JPH0810606B2 - Voltage sensitive switching element - Google Patents

Voltage sensitive switching element

Info

Publication number
JPH0810606B2
JPH0810606B2 JP61279969A JP27996986A JPH0810606B2 JP H0810606 B2 JPH0810606 B2 JP H0810606B2 JP 61279969 A JP61279969 A JP 61279969A JP 27996986 A JP27996986 A JP 27996986A JP H0810606 B2 JPH0810606 B2 JP H0810606B2
Authority
JP
Japan
Prior art keywords
electrode
voltage
switching element
conductive
sensitive switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61279969A
Other languages
Japanese (ja)
Other versions
JPS63133465A (en
Inventor
龍 長井
浩 服部
俊勝 真辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP61279969A priority Critical patent/JPH0810606B2/en
Publication of JPS63133465A publication Critical patent/JPS63133465A/en
Publication of JPH0810606B2 publication Critical patent/JPH0810606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は二次電池の過放電保護素子や電気量記憶素
子を始めとして広範な用途に利用できる新規素子である
電圧感応型スイツチング素子に関する。
TECHNICAL FIELD The present invention relates to a voltage sensitive switching element which is a novel element which can be used in a wide range of applications including an overdischarge protection element for a secondary battery and an electricity storage element.

〔従来の技術〕 従来、二次電池の保護回路として、充電終止電圧を決
める回路の短絡時もしくは設定値以上の電流が流れた際
に電池と負荷とを切り離す回路が知られているが、充放
電性能を良好に維持するには逆に所定の電圧以下で電池
と負荷とを切り離して過放電を防止することも必要であ
り、とくに近年開発されているリチウム系の二次電池で
は上記の過放電の防止が強く要望されている(文献不
詳)。
[Prior Art] Conventionally, as a secondary battery protection circuit, a circuit that disconnects the battery from the load when a circuit that determines the end-of-charge voltage is short-circuited or when a current exceeding a set value flows is known. To maintain good discharge performance, on the contrary, it is also necessary to separate the battery and the load at a prescribed voltage or less to prevent over-discharge. There is a strong demand for prevention of discharge (literature unknown).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の過放電を防止する回路は、電池の試験装置など
には当然に組み込まれているが、二次電池自体やこれを
用いた電気機器に組み込むことは容積効率、エネルギー
効率あるいはコスト上の制約から不可能である。また、
単一素子として過放電防止に利用できる特性を有するも
のは、現在のところ開発されていない。
The above-mentioned circuit for preventing over-discharging is naturally incorporated in a battery testing device, etc., but incorporating it in the secondary battery itself or electric equipment using this is a constraint on volume efficiency, energy efficiency or cost. Because it is impossible. Also,
As a single element, what has characteristics that can be used for preventing over-discharge has not been developed so far.

この発明は、上述の事情に鑑みてなされたもので、所
定の電圧以下で抵抗値が大幅に増大する特性を有し、こ
れを接続した回路が上記電圧を境として開閉され、たと
えば二次電池と組み合せた場合には放電終止電圧を設定
できるという画期的な電圧感応型スイツチング素子を提
供することを目的としている。
The present invention has been made in view of the above circumstances, and has a characteristic that the resistance value significantly increases at a predetermined voltage or less, and a circuit connecting the same is opened and closed with the voltage as a boundary, for example, a secondary battery. An object of the present invention is to provide an epoch-making voltage-sensitive switching element in which the discharge end voltage can be set when combined with.

〔問題点を解決するための手段〕[Means for solving problems]

この発明者らは、上記目的を達成するために鋭意検討
を重ねる過程で、最近において盛んに研究されている所
謂ポリマー電池の電極材料となる高分子物質に着目し
た。すなわち、有機高分子物質は一般に不導体である
が、上記電極材料となる高分子物質のようにイオンのド
ーピングによつて導電性を獲得する性質を有するものが
あり、上記ポリマー電池はこの導体領域でのドーピング
量の変化に伴う電極電位の変化を利用している。この発
明者らは、このようなポリマー電池における電極とした
高分子物質中のイオンのドーピング量の変化が、たとえ
ばポリアニリン/LiMoO2系の電池構成では第3図で示す
ように両極間の電圧が1.8V付近でポリアニリンからなる
電極自体の電導度が約1桁も大幅に変動するように、あ
る電圧値を境として急激になされること、したがつてこ
の変化をある電圧を境として回路を開閉するスイツチン
グ機能に応用できることを見い出し、従来存在しなかつ
た新規素子であるこの発明の電圧感応型スイツチング素
子の開発に初めて成功した。
In the process of earnestly studying to achieve the above-mentioned object, the present inventors have paid attention to a polymer substance serving as an electrode material for a so-called polymer battery, which has recently been actively studied. That is, although an organic polymer substance is generally a non-conductor, there is a polymer substance having the property of acquiring conductivity by ion doping like the polymer substance used as the electrode material. The change in the electrode potential due to the change in the doping amount is used. The inventors of the present invention have found that the change in the doping amount of ions in the polymer material used as the electrode in such a polymer battery is such that the voltage between the two electrodes is changed as shown in FIG. 3 in the polyaniline / LiMoO 2 system battery configuration. Around a certain voltage value, the electrical conductivity of the electrode made of polyaniline fluctuates significantly by about one digit at around 1.8 V, so that the voltage is sharply changed. Therefore, the circuit is opened and closed with a certain voltage as a boundary. It has been found that it can be applied to a switching function of a voltage sensitive switching device of the present invention, which is a novel device that has never existed in the past.

すなわち、この発明は、少なくとも一方の電極がイオ
ンのドーピングによつて導電性を獲得する高分子物質か
らなる一対の電極間にイオン伝導性物質を介在させ、上
記高分子物質からなる一方の電極を回路を構成する正負
導電路の一方に直列接続するとともに、他方の電極を上
記導電路の他方に接続してなる電圧感応型スイツチング
素子に係る。
That is, according to the present invention, at least one electrode has an ion conductive substance interposed between a pair of electrodes made of a polymer substance that acquires conductivity by ion doping, and one electrode made of the above polymer substance is used. The present invention relates to a voltage-sensitive switching element which is connected in series to one of positive and negative conductive paths forming a circuit and has the other electrode connected to the other of the conductive paths.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明の電圧感応型スイツチング素子は、それ自体
でポリマー電池の構造を有しており、第1図で示す素子
D1と第2図で示す素子D2の2通りの素子構成がある。す
なわち、素子D1は、イオンのドーピングによつて導電性
を獲得する高分子物質からなる電極P1と他の電極材料か
らなる電極P2とがイオン伝導性物質Eを介して対向配置
され、電源部Sと負荷Rとを結ぶ回路のプラス側の導電
路L1に上記電極P1が直列に接続されるとともに、マイナ
ス側の導電路L2に上記電極P2が単に接続された構成であ
る。また、素子D2は、ともにイオンのドーピングによつ
て導電性を獲得する高分子物質からなる一対の電極P1,P
1がイオン導電性物質Eを介して対向配置され、これら
電極P1,P1がプラス側の導電路L1とマイナス側の導電路L
2にそれぞれ直列に接続された構成である。
The voltage-sensitive switching element of the present invention has the structure of a polymer battery by itself, and the element shown in FIG.
There are two device configurations, D 1 and device D 2 shown in FIG. That is, in the device D 1 , an electrode P 1 made of a polymer substance that acquires conductivity by ion doping and an electrode P 2 made of another electrode material are arranged to face each other with the ion conductive substance E interposed therebetween. In the configuration in which the electrode P 1 is connected in series to the positive side conductive path L 1 of the circuit connecting the power source S and the load R, and the electrode P 2 is simply connected to the negative side conductive path L 2. is there. In addition, the device D 2 has a pair of electrodes P 1 and P 1 made of a polymer substance, which both obtain conductivity by ion doping.
1 are arranged to face each other with the ion conductive substance E interposed therebetween, and these electrodes P 1 and P 1 are connected to the positive side conductive path L 1 and the negative side conductive path L 1.
2 is connected in series.

このような構成の素子D1,D2では、両導電路L1,L2間の
電圧つまり電源部Sの電圧がある値以上である場合に
は、電極P1はこれを構成する高分子物質にイオン伝導性
物質Eを介してイオンがドーピングされた状態となつて
導体として作用し、これを直列接続した第1図における
導電路L1、第2図における導電路L1とL2に電流が流れ
る。しかし、両導電路L1,L2間の電圧が上記値より低下
すると、電極P1は高分子物質中のドーピングイオン量が
減少して不導体化し、この電極P1部分で高抵抗によつて
電流が遮断されることから、電源部Sと負荷Rとが切り
離される。つまり、素子D1,D2はある電圧値を境として
回路を開閉するスイツチング機能を果たす。
In the devices D 1 and D 2 having such a configuration, when the voltage between the conductive paths L 1 and L 2 , that is, the voltage of the power supply section S is a certain value or more, the electrode P 1 is a polymer that constitutes the electrode P 1. The substance is doped with ions through the ion-conducting substance E and acts as a conductor, which is connected in series to the conductive path L 1 in FIG. 1 and the conductive paths L 1 and L 2 in FIG. An electric current flows. However, when the voltage between Ryoshirube paths L 1, L 2 is lower than the value, the electrode P 1 is passivated reduced doping amount of ions in the polymer material, the high-resistance in this electrode P 1 part Since the current is cut off, the power supply S and the load R are disconnected. That is, the elements D 1 and D 2 perform a switching function of opening and closing the circuit with a certain voltage value as a boundary.

このスイツチング機能の転換点となる電圧値は、第1
図の構成の素子D1では電極P1の高分子物質と対極である
電極P2の電極材料との組み合わせならびにイオン伝導性
物質Eの種類によつて種々設定でき、また第2の構成の
素子D2でも電極P1の高分子物質およびイオン伝導性物質
Eの種類によつてある程度変化する。
The voltage value at the turning point of this switching function is the first
In the element D 1 having the configuration shown in the figure, various settings can be made depending on the combination of the polymer substance of the electrode P 1 and the electrode material of the electrode P 2 which is the counter electrode, and the kind of the ion conductive substance E. D 2 also changes to some extent depending on the types of polymer substance and ion conductive substance E of the electrode P 1 .

たとえば、第1図の素子D1において、電極P1としてポ
リアニリン、電極P2としてLiMoO2、イオン伝導性物質E
としてLiBF4をプロピレンカーボネートに溶解してなる
電解液をそれぞれ使用した場合、両電極P1,P2間の電圧
つまり導電路L1,L2間の電圧と電極P1自体の両端間の抵
抗との関係は第3図に示す通りである。つまり、上記の
ポリアニリン/LiMoO2素子D1では、電極P1の抵抗は上記
電圧1.8V付近を境にして約2桁も急激に変化し、電極P1
が1.8Vよりも低電圧側で不導体、同じく高電圧側で導体
となるから、素子D1はほぼ1.8Vを回路開閉動作点とする
電圧感応スイツチング素子となる。
For example, the elements D 1 of the first view, LiMoO 2 polyaniline, as the electrode P 2 as the electrode P 1, ion conductive material E
As an electrolyte solution prepared by dissolving LiBF 4 in propylene carbonate is used as the voltage between both electrodes P 1 and P 2 , that is, the voltage between conductive paths L 1 and L 2 and the resistance between both ends of electrode P 1 itself. The relationship with is as shown in FIG. That is, in the polyaniline / LiMoO 2 device D 1 described above, the resistance of the electrode P 1 drastically changes by about two digits at the boundary of the voltage of about 1.8 V, and the resistance of the electrode P 1
Is a non-conductor on the side of a voltage lower than 1.8 V and a conductor on the side of a high voltage as well, so that the element D 1 is a voltage sensitive switching element having a circuit switching operation point of approximately 1.8 V.

ところで、Li/TiS2二次電池では、その可逆性を良好
に維持するには放電終止電圧を1.8V程度とすることが望
ましいとされている。そこで、素子D1として上記のポリ
アニリン/LiMoO2素子を使用した第1図の構成における
電源部SとしてLi/TiS2二次電池を用いれば、該二次電
池の放電電圧が1.8V付近まで低下した際に素子D1のスイ
ツチング機能により回路が遮断されることになり、した
がつて素子D1は上記二次電池の過放電保護素子となる。
By the way, in the Li / TiS 2 secondary battery, it is said that it is desirable to set the discharge end voltage to about 1.8 V in order to maintain the reversibility of the secondary battery favorably. Therefore, if a Li / TiS 2 secondary battery is used as the power source S in the configuration of FIG. 1 using the above polyaniline / LiMoO 2 device as the device D 1 , the discharge voltage of the secondary battery drops to around 1.8V. At that time, the circuit is cut off by the switching function of the device D 1 , and therefore the device D 1 serves as an overdischarge protection device for the secondary battery.

一方、第2図の素子D2において、両方の電極P1,P1
してポリアニリン、イオン伝導性物質Eとして前記同様
の電解液を使用した場合、両電極P1,P1間の電圧と各電
極P1自体の抵抗との関係は第4図に示す通りである。つ
まり、この素子D2では、各電極P1の抵抗がOVより僅かに
高い上記電圧値を境として2桁以上も急激に変化し、各
電極P1はこの電圧値よりも低電圧側で不導体、同じく高
電圧側で導体となるから、素子D2は0Vよりも僅かに高い
電圧値を動作点とする電圧感応スイツチング素子とな
る。
On the other hand, in the element D 2 of FIG. 2, polyaniline as both electrodes P 1, P 1, when using the same electrolyte as an ion conductive material E, the voltage between the electrodes P 1, P 1 The relationship with the resistance of the electrode P 1 itself is as shown in FIG. In other words, in this element D 2 , the resistance of each electrode P 1 rapidly changes by two digits or more with the voltage value slightly higher than OV as a boundary, and each electrode P 1 has a voltage difference lower than this voltage value. Since the conductor also becomes a conductor on the high voltage side, the element D 2 becomes a voltage sensitive switching element having an operating point of a voltage value slightly higher than 0V.

ところで、Ni−Cd電池や鉛電池は、可逆性にすぐれて
過放電に対しても回復性のよい二次電池であるが、やは
り完全に放電し切つてしまうことは好ましくない。そこ
で、上記素子D2を使用した第2図の構成における電源部
Sとして、これら二次電池を使用することにより、素子
D2はこれら二次電池の放電電圧が0Vまで低下する直前で
負荷Rから切り離す過放電保護素子として作用する。
By the way, the Ni-Cd battery and the lead battery are secondary batteries which are excellent in reversibility and have a good recovery property against over-discharging, but it is not preferable that they are completely discharged. Therefore, as the power supply unit S in the configuration of the second view using the element D 2, by using these secondary batteries, elements
D 2 acts as an over-discharge protection element that disconnects from the load R immediately before the discharge voltage of these secondary batteries drops to 0V.

なお、この発明の電圧感応型スイツチング素子は、前
記作用から明らかなように、上述の如き二次電池に対す
る過放電保護素子に限らず、一定電圧で抵抗値が大幅に
変化することを利用できる各種用途に適用可能である。
また、電極P1を構成する高分子物質のイオンドーピング
量を予め設定しておけば、一定電気量の放電が行われた
際にこれを抵抗値の急激な変化によつて検知する電気量
記憶素子として利用できる。
Incidentally, the voltage-sensitive switching element of the present invention is not limited to the overdischarge protection element for the secondary battery as described above, as is apparent from the above-mentioned action, and various types of resistance values which can be significantly changed at a constant voltage can be used. It can be used for various purposes.
In addition, if the ion doping amount of the polymer substance forming the electrode P 1 is set in advance, when the discharge of a constant amount of electricity is performed, this is detected by a sudden change in the resistance value It can be used as an element.

この発明において電極P1を構成する高分子物質として
は、イオンのドーピングによつて導電性を獲得する高分
子物質であればいずれも使用可能である。その具体例と
しては、前記ポリアニリンのほか、ポリアセチレン、ポ
リパラフエニレン、ポリチオフエン、ポリピロールなど
が挙げられる。そして、このような高分子物質にて電極
P1を形成するには、これら高分子物質の粉末をポリプロ
ピレン製不織布などの非導電性基体に圧着したり結合剤
との混合物を成形するなどの適宜手段でシート形態とし
て用いればよく、またこれら高分子物質自体でシート状
に成形できる場合はこれをそのまま用いればよい。
In the present invention, as the polymer substance that constitutes the electrode P 1 , any polymer substance that acquires conductivity by ion doping can be used. Specific examples thereof include polyacetylene, polyparaphenylene, polythiophene, and polypyrrole, in addition to the polyaniline. And the electrode made of such a polymer substance
In order to form P 1 , powders of these polymer substances may be used in a sheet form by an appropriate means such as press-bonding to a non-conductive substrate such as polypropylene nonwoven fabric or molding a mixture with a binder. If the polymer substance itself can be formed into a sheet, it may be used as it is.

第1図の素子D1における対極の電極P2を構成する電極
材料としては、前記のLiMoO2のようにリチウムをインタ
カレートした各種の電極材料、金属リチウム、リチウム
合金などリチウムを含む材料が好適であるが、これら以
外の種々の電極材料も使用可能である。
As the electrode material forming the counter electrode P 2 in the device D 1 of FIG. 1 , various electrode materials in which lithium is intercalated such as LiMoO 2 described above, and materials containing lithium such as metallic lithium and lithium alloys are used. Although suitable, various electrode materials other than these can also be used.

またイオン伝導性物質Eとしては、LiBF4、LiClO4、L
iBφ(φはフエニル基)、LiPF4、LiCF3SO3、LiAsF6
などのリチウム塩をプロピレンカーボネート、γ−ブチ
ロラクトン、ジメトキシエタン、ジオキシランなどの非
水系溶媒に溶解してなるリチウムイオン伝導性電解液が
好適であるが、これら以外の種々のイオン伝導性物質も
使用可能である。
Further, as the ion conductive substance E, LiBF 4 , LiClO 4 , L
iBφ 4 (φ is a phenyl group), LiPF 4 , LiCF 3 SO 3 , LiAsF 6
A lithium ion conductive electrolytic solution obtained by dissolving a lithium salt such as propylene carbonate, γ-butyrolactone, dimethoxyethane, dioxirane or the like in a non-aqueous solvent is suitable, but various ion conductive substances other than these can also be used. Is.

なお、上記の電極P1の高分子物質、電極P2の電極材
料、イオン伝導物質Eのそれぞれの種類は目的とするス
イツチング動作電圧や適応特性に応じて選択、組み合わ
せすべきことは言うまでもない。
Needless to say, the types of the polymer substance of the electrode P 1 , the electrode material of the electrode P 2 , and the ion conductive substance E should be selected and combined according to the intended switching operation voltage and adaptive characteristics.

さらに、このような素子D1,D2は、構成要素が一対の
電極とその間に介在するイオン伝導性物質Eのみである
ことから、これらを電池状のセルに納めた形態として小
型化ないし薄型化することが容易であり、独立の電子部
品形態として実用化できる。
Further, since such elements D 1 and D 2 are composed of only a pair of electrodes and the ion-conductive substance E interposed between them, the elements D 1 and D 2 are miniaturized or thinned as a form in which they are housed in a battery cell. It is easy to realize and can be put into practical use as an independent electronic component form.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、単一素子としてこ
れを接続した回路を所定の電圧値を境として開閉するス
イツチング機能を備えた電圧感応型スイツチング素子が
初めて実用化される。また、この素子はスイツチング動
作が確実であるとともに構造的に極めて簡素で小型化容
易であり、二次電池の過放電保護素子や電気量記憶素子
などの広範な用途に利用でき、各種電気機器内に支障な
く組み込み可能である。
As described above, according to the present invention, the voltage-sensitive switching element having the switching function of opening and closing the circuit connected as a single element with a predetermined voltage value as a boundary is put into practical use for the first time. In addition, this device has a reliable switching operation, is structurally extremely simple, and can be easily miniaturized, and can be used for a wide range of applications such as overdischarge protection devices for secondary batteries and electric quantity storage devices. It can be installed without any problem.

〔実施例〕〔Example〕

以下、この発明を実施例によつて具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.

実施例1 0.1モル濃度のアニリンおよび1.0モル濃度のLiBF4
溶解した水溶液中で電位走査法によつて白金電極上にポ
リアニリンを合成付着させた。このポリアニリンを白金
電極から削り落として得られた粉末100mgをポリプロピ
レン製不織布上に圧接して幅1cm,長さ3cm,厚さ200μm
のポリアニリンシートを作製した。
Example 1 Polyaniline was synthetically deposited on a platinum electrode by a potential scanning method in an aqueous solution in which 0.1 molar aniline and 1.0 molar LiBF 4 were dissolved. 100 mg of the powder obtained by scraping off this polyaniline from a platinum electrode was pressed onto a polypropylene non-woven fabric, and the width was 1 cm, the length was 3 cm, and the thickness was 200 μm.
A polyaniline sheet of was prepared.

一方、1モル濃度のLiBF4を含むポリカーボネートか
らなる電解液中にMoO2からなる陽極板と金属リチウムか
らなる陰極板を浸漬して電池を構成し、この電池を放電
させて陽極のMoO2にリチウムをインタカレートさせたの
ち、この陽極板(幅1cm,長さ3cm,厚さ500μm)を取り
出した。
On the other hand, a battery is constructed by immersing an anode plate made of MoO 2 and a cathode plate made of metallic lithium in an electrolyte made of polycarbonate containing 1 molar concentration of LiBF 4, and the battery is discharged to form MoO 2 of the anode. After intercalating lithium, this anode plate (width 1 cm, length 3 cm, thickness 500 μm) was taken out.

つぎに、この陽極板を電極P2、前記アニリンシートを
電極P1として、両電極を1モル濃度のLiBF4を含むプロ
ピレンカーボネートからなる電解液5ml中に浸漬すると
ともに、電極P1の両端と電極P2の一端からリードを導出
し、第1図示す構成の電圧感応型スイツチング素子D1
作製した。なお、電極P2はその電位変化を抑制するため
に電極P1および電解液に対して大過剰となつている。
Next, using this anode plate as the electrode P 2 and the aniline sheet as the electrode P 1 , both electrodes were immersed in 5 ml of an electrolytic solution made of propylene carbonate containing 1 molar concentration of LiBF 4 , and the both ends of the electrode P 1 were Leads were led out from one end of the electrode P 2 , and a voltage sensitive switching element D 1 having the structure shown in FIG. 1 was produced. The electrode P 2 is in a large excess with respect to the electrode P 1 and the electrolytic solution in order to suppress the potential change.

この素子D1について、両電極P1,P2間の印加電圧と電
極P1の両端間の抵抗との関係を測定したところ、第3図
で示す結果が得られた。この結果から、この素子D1は電
極P1がほぼ1.8Vを境として高電圧側で導体、同じく低電
圧側で不導体となり、上記電圧値を動作点とする確実な
スイツチング機能を有することが判つた。つぎに、この
素子D1の電極P1をLi/TiS2二次電池のカソード側に直列
に接続するとともに、電極P2を同電池のアノード側に単
に接続し、第1図で示す結線となし、該二次電池を連続
放電させたところ、放電電圧が約1.8Vとなつた時点で回
路が遮断され、素子D1が上記二次電池の過放電保護素子
として作用することが実証された。
When the relationship between the applied voltage between both electrodes P 1 and P 2 and the resistance between both ends of the electrode P 1 was measured for this device D 1 , the results shown in FIG. 3 were obtained. From this result, the conductive in this device D 1 is the high-voltage side as a boundary of the electrode P 1 is approximately 1.8V, becomes non-conductive again at a low voltage side, to have a reliable switching-function of an operating point of the voltage value I understand. Next, the electrode P 1 of the device D 1 was connected in series to the cathode side of the Li / TiS 2 secondary battery, and the electrode P 2 was simply connected to the anode side of the same battery, and the connection shown in FIG. None, when the secondary battery was continuously discharged, the circuit was cut off when the discharge voltage reached about 1.8 V, and it was demonstrated that the device D 1 acted as an overdischarge protection device for the secondary battery. .

実施例2 実施例1と同様のポリアニリンシート2枚を一対の電
極P1,P1として実施例1と同様の電解液中に浸漬すると
ともに、両電極の各両端からリードを導出し、第2図で
示す構成の電圧感応型スイツチング素子D2を作製した。
Example 2 Two polyaniline sheets similar to those in Example 1 were used as a pair of electrodes P 1 and P 1 in the same electrolytic solution as in Example 1, and leads were led out from both ends of both electrodes to obtain a second electrode. A voltage sensitive switching element D 2 having the configuration shown in the figure was produced.

この素子D2について、両電極P1,P1間の印加電圧と各
電極P1の両端間の抵抗との関係を測定したところ、第4
図で示す結果が得られた。この結果から、この素子D2
各電極P1が0Vよりも僅かに高い電圧値を境として高電圧
側で導体、同じく低電圧側で不導体となり、上記電圧値
を動作点とする確実なスイツチング機能を有することが
判つた。つぎに、この素子D2の両電極P1,P1をNi-Cd電池
のカソード側とアノード側にそれぞれ直列に接続し、第
2図で示す結線となし、このNi-Cd電池を連続放電させ
たところ、放電電圧が0Vに低下する直前で回路が遮断さ
れ、素子D2が上記二次電池の過放電保護素子として作用
することが実証された。
For this element D 2 , the relationship between the applied voltage between both electrodes P 1 and P 1 and the resistance between both ends of each electrode P 1 was measured.
The results shown in the figure were obtained. From this result, this element D 2 becomes a conductor on the high voltage side and a non-conductor on the low voltage side with each electrode P 1 at a voltage value slightly higher than 0 V as a boundary, and it is certain that the above voltage value is the operating point. It was found to have a switching function. Next, both electrodes P 1 and P 1 of this device D 2 were connected in series to the cathode side and the anode side of the Ni-Cd battery, respectively, and the connection shown in Fig. 2 was made, and this Ni-Cd battery was continuously discharged. As a result, it was demonstrated that the circuit was cut off immediately before the discharge voltage dropped to 0 V, and the device D 2 acted as an overdischarge protection device for the secondary battery.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図はこの発明の電圧感応型スイツチン
グ素子を用いた結線図、第3図は実施例1の上記素子に
おける両極間の印加電圧と高分子物質からなる電極の両
端間の抵抗との相関特性図、第4図は実施例2の上記素
子における上記印加電圧と抵抗との相関特性図である。 D1,D2……電圧感応型スイツチング素子、P1……イオン
のドーピングにより導電性を獲得する高分子物質からな
る電極、P2……他の電極材料からなる電極、E……イオ
ン伝導性物質、L1,L2……導電路、S……電源部、R…
…負荷
1 and 2 are wiring diagrams using the voltage-sensitive switching element of the present invention, and FIG. 3 is a voltage applied between both electrodes in the element of Example 1 and resistance between both ends of an electrode made of a polymer material. And FIG. 4 is a correlation characteristic diagram between the applied voltage and the resistance in the element of the second embodiment. D 1, D 2 ...... voltage sensitive switching-element, P 1 ...... ion doping a polymer material to obtain conductivity by electrodes, the electrode made of P 2 ...... other electrode materials, E ...... ion conductivity Conductive material, L 1 , L 2 ...... Conductive path, S ...... Power supply section, R ...
…load

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−12370(JP,A) 特開 昭61−107723(JP,A) 特開 昭61−239562(JP,A) 化学、40〔5〕(1985)P.317−323 ─────────────────────────────────────────────────── --Continued from the front page (56) Reference JP 58-12370 (JP, A) JP 61-107723 (JP, A) JP 61-239562 (JP, A) Chemistry, 40 [5 ] (1985) P. 317-323

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一方の電極がイオンのドーピン
グによつて導電性を獲得する高分子物質からなる一対の
電極間にイオン伝導性物質を介在させ、上記高分子物質
からなる一方の電極を回路を構成する正負導電路の一方
に直列接続するとともに、他方の電極を上記導電路の他
方に接続してなる電圧感応型スイツチング素子。
1. An ion-conductive substance is interposed between a pair of electrodes made of a polymer substance, at least one of which is made conductive by ion doping, and one electrode made of the polymer substance is used as a circuit. A voltage-sensitive switching element in which one of the positive and negative conductive paths constituting the above is connected in series and the other electrode is connected to the other of the conductive paths.
【請求項2】高分子物質がポリアニリンである特許請求
の範囲第(1)項記載の電圧感応型スイツチング素子。
2. The voltage sensitive switching element according to claim 1, wherein the polymer substance is polyaniline.
JP61279969A 1986-11-25 1986-11-25 Voltage sensitive switching element Expired - Lifetime JPH0810606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61279969A JPH0810606B2 (en) 1986-11-25 1986-11-25 Voltage sensitive switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61279969A JPH0810606B2 (en) 1986-11-25 1986-11-25 Voltage sensitive switching element

Publications (2)

Publication Number Publication Date
JPS63133465A JPS63133465A (en) 1988-06-06
JPH0810606B2 true JPH0810606B2 (en) 1996-01-31

Family

ID=17618459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61279969A Expired - Lifetime JPH0810606B2 (en) 1986-11-25 1986-11-25 Voltage sensitive switching element

Country Status (1)

Country Link
JP (1) JPH0810606B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4119950B2 (en) * 2000-09-01 2008-07-16 独立行政法人科学技術振興機構 Electronic device capable of controlling conductance
JP5696988B2 (en) * 2011-06-08 2015-04-08 独立行政法人物質・材料研究機構 Synapse operating element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
化学、40〔5〕(1985)P.317−323

Also Published As

Publication number Publication date
JPS63133465A (en) 1988-06-06

Similar Documents

Publication Publication Date Title
US6004698A (en) Solid polymer electrolyte electrochemical storage cell containing a redox shuttle additive for overcharge protection
US7413582B2 (en) Lithium battery
EP2596540B1 (en) Battery comprising cuboid cells which contain a bipolar electrode
KR20060035631A (en) Stacked-type lithium-ion rechargeable battery
KR101049331B1 (en) Lithium secondary battery
KR20160003680A (en) Positive electrode for a lithium battery
US20050238956A1 (en) Negative electrode for lithium battery and lithium battery comprising same
Park et al. Variables study for the fast charging lithium ion batteries
WO1999028982A1 (en) A composite battery and methods of forming same
Passiniemi et al. Critical aspects of organic polymer batteries
US5066556A (en) Non-aqueous electrolyte secondary cell
EP0905807B1 (en) Nonaqueous secondary battery
Kim et al. Electrochemical properties and performance of poly (acrylonitrile)-based polymer electrolyte for Li/LiCoO2 cells
WO2008072147A1 (en) Solid-state structure comprising a battery and a variable resistor of which the resistance is controlled by variation of the concentration of active species in electrodes of the battery
JPH0810606B2 (en) Voltage sensitive switching element
KR20040087936A (en) Electrolytic Solution and Battery Using It
JPH08185851A (en) Electrode for battery and secondary battery using this electrode
JP2011142040A (en) Solid-state battery module
CN1610146A (en) Voltage blocked diaphragm and producing method thereof
JP3114651B2 (en) Lithium secondary battery
JPH11204096A (en) Non-aqueous electrolyte battery and non-aqueous electrolyte battery pack
KR20190061297A (en) Three-Electrode Coin Cell with Low Overpotential
Hahn et al. Integrated lithium micro batteries for highly miniaturized sensors
JPH042065A (en) Secondary battery with non-aqueous electrolyte and manufacture thereof
Appetecchi et al. Plastic power sources