180 degrees with respect to each other.
Infrared light of different degrees emits intermittently at the same frequency. Therefore, the divided light receiving portions 17 a, 1 of the first light receiving element 17 are
7b or each divided light receiving portion 18a of the second light receiving element 18-
At 18d, a light reception output having a substantially sine curve change corresponding to the pulse period is obtained.

【0023】図7に示すように、それぞれの分割受光部
には電流・電圧変換器19が接続され、各分割受光部で
の受光出力の電流値が電圧値に変換される。それぞれの
出力電圧はバンドパスフィルタ20を通過し、パルス発
光(間欠発光)の周波数成分が除かれる。そして、増幅
器21によりそれぞれの検出電圧が電圧増幅され、検波
器22によりそれぞれ検波され、各分割受光部の受光光
量に応じた電圧がDC成分として取り出される。また、
各検波器22からの電圧出力が加算器23により電圧値
として加算され、オートゲインコントロール回路24に
与えられ、このオートゲインコントロール回路24より
増幅器21の増幅率が制御される。
As shown in FIG. 7, a current / voltage converter 19 is connected to each of the divided light receiving portions, and the current value of the light reception output of each divided light receiving portion is converted into a voltage value. Each output voltage passes through the bandpass filter 20, and the frequency component of pulse emission (intermittent emission) is removed. Then, the detected voltage is amplified by the amplifier 21 and detected by the detector 22, and the voltage corresponding to the received light amount of each divided light receiving unit is extracted as a DC component. Also,
The voltage output from each of the detectors 22 is added as a voltage value by the adder 23, and is added to the auto gain control circuit 24. The auto gain control circuit 24 controls the amplification factor of the amplifier 21.

【0024】検波器22からの各検出電圧は、例えば図
8に示されるアナログ・デジタル変換器25によりデジ
タル値に変換され、デジタル演算器26により和、差、
商、積の各演算が行われる。すなわち、上記〜式に
示された各演算はデジタル演算器26にて行われ、この
デジタル演算器26が本発明の演算部に相当する。
Each detected voltage from the detector 22 is converted into a digital value by the analog / digital converter 25 shown in FIG. 8, and the sum, difference,
Each operation of quotient and product is performed. That is, each calculation shown in the above equations is performed by the digital calculator 26, and the digital calculator 26 corresponds to the calculator of the present invention.

【0025】図9は前述した空間座標検出装置を適用し
た入出装置の概略構成を示し、この入出装置は固定側が
機器本体27であり、この機器本体27はコンピュータ
やAV機器またはゲーム機本体等からなり、CRT画面
28を有している。また、移動側は操作部材29であ
り、この操作部材29はリモートコントローラとして機
能し、オペレータが手で持って移動できる程度の大きさ
に形成されている。前記発光部10は機器本体27の任
意位置に設置され、前記検出部11は操作部材29の前
面に設置されている。また、上記〜式に示された各
演算は、操作部材29内で行われ、その結果が有線また
は無線で機器本体27に伝達され、あるいは、検出部1
1の受光検出出力のみが機器本体27に伝達され、機器
本体27側で上記の演算が行われる。
FIG. 9 shows a schematic structure of an entrance / exit device to which the above-described spatial coordinate detecting device is applied. The entrance / exit device has a device main body 27 on the fixed side, and the device main body 27 includes a computer, an AV device, a game console main body, or the like. And has a CRT screen 28. Further, the moving side is an operating member 29, and this operating member 29 functions as a remote controller and is formed in a size that an operator can hold and move by hand. The light emitting unit 10 is installed at an arbitrary position of the device body 27, and the detection unit 11 is installed on the front surface of the operation member 29. Further, each calculation shown in the above formulas is performed within the operation member 29, and the result is transmitted to the device body 27 by wire or wirelessly, or the detection unit 1
Only the received light detection output of No. 1 is transmitted to the device body 27, and the above calculation is performed on the device body 27 side.

【0026】図9では、両光源12,13の中心が画面
28の中心の(イ)の位置に示されているが、実際の装
置では、両光源12,13の中心は画面28から外れた
例えば(ロ)で示す位置に設置される。この場合、検出
部11の前方に延びるZ軸が画面28の中心に向けられ
た時に、検出部11の中心と発光部10の中心とを結ぶ
線J0と、Z軸との間にオフセット角θ0が生じるため、
検出部11にて検出されたY方向の検出角度から前記オ
フセット角θ0を除算すれば、画面28に対するZ軸の
向き(対向角度)θyを算出することができる。あるい
は、両光源12,13の中心を画面28の中心に位置さ
せ、この中心を通るY軸上にて画面28から外れた上下
位置(ハ)に両光源12,13を配置すれば、前記オフ
セット角θ0を除算する必要はなくなる。
In FIG. 9, the centers of both light sources 12 and 13 are shown at the position (a) at the center of the screen 28, but in the actual device, the centers of both light sources 12 and 13 are off the screen 28. For example, it is installed at the position shown in (b). In this case, when the Z axis extending in front of the detection unit 11 is directed to the center of the screen 28, an offset angle is formed between the line J 0 connecting the center of the detection unit 11 and the center of the light emitting unit 10 and the Z axis. Since θ 0 occurs,
If the offset angle θ 0 is divided from the detection angle in the Y direction detected by the detection unit 11, the direction (opposing angle) θy of the Z axis with respect to the screen 28 can be calculated. Alternatively, if the centers of the light sources 12 and 13 are located at the center of the screen 28 and the light sources 12 and 13 are arranged at a vertical position (c) deviating from the screen 28 on the Y axis passing through the center, the offset can be obtained. It is no longer necessary to divide the angle θ 0 .

【0027】この入力装置では、操作部材29がZ軸に
対して角度θzだけ回転しても、その回転角度θzを加
味して、機器本体27側のX−Y座標(空間での固定座
標)に対するX方向とY方向の傾きθx,θyを検出す
ることができる。このため、手で持った操作部材29が
角度θzだけ回転した姿勢であっても、機器本体27に
対してθxとθyの傾き量の情報を与えることができ、
例えば画面28上に表示されるカーソルマークをX−Y
座標上にて移動させることができる。すなわち、空間内
にて操作部材29を自由に動かして画面28での画像処
理、例えば線を描いたり、画面28上の釦表示にカーソ
ルマークを合わせてスイッチ操作し、画面を切換える等
の入力が可能となり、この場合、手で持った操作部材2
9がZ軸に対して回転したとしても、この回転によって
X−Y座標に対する入力動作が狂うことはない。
In this input device, even if the operating member 29 is rotated by the angle θz with respect to the Z axis, the rotation angle θz is taken into consideration, and the XY coordinates (fixed coordinates in space) on the device body 27 side are taken into consideration. It is possible to detect the inclinations θx and θy in the X and Y directions with respect to. For this reason, even if the operating member 29 held by hand is in the posture rotated by the angle θz, it is possible to give the information about the inclination amounts of θx and θy to the device body 27.
For example, if the cursor mark displayed on the screen 28 is XY
It can be moved on the coordinates. That is, image input on the screen 28 by freely moving the operating member 29 in the space, for example, drawing a line, or operating the switch by moving the cursor mark to the button display on the screen 28 to switch the screen is performed. It becomes possible, in this case, the operating member 2 held by hand
Even if 9 rotates about the Z axis, this rotation does not disturb the input operation for the XY coordinates.

【0028】また、この入力装置では、Z軸に対する操
作部材29の回転角度θzを、機器本体27の画面28
での表示に対する指示情報として利用できる。例えば操
作部材29を角度θzだけ回転させることにより、画面
28に表われた画像を機器本体27側のX−Y座標内に
て回転させる等の操作ができ、これは描画処理やゲーム
ソフトでのキャラクタの回転動作等に利用できる。
Further, in this input device, the rotation angle θz of the operating member 29 with respect to the Z-axis is determined by the screen 28 of the device body 27.
It can be used as instruction information for display in. For example, by rotating the operation member 29 by an angle θz, operations such as rotating the image displayed on the screen 28 within the XY coordinates on the device body 27 side can be performed. It can be used for rotating characters.

【0029】また、この入力装置では、機器本体27と
操作部材29の相対的なY軸方向の移動量Qを検出でき
るため、この移動量Qを機器本体27の画面28での表
示に対する指示情報として利用できる。
Further, since this input device can detect the relative movement amount Q in the Y-axis direction between the device body 27 and the operating member 29, this movement amount Q is the instruction information for the display on the screen 28 of the device body 27. Available as

【0030】さらに、機器本体27側に操作部材29ま
での距離Lの情報を与えることができるため、操作部材
29が画面28に近づいている時と、操作部材29が画
面28から離れている時とで操作感触に違いを感じさせ
ないようにすることができる。すなわち、操作部材29
をθxとθy方向の傾き角度のみに基づいて画面28上
でカーソルマークを移動させた場合、例えば操作部材2
9を画面28に近づけた位置でθx方向へ傾けた時と、
操作部材29を画面28から十分に離した位置でθx方
向へ同じ角度だけ傾けた時とで、この傾き角度θxの情
報に基づく画面28上でのカーソルマークの移動量は同
じ距離になるため、画面28から離れた位置で操作部材
29を傾けた時に画面28上でカーソルマークがあまり
動いていないような感触となる。そこで、上記式また
は式により演算された距離Lを加味し、例えば発光部
10と検出部11との距離Lが長くなるにしたがって、
操作部材29のθxまたはθy方向の傾きに対し、画面
28上でのカーソルマークの移動距離を長くするような
補正を行うと、操作部材29が画面28に近づいた場合
と離れた場合とでの操作感触の違いを補正することがで
きる。
Further, since the information of the distance L to the operation member 29 can be given to the device body 27 side, when the operation member 29 is close to the screen 28 and when the operation member 29 is away from the screen 28. You can make the operation feel the same with and. That is, the operating member 29
When the cursor mark is moved on the screen 28 based on only the tilt angles in the θx and θy directions, for example, the operation member 2
When 9 is tilted in the θx direction at a position close to the screen 28,
When the operation member 29 is tilted by the same angle in the θx direction at a position sufficiently separated from the screen 28, the movement amount of the cursor mark on the screen 28 based on the information of the tilt angle θx becomes the same distance. When the operation member 29 is tilted at a position away from the screen 28, the user feels that the cursor mark does not move much on the screen 28. Therefore, considering the above formula or the distance L calculated by the formula, for example, as the distance L between the light emitting unit 10 and the detecting unit 11 becomes longer,
When the correction of increasing the moving distance of the cursor mark on the screen 28 is performed with respect to the inclination of the operating member 29 in the θx or θy direction, the operating member 29 may approach the screen 28 or move away from the screen 28. It is possible to correct the difference in operation feeling.

【0031】あるいは、これとは逆に操作部材29が画
面28からかなり遠くに離れた時には、上記補正により
操作部材29がわずかに傾いただけで画面28上のカー
ソルマークが大きく動き、手振れによる操作入力の狂い
が生じるおそれもある。この場合には、前記と逆の補正
を行い、距離Lが長くなった時には、操作部材29のθ
xおよびθyの傾きに対し画面28上でのカーソルマー
クの移動距離を短く抑えるようにすれば良い。
On the contrary, when the operating member 29 is far away from the screen 28, the operating member 29 is slightly tilted by the above correction, and the cursor mark on the screen 28 moves greatly, resulting in an operation input due to camera shake. There is also a possibility that the madness of. In this case, the correction reverse to the above is performed, and when the distance L becomes long, the θ of the operation member 29 is changed.
The movement distance of the cursor mark on the screen 28 with respect to the inclinations of x and θy may be kept short.

【0032】なお、上記実施例では、第2の受光素子1
8として、XおよびY方向に分割された分割受光部18
a〜18dを有する4分割受光素子を例示したが、X方
向に分割された2分割受光素子とY方向に分割された2
分割受光素子とを用い、これら両2分割受光素子をきわ
めて接近した距離に配置しても良い。この場合、両光源
12,13からのスポット光をそれぞれの2分割受光素
子に照射する必要があるため、絞り口の数は1つ増えて
合計で3個となる。
In the above embodiment, the second light receiving element 1
8, the divided light receiving portion 18 divided in the X and Y directions
Although the four-divided light receiving element having a to 18d is illustrated, the two-divided light receiving element divided in the X direction and the two divided light receiving elements in the Y direction.
A split light receiving element may be used, and these two split light receiving elements may be arranged at extremely close distances. In this case, since it is necessary to irradiate the spot light from both the light sources 12 and 13 to the respective two-divided light receiving elements, the number of apertures is increased by one to be three in total.

【0033】[0033]

【発明の効果】以上説明したように、本発明の空間座標
検出装置によれば、発光部と検出部を結ぶ軸に対する両
部の相対的な傾き角度や回転角度のみならず、両部のZ
軸方向とY軸方向の相対的な距離検出を簡単な構造で高
精度に検出することができる。したがって、この空間座
標検出装置を入力装置に応用した場合には、手で持った
操作部材の直交座標の回転成分を加味した状態で、画面
上のカーソルマークを上記傾き角度に対応して移動制御
することができ、しかも、上記Z軸方向とY軸方向の距
離を加味することにより、発光部と検出部間の距離変動
に伴う操作感触の違いを補正することができる。
As described above, according to the spatial coordinate detecting device of the present invention, not only the relative tilt angle and rotation angle of both parts with respect to the axis connecting the light emitting part and the detecting part, but also the Z part of both parts.
The relative distance between the axial direction and the Y-axis direction can be detected with high accuracy with a simple structure. Therefore, when this spatial coordinate detection device is applied to an input device, movement control of the cursor mark on the screen corresponding to the tilt angle is performed in consideration of the rotation component of the orthogonal coordinates of the operating member held by hand. Moreover, by adding the distances in the Z-axis direction and the Y-axis direction, it is possible to correct the difference in the operation feeling due to the variation in the distance between the light emitting unit and the detecting unit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る空間座標検出装置の基本
構造を示す斜視図である。
FIG. 1 is a perspective view showing a basic structure of a spatial coordinate detecting device according to an embodiment of the present invention.

【図2】該空間座標検出装置図に備えられる1つの光学
系を示す断面図である。
FIG. 2 is a cross-sectional view showing one optical system provided in the spatial coordinate detection device diagram.

【図3】該空間座標検出装置に備えられる他の光学系を
示す断面図である。
FIG. 3 is a cross-sectional view showing another optical system provided in the spatial coordinate detecting device.

【図4】該空間座標検出装置図に備えられる第1の受光
素子の平面図である。
FIG. 4 is a plan view of a first light receiving element included in the spatial coordinate detection device diagram.

【図5】該空間座標検出装置に備えられる第2の受光素
子の平面図である。
FIG. 5 is a plan view of a second light receiving element included in the spatial coordinate detecting device.

【図6】図3の光学系を模式的に示す説明図である。FIG. 6 is an explanatory view schematically showing the optical system of FIG.

【図7】該空間座標検出装置に備えられる回路構成を示
すブロック図である。
FIG. 7 is a block diagram showing a circuit configuration provided in the spatial coordinate detection device.

【図8】図7の回路の後段を示すブロック図である。8 is a block diagram showing a latter stage of the circuit of FIG.

【図9】図1の空間座標検出装置を適用した入力装置の
斜視図である。
9 is a perspective view of an input device to which the spatial coordinate detection device of FIG. 1 is applied.

【図10】従来の入力装置を示す斜視図である。FIG. 10 is a perspective view showing a conventional input device.

【符号の説明】[Explanation of symbols]

10 発光部 11 検出部 12,13 光源 14 可視光カットフィルタ 15 絞り板 15a,15b 絞り口 16 受光素子群 17 第1の受光素子 17a,17b 分割受光部 18 第2の受光素子 18a,18b,18c,18d 分割受光部 S12A,S12b,S13A,S13B スポット光 27 機器本体 28 画面 29 操作部材 Reference Signs List 10 light emitting section 11 detection section 12, 13 light source 14 visible light cut filter 15 diaphragm plate 15a, 15b diaphragm aperture 16 light receiving element group 17 first light receiving element 17a, 17b split light receiving section 18 second light receiving element 18a, 18b, 18c , 18d Split light receiving section S12A, S12b, S13A, S13B Spot light 27 Device body 28 Screen 29 Operating member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 荒尾 東京都大田区雪谷大塚町1番7号 アルプ ス電気株式会社内 (72)発明者 斉藤 潤一 東京都大田区雪谷大塚町1番7号 アルプ ス電気株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sato Arao 1-7 Yukiya Otsuka-cho, Ota-ku, Tokyo Alps Electric Co., Ltd. (72) Inventor Junichi Saito 1-7 Yukiya-Otsuka-cho, Ota-ku, Tokyo Alp Su Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 発光部と検出部とが離れた位置に配置さ
れ、前記発光部には、識別可能な光を発する2個の光源
が間隔を開けて配置され、前記検出部には、前記両光源
から発せられた光を所定面積のスポット光に絞る複数の
開口と、各開口に対向し前記スポット光を受光する複数
組の受光素子とが設けられ、前記各開口は任意のX−Y
直交座標を設定した時にY軸方向に沿って配置され、前
記各受光素子の1組は前記スポット光のY軸方向の移動
を検出するY側受光素子であり、残りの組は前記スポッ
ト光のX軸とY軸方向の移動を検出するX−Y側受光素
子であることを特徴とする空間座標検出装置。
1. A light emitting unit and a detecting unit are arranged at positions separated from each other, two light sources that emit identifiable light are arranged at intervals in the light emitting unit, and the detecting unit includes A plurality of apertures for narrowing the light emitted from both light sources into spot lights of a predetermined area and a plurality of sets of light receiving elements facing each aperture and receiving the spot light are provided, and each aperture is an arbitrary XY
When the Cartesian coordinates are set, they are arranged along the Y-axis direction, one set of each of the light-receiving elements is a Y-side light-receiving element that detects the movement of the spot light in the Y-axis direction, and the rest of the sets are of the spot light. A spatial coordinate detection device, which is an XY side light receiving element that detects movement in the X-axis and Y-axis directions.
【請求項2】 請求項1の記載において、前記Y側受光
素子と前記X−Y側受光素子のY側受光部からの受光光
量に基づいて、これらY側受光素子とX−Y側受光素子
に照射される各スポット光の位置を求める演算部が設け
られていることを特徴とする空間座標検出装置。
2. The Y side light receiving element and the XY side light receiving element according to claim 1, based on the amount of light received from the Y side light receiving element of the Y side light receiving element and the XY side light receiving element. A spatial coordinate detection device, characterized in that a calculation unit for determining the position of each spot light irradiated on the space coordinate detection device is provided.
【請求項3】 請求項1の記載において、前記X−Y側
受光部のX側およびY側受光部からの受光光量に基づい
て、該X−Y側受光素子に照射される両スポット光の位
置を求める演算部が設けられていることを特徴とする空
間座標検出装置。
3. The method according to claim 1, wherein, based on the amounts of light received from the X-side and Y-side light-receiving portions of the XY-side light-receiving portion, the two spot light beams irradiated to the XY-side light-receiving element are detected. A spatial coordinate detecting device, characterized in that a calculation unit for obtaining a position is provided.
【請求項4】 請求項1〜3のいずれかの記載におい
て、前記検出部には、2つの開口と、一方の開口を通過
したスポット光を検出するY軸方向に分割された2分割
受光素子と、他方の開口を通過したスポット光を検出す
るX軸およびY軸方向に分割された4分割受光素子とが
設けられていることを特徴とする空間座標検出装置。
4. The two-divided light receiving element according to claim 1, wherein the detection section has two openings and a Y-axis-divided light receiving element that detects spot light that has passed through one of the openings. And a four-division light-receiving element divided in the X-axis and Y-axis directions for detecting spot light that has passed through the other opening.
【請求項5】 請求項1〜4のいずれかの記載におい
て、前記発光部は画面を有する機器本体側に配設され、
前記検出部はオペレータによって手動操作される操作部
材側に配設されていることを特徴とする空間座標検出装
置。
5. The device according to claim 1, wherein the light emitting unit is arranged on a device body side having a screen,
The spatial coordinate detection device, wherein the detection unit is arranged on the side of an operation member that is manually operated by an operator.
JP24150594A 1994-05-26 1994-10-05 Spatial coordinate detector Expired - Fee Related JP3416291B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24150594A JP3416291B2 (en) 1994-10-05 1994-10-05 Spatial coordinate detector
GB9510424A GB2289756B (en) 1994-05-26 1995-05-23 Space coordinates detecting device and input apparatus using same
US08/452,453 US5627565A (en) 1994-05-26 1995-05-26 Space coordinates detecting device and input apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24150594A JP3416291B2 (en) 1994-10-05 1994-10-05 Spatial coordinate detector

Publications (2)

Publication Number Publication Date
JPH08106352A true JPH08106352A (en) 1996-04-23
JP3416291B2 JP3416291B2 (en) 2003-06-16

Family

ID=17075332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24150594A Expired - Fee Related JP3416291B2 (en) 1994-05-26 1994-10-05 Spatial coordinate detector

Country Status (1)

Country Link
JP (1) JP3416291B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062981A (en) * 2000-08-16 2002-02-28 Nippon Hoso Kyokai <Nhk> Display screen indicating device
JP2007226397A (en) * 2006-02-22 2007-09-06 Sharp Corp Apparatus, method and program for pointing, and recording medium recorded with pointing program
JP2010204994A (en) * 2009-03-04 2010-09-16 Epson Imaging Devices Corp Optical position detecting device, display device with position detecting function, and electronic apparatus
JP2011090682A (en) * 2009-10-26 2011-05-06 Pixart Imaging Inc Controller and control method for image display
US8834271B2 (en) 2005-08-24 2014-09-16 Nintendo Co., Ltd. Game controller and game system
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
US8888576B2 (en) 1999-02-26 2014-11-18 Mq Gaming, Llc Multi-media interactive play system
US8907889B2 (en) 2005-01-12 2014-12-09 Thinkoptics, Inc. Handheld vision based absolute pointing system
US8913011B2 (en) 2001-02-22 2014-12-16 Creative Kingdoms, Llc Wireless entertainment device, system, and method
US8913003B2 (en) 2006-07-17 2014-12-16 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer using a projection marker system
US8937594B2 (en) 2004-04-30 2015-01-20 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US8961260B2 (en) 2000-10-20 2015-02-24 Mq Gaming, Llc Toy incorporating RFID tracking device
US9011248B2 (en) 2005-08-22 2015-04-21 Nintendo Co., Ltd. Game operating device
US9039533B2 (en) 2003-03-25 2015-05-26 Creative Kingdoms, Llc Wireless interactive game having both physical and virtual elements
US9149717B2 (en) 2000-02-22 2015-10-06 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9176598B2 (en) 2007-05-08 2015-11-03 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer with improved performance
US9261978B2 (en) 2004-04-30 2016-02-16 Hillcrest Laboratories, Inc. 3D pointing devices and methods
USRE45905E1 (en) 2005-09-15 2016-03-01 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US9272206B2 (en) 2002-04-05 2016-03-01 Mq Gaming, Llc System and method for playing an interactive game
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US9616334B2 (en) 2002-04-05 2017-04-11 Mq Gaming, Llc Multi-platform gaming system using RFID-tagged toys
US10159897B2 (en) 2004-11-23 2018-12-25 Idhl Holdings, Inc. Semantic gaming and application transformation

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9468854B2 (en) 1999-02-26 2016-10-18 Mq Gaming, Llc Multi-platform gaming systems and methods
US9731194B2 (en) 1999-02-26 2017-08-15 Mq Gaming, Llc Multi-platform gaming systems and methods
US9186585B2 (en) 1999-02-26 2015-11-17 Mq Gaming, Llc Multi-platform gaming systems and methods
US10300374B2 (en) 1999-02-26 2019-05-28 Mq Gaming, Llc Multi-platform gaming systems and methods
US8888576B2 (en) 1999-02-26 2014-11-18 Mq Gaming, Llc Multi-media interactive play system
US9861887B1 (en) 1999-02-26 2018-01-09 Mq Gaming, Llc Multi-platform gaming systems and methods
US9474962B2 (en) 2000-02-22 2016-10-25 Mq Gaming, Llc Interactive entertainment system
US9579568B2 (en) 2000-02-22 2017-02-28 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9814973B2 (en) 2000-02-22 2017-11-14 Mq Gaming, Llc Interactive entertainment system
US8915785B2 (en) 2000-02-22 2014-12-23 Creative Kingdoms, Llc Interactive entertainment system
US9713766B2 (en) 2000-02-22 2017-07-25 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US10188953B2 (en) 2000-02-22 2019-01-29 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9149717B2 (en) 2000-02-22 2015-10-06 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US10307671B2 (en) 2000-02-22 2019-06-04 Mq Gaming, Llc Interactive entertainment system
JP2002062981A (en) * 2000-08-16 2002-02-28 Nippon Hoso Kyokai <Nhk> Display screen indicating device
US9480929B2 (en) 2000-10-20 2016-11-01 Mq Gaming, Llc Toy incorporating RFID tag
US9320976B2 (en) 2000-10-20 2016-04-26 Mq Gaming, Llc Wireless toy systems and methods for interactive entertainment
US8961260B2 (en) 2000-10-20 2015-02-24 Mq Gaming, Llc Toy incorporating RFID tracking device
US10307683B2 (en) 2000-10-20 2019-06-04 Mq Gaming, Llc Toy incorporating RFID tag
US9931578B2 (en) 2000-10-20 2018-04-03 Mq Gaming, Llc Toy incorporating RFID tag
US10758818B2 (en) 2001-02-22 2020-09-01 Mq Gaming, Llc Wireless entertainment device, system, and method
US9162148B2 (en) 2001-02-22 2015-10-20 Mq Gaming, Llc Wireless entertainment device, system, and method
US10179283B2 (en) 2001-02-22 2019-01-15 Mq Gaming, Llc Wireless entertainment device, system, and method
US9737797B2 (en) 2001-02-22 2017-08-22 Mq Gaming, Llc Wireless entertainment device, system, and method
US8913011B2 (en) 2001-02-22 2014-12-16 Creative Kingdoms, Llc Wireless entertainment device, system, and method
US9393491B2 (en) 2001-02-22 2016-07-19 Mq Gaming, Llc Wireless entertainment device, system, and method
US9463380B2 (en) 2002-04-05 2016-10-11 Mq Gaming, Llc System and method for playing an interactive game
US10010790B2 (en) 2002-04-05 2018-07-03 Mq Gaming, Llc System and method for playing an interactive game
US11278796B2 (en) 2002-04-05 2022-03-22 Mq Gaming, Llc Methods and systems for providing personalized interactive entertainment
US9616334B2 (en) 2002-04-05 2017-04-11 Mq Gaming, Llc Multi-platform gaming system using RFID-tagged toys
US10507387B2 (en) 2002-04-05 2019-12-17 Mq Gaming, Llc System and method for playing an interactive game
US10478719B2 (en) 2002-04-05 2019-11-19 Mq Gaming, Llc Methods and systems for providing personalized interactive entertainment
US9272206B2 (en) 2002-04-05 2016-03-01 Mq Gaming, Llc System and method for playing an interactive game
US10369463B2 (en) 2003-03-25 2019-08-06 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US10022624B2 (en) 2003-03-25 2018-07-17 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9993724B2 (en) 2003-03-25 2018-06-12 Mq Gaming, Llc Interactive gaming toy
US9039533B2 (en) 2003-03-25 2015-05-26 Creative Kingdoms, Llc Wireless interactive game having both physical and virtual elements
US10583357B2 (en) 2003-03-25 2020-03-10 Mq Gaming, Llc Interactive gaming toy
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US8961312B2 (en) 2003-03-25 2015-02-24 Creative Kingdoms, Llc Motion-sensitive controller and associated gaming applications
US9770652B2 (en) 2003-03-25 2017-09-26 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9707478B2 (en) 2003-03-25 2017-07-18 Mq Gaming, Llc Motion-sensitive controller and associated gaming applications
US11052309B2 (en) 2003-03-25 2021-07-06 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9393500B2 (en) 2003-03-25 2016-07-19 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9575570B2 (en) 2004-04-30 2017-02-21 Hillcrest Laboratories, Inc. 3D pointing devices and methods
US10782792B2 (en) 2004-04-30 2020-09-22 Idhl Holdings, Inc. 3D pointing devices with orientation compensation and improved usability
US8937594B2 (en) 2004-04-30 2015-01-20 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US11157091B2 (en) 2004-04-30 2021-10-26 Idhl Holdings, Inc. 3D pointing devices and methods
US10514776B2 (en) 2004-04-30 2019-12-24 Idhl Holdings, Inc. 3D pointing devices and methods
US9946356B2 (en) 2004-04-30 2018-04-17 Interdigital Patent Holdings, Inc. 3D pointing devices with orientation compensation and improved usability
US9298282B2 (en) 2004-04-30 2016-03-29 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US9261978B2 (en) 2004-04-30 2016-02-16 Hillcrest Laboratories, Inc. 3D pointing devices and methods
US9675878B2 (en) 2004-09-29 2017-06-13 Mq Gaming, Llc System and method for playing a virtual game by sensing physical movements
US11154776B2 (en) 2004-11-23 2021-10-26 Idhl Holdings, Inc. Semantic gaming and application transformation
US10159897B2 (en) 2004-11-23 2018-12-25 Idhl Holdings, Inc. Semantic gaming and application transformation
US8907889B2 (en) 2005-01-12 2014-12-09 Thinkoptics, Inc. Handheld vision based absolute pointing system
US10155170B2 (en) 2005-08-22 2018-12-18 Nintendo Co., Ltd. Game operating device with holding portion detachably holding an electronic device
US10661183B2 (en) 2005-08-22 2020-05-26 Nintendo Co., Ltd. Game operating device
US9498728B2 (en) 2005-08-22 2016-11-22 Nintendo Co., Ltd. Game operating device
US10238978B2 (en) 2005-08-22 2019-03-26 Nintendo Co., Ltd. Game operating device
US9700806B2 (en) 2005-08-22 2017-07-11 Nintendo Co., Ltd. Game operating device
US9011248B2 (en) 2005-08-22 2015-04-21 Nintendo Co., Ltd. Game operating device
US9044671B2 (en) 2005-08-24 2015-06-02 Nintendo Co., Ltd. Game controller and game system
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
US8834271B2 (en) 2005-08-24 2014-09-16 Nintendo Co., Ltd. Game controller and game system
US9227138B2 (en) 2005-08-24 2016-01-05 Nintendo Co., Ltd. Game controller and game system
US10137365B2 (en) 2005-08-24 2018-11-27 Nintendo Co., Ltd. Game controller and game system
US11027190B2 (en) 2005-08-24 2021-06-08 Nintendo Co., Ltd. Game controller and game system
US9498709B2 (en) 2005-08-24 2016-11-22 Nintendo Co., Ltd. Game controller and game system
USRE45905E1 (en) 2005-09-15 2016-03-01 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
JP2007226397A (en) * 2006-02-22 2007-09-06 Sharp Corp Apparatus, method and program for pointing, and recording medium recorded with pointing program
US8913003B2 (en) 2006-07-17 2014-12-16 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer using a projection marker system
US9176598B2 (en) 2007-05-08 2015-11-03 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer with improved performance
JP2010204994A (en) * 2009-03-04 2010-09-16 Epson Imaging Devices Corp Optical position detecting device, display device with position detecting function, and electronic apparatus
JP2011090682A (en) * 2009-10-26 2011-05-06 Pixart Imaging Inc Controller and control method for image display

Also Published As

Publication number Publication date
JP3416291B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
JP3416291B2 (en) Spatial coordinate detector
JP3217926B2 (en) Spatial coordinate detector
JP3204844B2 (en) Angle detecting device and input device using the same
JP3059619B2 (en) Tilt detecting device and input device using the same
US6417839B1 (en) System for position and orientation determination of a point in space using scanning laser beams
JP3194841B2 (en) Tilt detecting device and input device using the same
JPH0895704A (en) Spatial coordinate detecting device
US4698626A (en) Coordinate-data input device for CRT display having cursor travel control means
US9405384B2 (en) Computer system and control method for same
US6597443B2 (en) Spatial tracking system
JP2901476B2 (en) Position detecting device and position detecting method
CN102460563B (en) The position measuring system of use location sensitive detectors
CN101366001B (en) Transmitter, receiver, ans system with relative position detecting functionality between transmitters and receivers
JPH0895539A (en) Presentation supporting device
US20030043362A1 (en) Six dimensional laser tracking system and method
US20030210255A1 (en) Image display processing apparatus, image display processing method, and computer program
JPH08211993A (en) Inclination detector
JP3193605B2 (en) Position pointing device and system
US20100073289A1 (en) 3d control of data processing through handheld pointing device
JP4067569B2 (en) Position sensing unit and multidimensional pointer including one or more such units
US6982407B2 (en) Photoelectric conversion unit having a plurality of photoelectric conversion surfaces and systems and methods for measuring location and/or direction using the photoelectric conversion unit
JP3523583B2 (en) Three-dimensional position / posture measuring apparatus and method, and recording medium
JP2623828B2 (en) Coordinate pointing device and position detecting device
JP2002259040A (en) Output device for optical coordinate information
JPS6288904A (en) Detecting method for displacement and rotation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030318

LAPS Cancellation because of no payment of annual fees