JPH08105745A - Method and apparatus for correction of azimuth error of terrestrial magnetism sensor - Google Patents

Method and apparatus for correction of azimuth error of terrestrial magnetism sensor

Info

Publication number
JPH08105745A
JPH08105745A JP24137594A JP24137594A JPH08105745A JP H08105745 A JPH08105745 A JP H08105745A JP 24137594 A JP24137594 A JP 24137594A JP 24137594 A JP24137594 A JP 24137594A JP H08105745 A JPH08105745 A JP H08105745A
Authority
JP
Japan
Prior art keywords
dimensional coordinate
value
coordinate values
geomagnetic sensor
sets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24137594A
Other languages
Japanese (ja)
Inventor
Taiji Iwata
泰治 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24137594A priority Critical patent/JPH08105745A/en
Publication of JPH08105745A publication Critical patent/JPH08105745A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)

Abstract

PURPOSE: To correct the azimuth error of a terrestrial magnetism sensor mounted on a car, being run, without turning the car once by suspensing its running operation regarding a method and an apparatus which are used to correct the azimuth error of the terrestrial magnetism sensor used in a self-contained navigation system. CONSTITUTION: Outputs of a terrestrial magnetism sensor are stored sequentially in a RAM (Step 1001). When a distance R' from a criterion point on a two-dimensional plane differs from a criterion distance R (Step 1004), it is judged that a magnetization state has been changed, data on three points is taken out from data stored in the RAM (Step 1008), and coordinates of one point which is situated in the distance R are taken out from it so as to be used as a correction value (Step 1010).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自立型ナビゲーション
システムにおいて使用される地磁気センサの方位誤差を
補正するための方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for compensating for heading errors in geomagnetic sensors used in self-contained navigation systems.

【0002】[0002]

【従来の技術】近年GPS(Global Positioning Syste
m)等を用いた電波航法、及び/又は方位センサ、速度
センサを用いた自立航法による車載用ナビゲーションシ
ステムの実用化が急速化している。このうち、自立航法
を用いたナビゲーションでは、自動車の進行方向を検出
する方位センサの誤差が直接ナビゲーションシステムの
性能にかかわってくるので、地磁気センサを方位センサ
として使用したシステムでは地磁気センサには高い精度
が要求される。
2. Description of the Related Art In recent years, GPS (Global Positioning System)
In-vehicle navigation systems using radio navigation using m) and / or self-contained navigation using direction sensor and speed sensor are being put to practical use rapidly. Among these, in navigation using self-contained navigation, the error of the direction sensor that detects the traveling direction of the car is directly related to the performance of the navigation system, so the system that uses the geomagnetic sensor as a direction sensor has high accuracy. Is required.

【0003】通常自動車の車体は、鉄(磁性体)によっ
て構成されているので、自動車内の電送品、走行中に送
電線の近くを通過するなどの影響により、自動車自体が
磁気を帯びる。この様な状態を着磁と呼ぶ。地磁気セン
サの出力は、地磁気の方位を表わす方位ベクトルのX成
分とY成分を示す2つの電圧出力が有り、この2つの出
力値は、横軸を方位としてプロットするとある基準電圧
(地磁気センサ毎に決まっている)を軸にしてsinカ
ーブとcosカーブを描く。地磁気センサの出力電圧を
X−Y平面上にプロットすると、地磁気以外の外部から
の磁気影響が全く無い場合、基準電圧に対応する点を中
心とし、出力電圧の上限と下限の差の1/2を半径とす
る円を描く。車体が着磁すると、地磁気センサの出力電
圧に着磁によるオフセットが加わり、それらが描く円の
中心は基準点から変位する。そのため、地磁気センサの
出力から算出した方位と実際の方位は一致しなくなる。
Since the vehicle body of an automobile is usually made of iron (magnetic material), the automobile itself is magnetized due to the influence of electric products in the automobile, passing near a power transmission line while traveling, and the like. Such a state is called magnetization. The output of the geomagnetic sensor has two voltage outputs indicating the X component and the Y component of the azimuth vector representing the azimuth of the geomagnetism. These two output values are a reference voltage (each geomagnetic sensor is plotted when the horizontal axis is the azimuth). Draw a sin curve and a cos curve. When the output voltage of the geomagnetic sensor is plotted on the XY plane, when there is no external magnetic influence other than the geomagnetism, the point corresponding to the reference voltage is centered and the difference between the upper and lower limits of the output voltage is 1/2. Draw a circle with radius as. When the vehicle body is magnetized, an offset due to the magnetization is added to the output voltage of the geomagnetic sensor, and the center of the circle drawn by them is displaced from the reference point. Therefore, the azimuth calculated from the output of the geomagnetic sensor does not match the actual azimuth.

【0004】この方位誤差を補正するため、地磁気セン
サを搭載している自動車を1回転させ、X成分及びY成
分のそれぞれの電圧値の最大値と最小値の平均を算出し
て新たな基準電圧(補正値)とする方法がある。
In order to correct this azimuth error, the automobile equipped with the geomagnetic sensor is rotated once, and the average of the maximum and minimum voltage values of the X component and the Y component is calculated to obtain a new reference voltage. (Correction value).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法では、自動車が走行中に何らかの影響で車体に新たな
着磁が生じた場合、走行を中止して自動車を1回転させ
て補正を行わなければならないという問題がある。した
がって本発明の目的は、走行中の自動車に搭載された地
磁気センサの方位誤差を、走行を中断して自動車を1回
転させることなく、補正することを可能にする地磁気セ
ンサの方位誤差の補正のための方法と装置を提供するこ
とにある。
However, in this method, if the vehicle body is newly magnetized due to some influence while the vehicle is running, the running is stopped and the vehicle is rotated once to make a correction. There is a problem of not becoming. Therefore, an object of the present invention is to correct the azimuth error of a geomagnetic sensor mounted on a moving automobile without compensating the azimuth error of the geomagnetic sensor without stopping the automobile and making one revolution of the automobile. To provide a method and an apparatus therefor.

【0006】[0006]

【課題を解決するための手段】本発明によれば、移動体
に搭載され地磁気の方位を示す2次元座標値を出力する
地磁気センサの方位誤差を補正する方法であって、移動
体が走行している間に地磁気センサが出力する相異なる
2次元座標値を3組記憶し、記憶された3組の2次元座
標値が2次元平面上に定める3点のいずれからも所定の
距離にある中心点の2次元座標値を算出することによっ
て補正を得るステップを具備する方法が提供される。
According to the present invention, there is provided a method for correcting a heading error of a geomagnetic sensor mounted on a mobile body, which outputs a two-dimensional coordinate value indicating the heading of the geomagnetism. Centers that store three sets of different two-dimensional coordinate values output by the geomagnetic sensor while moving, and that the three sets of stored two-dimensional coordinate values are at a predetermined distance from all three points defined on the two-dimensional plane A method is provided that includes the step of obtaining a correction by calculating a two-dimensional coordinate value of a point.

【0007】本発明によれば、移動体に搭載され地磁気
の方位を示す2次元座標値を出力する地磁気センサの方
位誤差を補正する装置であって、移動体が走行している
間に地磁気センサが出力する相異なる2次元座標値を3
組記憶する座標値記憶手段と、記憶された3組の2次元
座標値が2次元平面上に定める3点のいずれからも所定
の距離にある中心点の2次元座標値を算出することによ
って補正値を得る手段とを具備する装置もまた提供され
る。
According to the present invention, there is provided a device for correcting an orientation error of a geomagnetic sensor mounted on a mobile body and outputting a two-dimensional coordinate value indicating a geomagnetic orientation, the geomagnetic sensor while the mobile body is running. 3 different two-dimensional coordinate values output by
Correction is performed by calculating a two-dimensional coordinate value of a center point that is at a predetermined distance from any of the coordinate value storage means that stores the set and the three sets of the stored two-dimensional coordinate values that are defined on the two-dimensional plane. An apparatus is also provided which comprises means for obtaining a value.

【0008】[0008]

【作用】着磁後(着磁状態が変化した後)であっても、
その後着磁状態が変化しない間にサンプリングされた相
異なる3組の2次元座標値が定める3点は新たな基準点
から円の半径に相当する所定の距離(地磁気センサの出
力電圧の上限と下限の差の1/2)にあるので、該3点
のいずれからも所定の距離にある点の2次元座標値を算
出することによって補正値を得ることができる。
[Operation] Even after magnetization (after the magnetized state changes),
After that, the three points defined by three different sets of two-dimensional coordinate values sampled while the magnetized state did not change were the predetermined distances (upper and lower limits of the output voltage of the geomagnetic sensor) corresponding to the radius of the circle from the new reference point. Therefore, the correction value can be obtained by calculating the two-dimensional coordinate value of a point located at a predetermined distance from any of the three points.

【0009】[0009]

【実施例】図1は本発明に係る方位誤差補正機能を備え
た地磁気センサの構成を表わす。地磁気センサ10から
出力されるアナログ電圧Vx ,Vy はA/Dコンバータ
12でディジタル信号に変換されCPU14へ入力され
る。CPU14は、後に詳述するように、入力されたV
x ,Vy の値から着磁状態の変化を検知し、着磁補正を
行ない、補正された値から方位を算出してナビゲーショ
ンシステム16へ入力する。着磁補正のためのデータは
RAM18に一時的に格納される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of a geomagnetic sensor having a bearing error correction function according to the present invention. The analog voltages V x and V y output from the geomagnetic sensor 10 are converted into digital signals by the A / D converter 12 and input to the CPU 14. The CPU 14 receives the input V as described later in detail.
x, detects a change in magnetic state from the value of V y, performs a magnetization compensation, and inputs from the corrected values to the navigation system 16 to calculate the orientation. Data for magnetization correction is temporarily stored in the RAM 18.

【0010】地磁気センサ10を取り付ける位置は、自
動車の外装(鉄板)、計器類等から出来るかぎり離れた
場所に設置することが望ましいが、車載する以上避けら
れない状況も有るので、現在最も適当とされている車内
の天井の真ん中あたりに、地面と水平に取り付ける。A
/Dコンバータ12の性能は、最低2chの入力・出力
を装備し、12bit以上の分解能力を備え、1秒間に
10回以上はデータが変換可能なものを使用する。
It is desirable to install the geomagnetic sensor 10 at a place as far as possible from the exterior (iron plate) of the automobile, measuring instruments, etc. However, since it is unavoidable because it is mounted on the vehicle, it is currently the most suitable. It is installed in the middle of the ceiling inside the vehicle, which is horizontal to the ground. A
The performance of the / D converter 12 is such that it is equipped with at least 2 ch of input / output, has a resolution of 12 bits or more, and can convert data 10 times or more per second.

【0011】CPU部14は、地磁気センサ10のデー
タ処理のみを行う為の専用とし、ナビゲーションシステ
ムの処理を行うCPUとは独立させ、上記の装置10,
12,14,18を一塊として地磁気センサとしてモジ
ュール化する方が現実的である。図2はCPU14の動
作のフローチャートである。地磁気センサ10の出力V
x ,Vy をA/Dコンバータ12を介して読み込み(ス
テップ1000)、RAM18に格納し(ステップ10
01)、(Vx ,Vy )と現在の基準点(Vx0,Vy0
との距離R′を計算する(ステップ1002)。この値
R′と理論的半径R(Vx ,Vy の振幅の1/2)とを
比較し(ステップ1004)、その差が許容値以下であ
るか、許容値以上であってもその状態が未だΔT時間継
続していなければ、Vx ,Vy の値から方位を計算して
ナビゲーションシステム16へ出力する(ステップ10
06)。RAM18中のVx ,Vy の格納領域が満杯に
なった以後は古いものから順にその上に新しいデータが
上書きされて消されていく。したがってRAM18には
所定個数の最新のデータが常に格納される。なお、RA
M18に格納すべきデータの個数は、少なくとも上記時
間ΔTにおいて生成されるデータ数以上であることが望
ましい。
The CPU section 14 is the data of the geomagnetic sensor 10.
Dedicated navigation system
The above-mentioned device 10,
A mass of 12, 14, and 18 is used as a geomagnetic sensor.
It is more realistic to make it a tool. 2 shows the operation of the CPU 14.
It is a flow chart of the work. Output V of the geomagnetic sensor 10
x, VyRead via the A / D converter 12
Step 1000) and store in RAM 18 (step 10)
01), (Vx, Vy) And the current reference point (Vx0, Vy0)
And a distance R ′ between the distance and is calculated (step 1002). This value
R'and theoretical radius R (Vx, Vy1/2 of the amplitude of
Comparison is made (step 1004), and the difference is less than or equal to the allowable value.
Or, even if it exceeds the allowable value, the state is still ΔT time continuation.
If not, Vx, VyCalculate the bearing from the value of
Output to the navigation system 16 (step 10)
06). V in RAM18x, VyStorage space is full
After that, new data will be on top of the oldest one.
It is overwritten and erased. Therefore, in RAM18
A predetermined number of latest data are always stored. RA
The number of data to be stored in M18 should be at least the above
Desirably more than the number of data generated in the interval ΔT
Good.

【0012】ステップ1004においてR′とRとの差
が許容値以上になりその状態がΔT時間継続したとき
は、RAM18に格納されている最新データの中から3
点のデータを取り出し(ステップ1008)、後述する
手順でそれらから新しい補正値(基準値Vx0,Vy0)を
算出する(ステップ1010)。なお、上記の処理フロ
ーによれば、着磁量が除々に変化する場合には実際上問
題ない。しかし、着磁量が急激に変化すると、その直後
には変化する前のデータを含むデータを使って新補正値
が算出される。そのため、及び異常状態がΔT時間継続
することが要求されるという理由で着磁状態の急激な変
化は直ちに新補正値に反映されない。それでも、補正値
の計算を何回か繰り返す間にRAMに保存されるデータ
が着磁量が変化した後のデータに次第に置き換わるの
で、いずれは正しい補正値に収束する。
In step 1004, when the difference between R'and R exceeds the allowable value and the state continues for ΔT time, 3 out of the latest data stored in the RAM 18 is selected.
The point data is taken out (step 1008), and new correction values (reference values V x0 , V y0 ) are calculated from them by the procedure described later (step 1010). According to the above process flow, there is no practical problem when the magnetization amount gradually changes. However, when the magnetization amount changes abruptly, a new correction value is calculated immediately after that using the data including the data before the change. Therefore, and because the abnormal state is required to continue for ΔT time, a rapid change in the magnetized state is not immediately reflected in the new correction value. Nevertheless, while the calculation of the correction value is repeated several times, the data stored in the RAM gradually replaces the data after the change in the magnetization amount, so that the correction value eventually converges.

【0013】ステップ1010における補正値(基準値
x0,Vy0)の計算方法を以下に詳細に説明する。自動
車が普通に走行したとき、進行方向は常に変化してい
る。この間に蓄えられたRAM内のデータは、自動車が
あらゆる方向を向いた時のデータ、すなわち、地磁気セ
ンサがあらゆる方向を向いたときのデータという事にな
る。図3に示すように、RAM内のデータから3点A,
B,Cを取り出し、Vx −Vy 平面上でそれらを中心と
する半径Rの円を描くとそれらは1点O′で交わるはず
である。交点O′の座標が新たな基準値Vx0,Vy0であ
る。具体的には、3つのうちの2つの円の方程式を連立
させて解くことにより交点の座標を2つ求め、これらの
うち、第3の円の方程式を満たすものを選ぶことにより
交点O′の座標(Vx0,Vy0)が得られる。誤差のため
に3つの円が一点で交わらないときは、2つの円の2つ
の交点を通る線と他の2つの円の2つの交点を通る線と
の交点を交点O′とする。
The method of calculating the correction values (reference values V x0 , V y0 ) in step 1010 will be described in detail below. When a car runs normally, the direction of travel is constantly changing. The data stored in the RAM during this time is the data when the vehicle faces in all directions, that is, the data when the geomagnetic sensor faces in all directions. As shown in FIG. 3, three points A,
When B and C are taken out and a circle centered on them and having a radius R is drawn on the V x -V y plane, they should intersect at one point O ′. The coordinates of the intersection O ′ are new reference values V x0 and V y0 . Specifically, two coordinates of two circles out of three are simultaneously solved to obtain two coordinates of the intersection, and among these, the one that satisfies the equation of the third circle is selected to determine the intersection O ′. The coordinates (V x0 , V y0 ) are obtained. When the three circles do not intersect at one point due to an error, the intersection point of the line passing through the two intersection points of the two circles and the line passing through the two intersection points of the other two circles is defined as the intersection point O ′.

【0014】RAMに格納されているデータの中から3
点の座標を選び出す場合、それらが2次元平面上で互い
に離れていればいるほど計算の精度が良い。そのために
は、例えば、図4のフローに従ってVx またはVy につ
いて格納データ全体をスキャンして最大値と最小値を見
い出し(ステップ1100〜1104)、最大値と最小
値の平均に最も近い中間値を再度スキャンして見い出し
(ステップ1106〜1114)、最大値、最小値、中
間値を有するデータを3点のデータとして使用する(ス
テップ1116)。或いはまた、各座標データから方位
をそれぞれ算出し、例えば、0°,120°,240°
のような相互に120°をなす3つの角度に最も近い3
点をそれぞれ選び出すようにしても良い。
3 out of the data stored in the RAM
When selecting the coordinates of points, the farther they are from each other on the two-dimensional plane, the better the calculation accuracy. For that purpose, for example, according to the flow of FIG. 4, the entire stored data is scanned for V x or V y to find the maximum value and the minimum value (steps 1100 to 1104), and the intermediate value closest to the average of the maximum value and the minimum value. Is scanned again to find out (steps 1106-1114), and the data having the maximum value, the minimum value, and the intermediate value is used as the data of three points (step 1116). Alternatively, the azimuth is calculated from each coordinate data and, for example, 0 °, 120 °, 240 °
3 closest to three angles of 120 ° to each other, such as
You may select each point.

【0015】[0015]

【発明の効果】以上述べてきたように本発明によれば、
車体の着磁による地磁気センサの方位誤差の発生が車の
走行中に自動的に検知され、補正される。
As described above, according to the present invention,
Occurrence of orientation error of the geomagnetic sensor due to magnetization of the vehicle body is automatically detected and corrected while the vehicle is running.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による方位誤差補正機能を備えた地磁気
センサを表わす図である。
FIG. 1 is a diagram showing a geomagnetic sensor having an azimuth error correction function according to the present invention.

【図2】本発明の方位誤差補正処理のフローチャートで
ある。
FIG. 2 is a flowchart of an azimuth error correction process of the present invention.

【図3】本発明の補正値算出方法を説明する図である。FIG. 3 is a diagram illustrating a correction value calculation method of the present invention.

【図4】3点を選び出す処理のフローチャートである。FIG. 4 is a flowchart of a process of selecting three points.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 移動体に搭載され地磁気の方位を示す2
次元座標値を出力する地磁気センサの方位誤差を補正す
る方法であって、 a)移動体が走行している間に地磁気センサが出力する
相異なる2次元座標値を3組記憶し、 b)記憶された3組の2次元座標値が2次元平面上に定
める3点のいずれからも所定の距離にある点の2次元座
標値を算出することによって、補正値を得るステップを
具備する方法。
1. A device mounted on a moving body, which indicates the direction of geomagnetism 2
A method for correcting a bearing error of a geomagnetic sensor that outputs a three-dimensional coordinate value, comprising: a) storing three sets of different two-dimensional coordinate values output by the geomagnetic sensor while a moving body is traveling; A method comprising the step of obtaining a correction value by calculating the two-dimensional coordinate value of a point that is located at a predetermined distance from any of the three points defined by the three sets of two-dimensional coordinate values set on the two-dimensional plane.
【請求項2】 c)地磁気センサが出力する2次元座標
値が2次元平面上に定める点と基準点との距離を算出
し、 d)該算出された距離を基準距離と比較することによっ
て地磁気センサの方位誤差の有無を検出するステップを
さらに具備する請求項1記載の方法。
2. The geomagnetism is calculated by: c) calculating a distance between a point defined by a two-dimensional coordinate value output by the geomagnetic sensor on a two-dimensional plane and a reference point; and d) comparing the calculated distance with the reference distance. The method of claim 1, further comprising the step of detecting the presence or absence of orientation error in the sensor.
【請求項3】 前記ステップa)は i)地磁気センサが出力する2次元座標値のうち所定個
の最新データを格納し、 ii)前記ステップd)で方位誤差の存在が検出された後
において、格納されている最新データの中から前記相異
なる3組の2次元座標値を選択するサブステップを具備
する請求項2記載の方法。
3. The step a) includes i) storing a predetermined number of latest data among the two-dimensional coordinate values output by the geomagnetic sensor, and ii) after detecting the existence of a bearing error in the step d), 3. The method according to claim 2, further comprising the sub-step of selecting the three different sets of two-dimensional coordinate values from the stored latest data.
【請求項4】 前記サブステップii)において前記格納
されている最新データの中の最大値、最小値及び最大値
と最小値の平均に最も近い値を有する3組の2次元座標
値を選択する請求項3記載の方法。
4. In the sub-step ii), selecting three sets of two-dimensional coordinate values having a maximum value, a minimum value, and a value closest to the average of the maximum and minimum values in the stored latest data. The method of claim 3.
【請求項5】 前記サブステップii)において、前記格
納されている最新データの中で相互に120°をなす3
つの方位に最も近い方位を示す3組の2次元座標値を選
択する請求項3記載の方法。
5. In said sub-step ii), 3 which form 120 ° with each other in said stored latest data.
The method of claim 3, wherein three sets of two-dimensional coordinate values are selected that represent the orientations closest to one orientation.
【請求項6】 移動体に搭載され地磁気の方位を示す2
次元座標値を出力する地磁気センサの方位誤差を補正す
る装置であって、 移動体が走行している間に地磁気センサが出力する相異
なる2次元座標値を3組記憶する座標値記憶手段と、 記憶された3組の2次元座標値が2次元平面上に定める
3点のいずれからも所定の距離にある点の2次元座標値
を算出することによって補正値を得る手段とを具備する
装置。
6. A terrestrial magnetic azimuth indicating a direction 2 mounted on a moving body.
A device for correcting an azimuth error of a geomagnetic sensor that outputs a dimensional coordinate value, and coordinate value storage means for storing three sets of different two-dimensional coordinate values output by the geomagnetic sensor while a moving body is traveling, An apparatus comprising: means for obtaining a correction value by calculating two-dimensional coordinate values of a point having a predetermined distance from any of the three points where the stored three sets of two-dimensional coordinate values are defined on the two-dimensional plane.
【請求項7】 地磁気センサが出力する2次元座標値が
2次元平面上に定める点と基準点との距離を算出する手
段と、 該算出された距離を基準距離と比較することによって地
磁気センサの方位誤差の有無を検出する手段とをさらに
具備する請求項6記載の装置。
7. A means for calculating a distance between a reference point and a point defined by a two-dimensional coordinate value output by the geomagnetic sensor on a two-dimensional plane, and comparing the calculated distance with the reference distance to measure the geomagnetic sensor. The device according to claim 6, further comprising means for detecting the presence or absence of a heading error.
【請求項8】 前記座標値記憶手段は地磁気センサが出
力する2次元座標値のうち所定個の最新データを格納す
る手段と前記方位誤差検出手段が方位誤差の存在を検出
した後において、格納されている最新データの中から前
記相異なる3組の2次元座標値を選択する手段とを具備
する請求項7記載の装置。
8. The coordinate value storage means is stored after the means for storing a predetermined number of latest data among the two-dimensional coordinate values output by the geomagnetic sensor and the orientation error detection means detect the presence of the orientation error. 8. The apparatus according to claim 7, further comprising means for selecting the three different sets of two-dimensional coordinate values from the latest data.
【請求項9】 前記選択手段は前記格納手段に格納され
ている最新データの中の最大値、最小値及び最大値と最
小値の平均に最も近い値を有する3組の2次元座標値を
選択する請求項8記載の装置。
9. The selecting means selects three sets of two-dimensional coordinate values having a maximum value, a minimum value and a value closest to the average of the maximum value and the minimum value in the latest data stored in the storage means. The device according to claim 8.
【請求項10】 前記選択手段は前記格納手段に格納さ
れている最新データの中で相互に120°をなす3つの
方位に最も近い方位を示す3組の2次元座標値を選択す
る請求項8記載の装置。
10. The selecting means selects three sets of two-dimensional coordinate values indicating an azimuth closest to three azimuths forming 120 ° from each other in the latest data stored in the storage means. The described device.
JP24137594A 1994-10-05 1994-10-05 Method and apparatus for correction of azimuth error of terrestrial magnetism sensor Withdrawn JPH08105745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24137594A JPH08105745A (en) 1994-10-05 1994-10-05 Method and apparatus for correction of azimuth error of terrestrial magnetism sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24137594A JPH08105745A (en) 1994-10-05 1994-10-05 Method and apparatus for correction of azimuth error of terrestrial magnetism sensor

Publications (1)

Publication Number Publication Date
JPH08105745A true JPH08105745A (en) 1996-04-23

Family

ID=17073356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24137594A Withdrawn JPH08105745A (en) 1994-10-05 1994-10-05 Method and apparatus for correction of azimuth error of terrestrial magnetism sensor

Country Status (1)

Country Link
JP (1) JPH08105745A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003683A1 (en) 2003-07-03 2005-01-13 Asahi Kasei Emd Corporation Azimuth measurement device and azimuth measurement method
WO2005095890A1 (en) * 2004-03-31 2005-10-13 Kyocera Corporation Direction computing device and error correcting method
WO2006009247A1 (en) * 2004-07-23 2006-01-26 Yamaha Corporation Direction processor, direction processing method, direction processing program, direction measuring instrument, inclination offset correcting method, direction measuring method, direction sensor unit and portable electronic device
WO2006011276A1 (en) * 2004-07-23 2006-02-02 Yamaha Corporation Direction processing device, direction processing method, direction processing program, direction measuring device, and geographic information display
WO2006011184A1 (en) * 2004-07-23 2006-02-02 Yamaha Corporation Azimuth processing device, azimuth processing method, azimuth processing program, azimuth measurement device, and geographical information display device
US7210236B2 (en) 2004-06-11 2007-05-01 Yamaha Corporation Method and apparatus for measuring magnetic offset of geomagnetic sensor and portable electronic apparatus
US7324906B2 (en) 2004-07-29 2008-01-29 Yamaha Corporation Compass sensor unit and portable electronic device
US7376527B2 (en) 2003-12-22 2008-05-20 Asahi Kasei Emd Corporation Azimuth measuring device
US7421792B2 (en) 2003-11-13 2008-09-09 Samsung Electronics Co., Ltd. Apparatus and method of calibrating azimuth of mobile device
US8065083B2 (en) 2004-07-23 2011-11-22 Yamaha Corporation Azimuth processing device, azimuth processing method, azimuth processing program, direction finding device, tilt offset correcting method, azimuth measuring method, compass sensor unit, and portable electronic device
JP2015117943A (en) * 2013-12-16 2015-06-25 キヤノン株式会社 Electronic apparatus, method for controlling the same, and program

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003683A1 (en) 2003-07-03 2005-01-13 Asahi Kasei Emd Corporation Azimuth measurement device and azimuth measurement method
US7340362B2 (en) 2003-07-03 2008-03-04 Asahi Kasei Emd Corporation Azimuth measurement device and azimuth measurement method
US7421792B2 (en) 2003-11-13 2008-09-09 Samsung Electronics Co., Ltd. Apparatus and method of calibrating azimuth of mobile device
US7376527B2 (en) 2003-12-22 2008-05-20 Asahi Kasei Emd Corporation Azimuth measuring device
WO2005095890A1 (en) * 2004-03-31 2005-10-13 Kyocera Corporation Direction computing device and error correcting method
US7941268B2 (en) 2004-03-31 2011-05-10 Kyocera Corporation Bearing calculator and error correction method
US7937217B2 (en) 2004-03-31 2011-05-03 Kyocera Corporation Bearing calculator and error correction method
US7769539B2 (en) 2004-03-31 2010-08-03 Kyocera Corporation Bearing calculator and error correction method
KR100822539B1 (en) * 2004-03-31 2008-04-16 교세라 가부시키가이샤 Direction computing device and error correcting method
US7210236B2 (en) 2004-06-11 2007-05-01 Yamaha Corporation Method and apparatus for measuring magnetic offset of geomagnetic sensor and portable electronic apparatus
WO2006011184A1 (en) * 2004-07-23 2006-02-02 Yamaha Corporation Azimuth processing device, azimuth processing method, azimuth processing program, azimuth measurement device, and geographical information display device
WO2006011276A1 (en) * 2004-07-23 2006-02-02 Yamaha Corporation Direction processing device, direction processing method, direction processing program, direction measuring device, and geographic information display
WO2006009247A1 (en) * 2004-07-23 2006-01-26 Yamaha Corporation Direction processor, direction processing method, direction processing program, direction measuring instrument, inclination offset correcting method, direction measuring method, direction sensor unit and portable electronic device
US8065083B2 (en) 2004-07-23 2011-11-22 Yamaha Corporation Azimuth processing device, azimuth processing method, azimuth processing program, direction finding device, tilt offset correcting method, azimuth measuring method, compass sensor unit, and portable electronic device
US8090535B2 (en) 2004-07-23 2012-01-03 Yamaha Corporation Azimuth processing device, azimuth processing method, azimuth processing program, direction finding device, tilt offset correcting method, azimuth measuring method, compass sensor unit, and portable electronic device
US7474977B2 (en) 2004-07-29 2009-01-06 Yamaha Corporation Compass sensor unit and portable electronic device
US7606676B2 (en) 2004-07-29 2009-10-20 Yamaha Corporation Compass sensor unit and portable electronic device
US7324906B2 (en) 2004-07-29 2008-01-29 Yamaha Corporation Compass sensor unit and portable electronic device
JP2015117943A (en) * 2013-12-16 2015-06-25 キヤノン株式会社 Electronic apparatus, method for controlling the same, and program

Similar Documents

Publication Publication Date Title
JPS5991311A (en) Electronic compass for transport means
US5345382A (en) Calibration method for a relative heading sensor
EP0544403A1 (en) Vehicle navigation system
US5790075A (en) Beam antenna direction measuring method, direction measuring device and antenna direction controller
JPH0694472A (en) Vehicle-position determining device and vehicle having device thereof
US4738031A (en) Method for establishing the driving direction of a vehicle with an electronic compass
JPH08105745A (en) Method and apparatus for correction of azimuth error of terrestrial magnetism sensor
JPH04238216A (en) Calculating method for scale factor of gyroscope
US5151872A (en) Method and apparatus for correcting the output of an onboard vehicle terrestrial magnetism sensor
JPH08304092A (en) Method and system for detecting position of moving body
JP2514254B2 (en) Vehicle compass
JPH02212713A (en) Navigation apparatus for moving body
GB2130729A (en) Electronic compasses
JPS62140017A (en) Present position recognition apparatus for vehicle
JPH0666920A (en) Apparatus and method for measuring three-dimensional position
JPH05312933A (en) Navigation system
JPS63274000A (en) On-vehicle navigation device
JPH11258324A (en) Navigation apparatus
KR19980028621A (en) Automatic calibration method of geomagnetic sensor of car navigation system
JPH11142167A (en) Vehicle position measuring apparatus
JPH067009U (en) Car navigation system
JPH0777571A (en) On-vehicle navigation system
RU2194250C1 (en) Method for controlling movable objects traveling route
JPS62191713A (en) Hybrid navigation apparatus
JPH0676890B2 (en) Vehicle route display device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115