JPH08104969A - Ceramic metal composite powder for thermal spraying, thermally sprayed coating film and its formation - Google Patents

Ceramic metal composite powder for thermal spraying, thermally sprayed coating film and its formation

Info

Publication number
JPH08104969A
JPH08104969A JP26839894A JP26839894A JPH08104969A JP H08104969 A JPH08104969 A JP H08104969A JP 26839894 A JP26839894 A JP 26839894A JP 26839894 A JP26839894 A JP 26839894A JP H08104969 A JPH08104969 A JP H08104969A
Authority
JP
Japan
Prior art keywords
powder
thermal spraying
ceramic
phase
composite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26839894A
Other languages
Japanese (ja)
Other versions
JP2988281B2 (en
Inventor
Kazuo Hamashima
和雄 浜島
Yasuo Shinozaki
泰夫 篠崎
Koichi Kanda
幸一 神田
Kimihiko Sato
公彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP6268398A priority Critical patent/JP2988281B2/en
Publication of JPH08104969A publication Critical patent/JPH08104969A/en
Application granted granted Critical
Publication of JP2988281B2 publication Critical patent/JP2988281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide composite powder excellent in homogeneity and characteristics and hardly causing peeling by combining a ceramic phase of a multiple borides of Fe, Ni, Co, Mo and W with a metallic bonding phase of Fe, Ni or Co. CONSTITUTION: This ceramic-metal composite powder is particles consisting of a ceramic phase based on multiple borides of one or more among Fe, Ni and Co and Mo and/or W and a metallic bonding phase based on one or more among Fe, Ni and Co. The particles are formed by sintering after granulation and have a nearly spherical shape, 20-70μm average particle diameter and 20-60% porosity. The amt. of the ceramic phase is preferably 50-90wt.% and it is preferable that >=70% of the ceramic phase is, e.g. (Mo, W)x Fey B2 (where 1.8<=x<=2.2 and 0.9<=y<=1.1) and >=70% of the bonding phase is, e.g. Fe. When thermal spraying is carried out using this powder, the objective thermally sprayed coating film having <=1.5% porosity and >=900kg/mm<2> Vickers hardness Hv300 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶射用セラミックス・金
属複合粉末及び溶射被膜に関し、特に金属部材の表面
に、耐磨耗性、耐熱性、耐溶融金属性などを向上させる
目的で実施される溶射用粉末及び溶射被膜に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic / metal composite powder for thermal spraying and a thermal spray coating, and is carried out for the purpose of improving wear resistance, heat resistance, molten metal resistance, etc. on the surface of a metal member. The present invention relates to a thermal spray powder and a thermal spray coating.

【0002】[0002]

【従来の技術】各種産業機械や治工具から一般向け機械
に至るまでの金属製部品には、用途にあわせて様々な特
性が求められている。求められている特性は多岐にわた
るが、耐磨耗性、耐熱性や耐溶融金属性などは代表的な
ものであり、特に近年では金属自体ではその要求特性が
満たされない場合が多く、各種の表面改質により問題を
解決しようとすることが多い。表面改質の方法としては
溶射法、物理的蒸着法や化学的蒸着法などが実用化され
ているが、このうち溶射法は比較的容易に厚膜が形成で
きることや、溶射できる材料の種類が豊富で選択の幅が
広いことから多用されている。
2. Description of the Related Art Metal parts, from various industrial machines and jigs to general-purpose machines, are required to have various characteristics according to their applications. Although the required properties are diverse, wear resistance, heat resistance, and molten metal resistance are typical, and in recent years, metal itself often does not meet the required properties, and various surfaces Often, reforming attempts to solve the problem. As a surface modification method, a thermal spraying method, a physical vapor deposition method, a chemical vapor deposition method, and the like have been put into practical use. Among them, the thermal spraying method can form a thick film relatively easily, and the types of materials that can be sprayed are Widely used due to its abundance and wide selection.

【0003】溶射材料としては、ワイヤー状や棒状とし
た金属の他、金属、セラミックス及びこれらの複合材料
の粉末が用いられている。これらの溶射材の内いずれを
選ぶかは、その使用目的による。例えば、耐磨耗、耐食
の両特性が同時に求められる用途にはニッケル−クロム
合金などの自溶性合金がよく用いられており、さらに磨
耗の激しい用途にはセラミックスと金属の複合材料が有
効である。また、製鋼プロセス材料のように鉄との凝着
を防ぎたい用途では、溶鋼との反応性が低いセラミック
スを選択する。
As the thermal spraying material, in addition to wire-shaped or rod-shaped metals, powders of metals, ceramics and composite materials thereof are used. Which of these thermal spray materials is selected depends on the purpose of use. For example, self-fluxing alloys such as nickel-chromium alloys are often used in applications where both wear resistance and corrosion resistance are required at the same time, and composite materials of ceramics and metals are effective in applications where wear is more severe. . For applications such as steelmaking process materials that want to prevent adhesion with iron, select ceramics that have low reactivity with molten steel.

【0004】セラミックスと金属の複合材料としては耐
磨耗性の用途に用いられる代表的な炭化タングステンと
コバルトの複合材料(超硬合金)の他に、耐熱性の用途
に炭化クロムとニッケル−コバルト合金の複合材料が実
用化されている。これらの複合材料を溶射する場合には
プラズマ溶射法や高速フレーム溶射法が適用されている
が、プラズマは温度が極めて高いために炭化物が分解さ
れ易いなどの問題がありプラズマ溶射法では良好な被膜
が得られ難いので、高速フレーム溶射法を用いるのが一
般的である。
As a composite material of ceramics and metal, in addition to a typical composite material of tungsten carbide and cobalt (a cemented carbide) used for wear resistance applications, chromium carbide and nickel-cobalt for heat resistance applications. Alloy composite materials have been put to practical use. When spraying these composite materials, plasma spraying method and high-speed flame spraying method are applied. However, plasma has a problem that carbides are easily decomposed because of its extremely high temperature, and a good coating film is obtained by plasma spraying method. Since it is difficult to obtain, it is common to use the high-speed flame spraying method.

【0005】超硬合金や炭化クロムとニッケル−クロム
合金との複合材料の溶射は実用化されてはいるが、その
目的に対し十分な特性の良質な溶射被膜を得るために
は、次の二つの条件が満たされなくてはならない。先
ず、これらの合金で用いている炭化物は高温の酸化雰囲
気下においては比較的不安定で、酸化物や他の炭化物等
が生成しやすいため、過剰の熱エネルギーを付与するこ
とを避ける必要がある。次に、緻密な被膜を形成するに
不可欠な炭化物と金属の共晶による液相を出現させるた
めには必ず一定以上の温度(超硬合金では約1320℃
以上)に一定時間以上さらす必要がある。この相反する
二つの条件を、極めて短時間の超高温処理である溶射の
プロセスにおいて、再現性よく両立させることは困難で
あり、多くの場合溶射被膜中に意図しない酸化物などが
混入していたり、気孔が多く介在するため、十分な特性
の被膜が得られないのが実状である。
Although the thermal spraying of cemented carbide and the composite material of chromium carbide and nickel-chromium alloy has been put into practical use, in order to obtain a good quality thermal spray coating having sufficient characteristics for the purpose, the following two methods are required. One condition must be met. First, the carbides used in these alloys are relatively unstable in a high-temperature oxidizing atmosphere, and oxides and other carbides are easily generated, so it is necessary to avoid applying excessive heat energy. . Next, in order to make the liquid phase due to the eutectic of carbide and metal, which are indispensable for forming a dense film, appear at a certain temperature (about 1320 ° C for cemented carbide).
Above) must be exposed for a certain time or longer. It is difficult to make these two contradictory conditions compatible with each other with good reproducibility in the process of thermal spraying, which is an extremely high temperature ultra-high temperature treatment, and in many cases unintended oxides are mixed in the thermal spray coating. However, since many pores are present, the actual situation is that a film with sufficient characteristics cannot be obtained.

【0006】また、溶射被膜の特性を向上させるには、
溶射粉末の粒子径や形態を厳密に制御する必要がある。
たとえば、超硬合金においては一旦、真空中などで十分
に焼結させたものを粉砕し、適当な粒子径範囲にある粒
子のみをふるい分けした粉末が最適と言われているが、
このような工程に要するコストが決して小さくはないの
は当然であり、また形態などを含めた均質性にも問題が
ある。超硬合金の溶射粉末で、このような工程が要求さ
れるのは、溶射作業においては十分な流動性を獲得する
ことが必要であることの他に、前述したような材料種固
有の問題点、即ち溶射作業中に付与される熱エネルギー
の厳密な制御が必要である事に起因する。さらに一旦焼
結し、粉砕した粉末であっても、一般に数十μm以上の
粒子径である溶射用粉末においては、個々の粒子の各部
に付与される熱エネルギー量は期待した一定の値とはな
らず、結果として得られる溶射被膜は均質性の点で満足
できるものでない場合が多い。
In order to improve the characteristics of the sprayed coating,
It is necessary to strictly control the particle size and morphology of the thermal spray powder.
For example, in the case of cemented carbide, it is said that a powder obtained by crushing a material that has been sufficiently sintered in a vacuum or the like and sieving only particles in an appropriate particle size range is optimal.
It goes without saying that the cost required for such a process is not small, and there is a problem with the homogeneity including the form. The reason why such a process is required for the thermal spray powder of cemented carbide is that it is necessary to obtain sufficient fluidity in the thermal spraying work, and the problems inherent to the material type as described above. That is, it is necessary to strictly control the heat energy applied during the spraying operation. Further, even if the powder is once sintered and pulverized, the amount of thermal energy applied to each part of each particle is not an expected constant value in the case of a thermal spraying powder having a particle size of several tens of μm or more. Of course, the resulting sprayed coating is often not satisfactory in terms of homogeneity.

【0007】また、セラミックスと金属の複合材料の溶
射に適するとされている高速フレーム溶射法により、超
硬合金の溶射被膜を形成する場合の最大膜厚は一般には
200〜300μm程度である。これは、基板である鉄
鋼材料の熱膨張係数に比較して超硬合金の熱膨張係数が
小さく、これらの材料の熱膨張係数の間には相当な差が
あり、被膜が厚くなると剥離が生じるためである。従っ
て形成できる最大膜厚は超硬合金の溶射被膜が緻密にな
ればなるほど小さくなり、耐磨耗性の向上等を目的とし
て溶射を行う場合には大きな欠点である。
Further, the maximum film thickness in the case of forming a sprayed coating of cemented carbide by the high speed flame spraying method, which is said to be suitable for spraying a composite material of ceramics and metal, is generally about 200 to 300 μm. This is because the coefficient of thermal expansion of cemented carbide is small compared to the coefficient of thermal expansion of the steel material that is the substrate, there is a considerable difference between the coefficients of thermal expansion of these materials, and peeling occurs when the coating becomes thicker. This is because. Therefore, the maximum film thickness that can be formed becomes smaller as the sprayed coating of cemented carbide becomes denser, which is a major drawback when performing spraying for the purpose of improving wear resistance.

【0008】特開昭63−195254では、鉄鋼材料
の上にFe−BまたはFe−B系合金粉末などの金属を
溶射し加熱処理を行うことにより複ホウ化物と金属から
構成される被膜を形成し、耐磨耗性などが向上した被覆
鉄鋼材料を得ることを提言している。しかし、当該発明
では溶射粉末が複ホウ化物系の材料でなく、溶射された
被膜の均質性や特性が劣り、均質性や特性の向上には高
温での再加熱処理が必要であるが、再加熱処理による鉄
鋼材料の寸法変化や変質は無視できない。
In Japanese Patent Laid-Open No. 63-195254, a coating film composed of a double boride and a metal is formed by thermally spraying a metal such as Fe-B or Fe-B alloy powder on a steel material and performing heat treatment. However, it is proposed to obtain a coated steel material having improved wear resistance and the like. However, in the present invention, the thermal spraying powder is not a double boride-based material, the homogeneity and characteristics of the sprayed coating are poor, and reheating treatment at high temperature is necessary to improve the homogeneity and characteristics. The dimensional changes and alterations of steel materials due to heat treatment cannot be ignored.

【0009】また、特開平1−259117には、Cr
B、MoB、WB、TiB2 、ZrB2 のいずれかと金
属とからなる溶射サーメット被膜が開示されているが、
これらの材料を用いても、超硬合金の場合と同様な問題
があり十分な特性の被膜が得られない。
Further, Japanese Patent Laid-Open No. 1-259117 discloses Cr
Although a thermal sprayed cermet coating made of any one of B, MoB, WB, TiB 2 and ZrB 2 is disclosed,
Even if these materials are used, the same problems as in the case of cemented carbide are encountered and a film having sufficient characteristics cannot be obtained.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記従来技
術における問題点を解決し、均質性や特性に優れた溶射
被膜を形成でき、膜厚を厚くしても溶射被膜の剥離が生
じ難い新規なセラミックス・金属複合材料の溶射用粉末
およびそれを用いた溶射方法を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, can form a sprayed coating having excellent homogeneity and characteristics, and even if the film thickness is increased, peeling of the sprayed coating hardly occurs. An object of the present invention is to provide a novel ceramic-metal composite material thermal spraying powder and a thermal spraying method using the same.

【0011】[0011]

【課題を解決するための手段】本発明は、前述の課題を
達成すべくなされたものであり、本発明が提供する溶射
用粉末は、Fe、Ni及びCoから選ばれる一種以上の
元素とMo及び/又はWとの複合ホウ化物を主体とする
セラミックス相と、Fe、Ni及びCoから選ばれる一
種以上の元素を主体とする金属結合相とで構成されてい
る粒子からなることを特徴とする溶射用セラミックス・
金属複合粉末である。
The present invention has been made to achieve the above-mentioned object, and the thermal spraying powder provided by the present invention comprises one or more elements selected from Fe, Ni and Co and Mo. And / or W, and is composed of particles composed of a ceramic phase mainly composed of a composite boride and W and / or a metal bonded phase mainly composed of one or more elements selected from Fe, Ni and Co. Ceramics for thermal spraying
It is a metal composite powder.

【0012】また、本発明によれば、Ni及び/又はC
oとMo及び/又はWとの複合ホウ化物を主体とするセ
ラミックス相と、Ni及び/又はCoを主体とする金属
結合相とで構成され、気孔率が1.5%以下、ビッカー
ス硬度Hv300 が900kg/mm2 以上であることを
特徴とする溶射被膜が提供される。
Further, according to the present invention, Ni and / or C
It is composed of a ceramics phase mainly composed of a composite boride of o and Mo and / or W, and a metallic bonding phase mainly composed of Ni and / or Co, and has a porosity of 1.5% or less and a Vickers hardness Hv 300. Is 900 kg / mm 2 or more.

【0013】Fe、Ni、Coから選ばれる1種以上の
元素とMo及び/又はWとの複合ホウ化物を主体とする
セラミックス相と、Fe、Ni、Coから選ばれる一種
以上の元素を主体とする金属結合相から構成される複合
材料は、様々な用途分野において、特に高温で使用され
る用途において、超硬合金に代わり得る、または凌駕す
る材料である(特公昭60−57499、特開昭63−
143236参照)。
A ceramic phase mainly composed of a composite boride of Mo and / or W and at least one element selected from Fe, Ni and Co, and at least one element selected from Fe, Ni and Co. A composite material composed of a metallic binder phase that is capable of substituting or surpassing a cemented carbide in various fields of use, particularly in applications where high temperatures are used (Japanese Patent Publication No. 60-57499, Japanese Patent Laid-Open No. Sho 60-57499). 63-
143236).

【0014】すなわち、この複合ホウ化物を主体とする
材料の熱膨張係数は鉄鋼材料と超硬合金との中間に有
り、溶射法によりその被膜を鉄鋼材料の上に形成すれば
超硬合金よりも剥離は生じ難い。このため、Fe、N
i、Coから選ばれる一種以上の元素とMo及び/又は
Wとの複合ホウ化物を主体とするセラミックス相と、F
e、Ni、Coから選ばれる一種以上の元素を主体とす
る金属結合相とから構成される良質で厚さのある被膜を
形成する事ができ、耐磨耗性や耐食性の向上を目的とし
た鉄鋼材料の表面処理として十分に有効な手段となる。
That is, the coefficient of thermal expansion of the material mainly composed of the composite boride is between that of the steel material and the cemented carbide, and if the coating is formed on the steel material by the thermal spraying method, it will be better than that of the cemented carbide. Peeling is unlikely to occur. Therefore, Fe, N
a ceramic phase mainly composed of a complex boride of one or more elements selected from i and Co and Mo and / or W;
It is possible to form a high-quality and thick coating composed of a metallic binder phase mainly composed of one or more elements selected from e, Ni, and Co, and to improve wear resistance and corrosion resistance. It is a sufficiently effective means for surface treatment of steel materials.

【0015】また、特にNi及び/又はCoとMo及び
/又はWとの複ホウ化物を主体とするセラミックス相
と、Ni及び/又はCoを主体とする金属結合相との複
合溶射被膜は、耐磨耗性の用途に一般に用いられている
自溶性合金などの溶射被膜よりも硬度や耐食性が高く、
超硬合金やクロム炭化物/金属複合材の溶射被膜に比べ
て密着性と耐熱性にも優れている。
Further, in particular, a composite thermal spray coating of a ceramic phase mainly composed of a double boride of Ni and / or Co and Mo and / or W and a metallic binder phase mainly composed of Ni and / or Co is Higher hardness and corrosion resistance than sprayed coatings such as self-fluxing alloys that are commonly used for wear-resistant applications,
It has excellent adhesion and heat resistance as compared with the thermal spray coating of cemented carbide and chromium carbide / metal composite.

【0016】この溶射用セラミックス・金属複合粉末
は、好ましくは、造粒後に焼結された多孔質で概ね球形
の粒子からなっている。このような粒子の粉末とするこ
とで、流動性が優れる(たとえば安息角が30゜以下)
とともに、溶射時に粒子の中心部まで均等に熱を受けて
半溶融状態となる粒子の粉末が提供される。
The ceramic / metal composite powder for thermal spraying is preferably composed of porous and substantially spherical particles which are sintered after granulation. The powder of such particles has excellent fluidity (for example, the angle of repose is 30 ° or less).
At the same time, a powder of particles is provided which is evenly heated to the central portion of the particles during thermal spraying to be in a semi-molten state.

【0017】本発明において、セラミックス相は溶射用
セラミックス・金属複合粉末全体の50重量%以上、9
0重量%以下を占めることが好ましい。50重量%未満
では複合ホウ化物の有する好ましい物性を溶射被膜に付
与することが困難となり、90重量%を超えると金属結
合相が少なくなって溶射被膜の強度が小さくなり、密着
性が低下するからである。
In the present invention, the ceramic phase is 50% by weight or more based on the entire ceramic-metal composite powder for thermal spraying, 9
It preferably accounts for 0% by weight or less. If it is less than 50% by weight, it becomes difficult to impart the preferred physical properties of the composite boride to the thermal spray coating, and if it exceeds 90% by weight, the metal binder phase is reduced and the strength of the thermal spray coating becomes small, resulting in poor adhesion. Is.

【0018】本発明の溶射用セラミックス・金属複合粉
末におけるFe、Ni、Coから選ばれる1種以上の元
素とMo及び/又はWとの複合ホウ化物のセラミックス
相全体に対する割合は好ましくは70重量%以上であ
り、より好ましくは85重量%以上である。70重量%
以上とすれば複合ホウ化物の好ましい特性が発現され、
85重量%以上とすることで一層優れた特性を確保でき
る。
The proportion of the composite boride of Mo and / or W and at least one element selected from Fe, Ni and Co in the ceramics / metal composite powder for thermal spraying of the present invention is preferably 70% by weight. It is above, and more preferably 85% by weight or more. 70% by weight
With the above, preferable characteristics of the composite boride are expressed,
If the amount is 85% by weight or more, more excellent properties can be secured.

【0019】また、好ましくは、金属結合相全体の65
重量%以上が、より好ましくは70重量%以上がFe、
Ni、Coから選ばれる1種以上の金属である。これら
の金属元素が65重量%以上であると好ましからざる特
性を付与する第3相の生成を抑制できるからであり、さ
らに70重量%以上であると安定して優れた特性を有す
る溶射被膜が得られるからである。
Also, preferably, the total amount of the metallic binder phases is 65
% Or more, more preferably 70% or more by weight of Fe,
It is one or more metals selected from Ni and Co. This is because when the content of these metal elements is 65% by weight or more, the formation of the third phase that imparts undesirable characteristics can be suppressed, and when it is 70% by weight or more, a sprayed coating having stable and excellent characteristics can be obtained. Because it will be done.

【0020】複ホウ化物中においてWはMoと任意の割
り合いで置換でき、Wが含まれていることによって被膜
の硬度と強度が向上する。しかしWは比重が大きく高価
な原料でもあるので、粉末中のWの含有量は25重量%
以下とするのが好ましい。硬度と強度を向上せしめる効
果を得るには粉末中にWを5重量%以上含有せしめるの
が好ましい。
In the double boride, W can be replaced with Mo at an arbitrary ratio, and the inclusion of W improves the hardness and strength of the coating. However, since W has a large specific gravity and is an expensive raw material, the content of W in the powder is 25% by weight.
It is preferable to set the following. In order to obtain the effect of improving hardness and strength, it is preferable to contain W in an amount of 5% by weight or more.

【0021】本発明の溶射用セラミックス・金属複合粉
末を構成する主たるセラミックス相と金属結合相の好ま
しい組合せは、Mo2 FeB2 型セラミックスとFe基
合金との組合せ、Mo2 NiB2 型セラミックスとNi
基合金との組合せ、およびMoCoB型セラミックスと
Co基合金との組合せである。Mo2 FeB2 型セラミ
ックスとFe基合金とを組合せた材質は比較的安価であ
り、Mo2 NiB2 型セラミックスとNi基合金とを組
合せた材質は総合的に優れた特性を示し、MoCoB型
セラミックスとCo基合金とを組合せた材質は溶融アル
ミニウム、溶融亜鉛に対して耐食性が良好である。
Preferred combinations of the main ceramics phase and the metal binding phase which compose the thermal spraying ceramics / metal composite powder of the present invention are a combination of Mo 2 FeB 2 type ceramics and an Fe-based alloy, a combination of Mo 2 NiB 2 type ceramics and Ni.
A base alloy, and a MoCoB type ceramic and a Co base alloy. The material combining the Mo 2 FeB 2 type ceramics and the Fe-based alloy is relatively inexpensive, and the material combining the Mo 2 NiB 2 type ceramics and the Ni-based alloy shows comprehensively excellent characteristics. The material obtained by combining and Co-based alloy has good corrosion resistance to molten aluminum and molten zinc.

【0022】そして、本発明の好ましい粉末は、セラミ
ックス相の70重量%以上が(Mo,W)X FeY2
(但しX=1.8〜2.2、Y=0.9〜1.1)であ
り、金属結合相の70重量%以上がFeである。また、
他の好ましい粉末は、セラミックス相の70重量%以上
が(Mo,W)X NiY2 (但しX=1.8〜2.
2、Y=0.9〜1.1)であり、金属結合相の70重
量%以上がNiである。また、さらに他の好ましい粉末
は、セラミックス相の70重量%以上が(Mo,W)X
CoY2 (但しX=0.9〜1.1、Y=0.9〜
1.1)であり、金属結合相の70重量%以上がCoで
ある。
In the preferred powder of the present invention, 70% by weight or more of the ceramic phase is (Mo, W) X Fe Y B 2
(However, X = 1.8 to 2.2, Y = 0.9 to 1.1), and 70% by weight or more of the metal binding phase is Fe. Also,
In another preferred powder, 70% by weight or more of the ceramic phase is (Mo, W) X Ni Y B 2 (where X = 1.8 to 2 .
2, Y = 0.9 to 1.1), and 70% by weight or more of the metal binding phase is Ni. Still another preferable powder is (Mo, W) X , which is 70% by weight or more of the ceramic phase.
Co Y B 2 (However, X = 0.9 to 1.1, Y = 0.9 to
1.1), and 70% by weight or more of the metal binding phase is Co.

【0023】本発明の溶射用粉末を得るには、例えば、
MoB、WB等の各ホウ化物粉末及びNi、Mo、Cr
等の金属粉末を秤量し、回転ボールミルや振動ボールミ
ル等を用いて、エタノール等の有機溶媒中で混合粉砕し
た後有機バインダーを添加し、このスラリーを非酸化性
雰囲気中でスプレードライヤー等を用いて造粒し、好ま
しくは真空、Ar等の非酸化性雰囲気中において900
〜1100℃でゆるく焼結した後、解砕して概ね球形の
粒子とする。
To obtain the thermal spray powder of the present invention, for example,
Each boride powder such as MoB and WB and Ni, Mo and Cr
Etc.Weigh metal powders, etc., using a rotating ball mill or vibrating ball mill etc., mix and grind in an organic solvent such as ethanol, then add an organic binder, and use a spray dryer etc. in this slurry in a non-oxidizing atmosphere. Granulate, preferably 900 in a non-oxidizing atmosphere such as vacuum or Ar
After loosely sintering at ˜1100 ° C., it is crushed into substantially spherical particles.

【0024】用いる原料粉末は必ずしも前述のようにホ
ウ化物と金属の形である必要はなく、例えばNi−B合
金とMo粉、W粉及びNi粉との組み合わせ、あるいは
予めアトマイズ法やその他の方法で合成した複ホウ化物
粉末と金属粉末との組合せ、さらにはNi、Mo、W等
の単体の金属粉末とB粉末の組合せでもよい。一般的に
これらの原料粉末は出来るかぎり純度が高く、微細であ
る方が優れた特性の粉末を得る上で有利であることは言
うまでもない。特に溶射粉末の均質性を確保するため
に、ホウ化物の粒径は平均で10μm以下とするのが好
ましい。
The raw material powder to be used does not necessarily have to be in the form of boride and metal as described above. For example, a combination of Ni-B alloy and Mo powder, W powder and Ni powder, or an atomizing method or other method in advance. The combination of the double boride powder synthesized in step 1 and the metal powder, or the combination of the single metal powder of Ni, Mo, W or the like and the B powder may be used. Needless to say, it is generally advantageous for these raw material powders to have a purity as high as possible and to be fine in order to obtain a powder having excellent characteristics. In particular, in order to ensure the homogeneity of the sprayed powder, it is preferable that the average particle size of the boride is 10 μm or less.

【0025】回転ボールミルで粉砕混合した粉末は微細
であり、そのままでは溶射粉末としては不適であるた
め、有機バインダーを添加して造粒処理を行う。用いる
有機バインダーは焼結時に除去され易いものを選ぶこと
が好ましく、アクリル樹脂やポリエチレングリコール等
を用いることができる。造粒処理を行った粉末は一般に
球形であり、流動性は良いが、加圧ガスによる搬送に耐
えるに十分なほど固くはない。
Since the powder pulverized and mixed by the rotary ball mill is fine and is not suitable as a thermal spray powder as it is, an organic binder is added for granulation. It is preferable to select an organic binder that can be easily removed during sintering, and acrylic resin, polyethylene glycol or the like can be used. The granulated powder is generally spherical and has good fluidity, but is not sufficiently hard to withstand transport by pressurized gas.

【0026】この造粒粉を真空中などにおいて900〜
1100℃で焼結すると、有機バインダーが除去される
と共に、球形を保ったまま造粒粉内の一次粒子同士が焼
結して概ね球状の多孔質粒子となり、加圧ガスによる搬
送を行っても容易に崩れない(図1参照)。緻密質の粒
子では溶射作業時の短時間の熱付与では中心部と外縁部
で溶け方に差が生じやすいのに対し、粉末が多孔質であ
ると中心部まで均等に熱を受けて溶融する効果がある。
この場合多孔質粒子の気孔率が20〜60%であること
が好ましい。20%未満では粒子内部への熱の通りが悪
くなり、60%を超えると粒子の強度が小さくて搬送時
に微粉となりやすいからである。また、この焼結を行う
と、当初の混合原料として予め合成した複ホウ化物を用
いない場合も溶射用粉末の結晶組成が複ホウ化物と鉄族
金属の合金を主体としたものとなる。極めて短時間の加
熱処理でしかない溶射時の熱履歴では、複ホウ化物の生
成を十分に進行させることが困難であるため、溶射用粉
末とする段階で複ホウ化物を生成させておく効果は大き
い。
This granulated powder is heated to 900 to 900 in a vacuum or the like.
When sintered at 1100 ° C., the organic binder is removed, and the primary particles in the granulated powder sinter while maintaining the spherical shape to become a substantially spherical porous particle, and even if it is conveyed by a pressurized gas. Does not collapse easily (see Figure 1). In the case of dense particles, there is a difference in the way of melting between the central part and the outer edge part when heat is applied for a short time during the spraying work, whereas if the powder is porous, it will be uniformly heated and melted to the central part. effective.
In this case, the porosity of the porous particles is preferably 20 to 60%. This is because if it is less than 20%, the heat does not easily pass to the inside of the particles, and if it exceeds 60%, the strength of the particles is small and the particles tend to become fine powder during transportation. Further, if this sintering is performed, the crystal composition of the thermal spraying powder will mainly consist of the alloy of the double boride and the iron group metal even if the double boride previously synthesized as the initial mixed raw material is not used. With the thermal history during thermal spraying, which is only a very short heat treatment, it is difficult to sufficiently advance the formation of the multiple boride, so the effect of generating the multiple boride at the stage of forming the thermal spray powder is large.

【0027】ここで、好ましい加熱温度を900〜11
00℃としたのは、900℃未満では複ホウ化物の生成
が十分ではなく、更に造粒粉内の一次粒子同士の焼結も
弱く粉末の粒子が崩れやすいためであり、1100℃を
越えると一次粒子同士の焼結のみではなく造粒粉同士の
焼結も生じ始め、解砕作業が困難となり、粒子の気孔率
が20%未満になるためである。
The preferable heating temperature is 900 to 11
The reason why the temperature is set to 00 ° C. is that if the temperature is lower than 900 ° C., the formation of the double boride is not sufficient, the sintering of the primary particles in the granulated powder is weak, and the powder particles are easily broken. This is because not only sintering of the primary particles but also sintering of the granulated powder begins to occur, crushing work becomes difficult, and the porosity of the particles becomes less than 20%.

【0028】本発明の溶射用セラミックス・金属複合粉
末の好ましい粒子径は平均粒径で20〜70μmであ
る。粉末の平均粒径が20〜70μmであることが好ま
しいのは、平均粒径が20μm未満では流動性が小さく
なくなるためであり、70μmを超えると溶射時の粒子
速度が小さくなるためと多孔質であっても中心部の溶融
が不十分となり均質な溶射被膜の形成が困難となるため
である。
The preferred particle size of the ceramic / metal composite powder for thermal spraying of the present invention is 20 to 70 μm in average particle size. The reason why the average particle size of the powder is preferably 20 to 70 μm is that the fluidity does not become small when the average particle size is less than 20 μm, and the particle velocity at the time of thermal spraying becomes small when the average particle size exceeds 70 μm, and the powder is porous. This is because even if there is, the melting of the central portion becomes insufficient and it becomes difficult to form a uniform sprayed coating.

【0029】[0029]

【実施例】以下に本発明の実施例および比較例を説明す
るが、本発明はこれらの実施例に限定されるものではな
い。
EXAMPLES Examples and comparative examples of the present invention will be described below, but the present invention is not limited to these examples.

【0030】実施例1 MoB(純度約99.5%、平均粒径約6μm)49重
量%、WB(純度約99.4%、平均粒径約4μm)9
重量%、Mo(純度約99.8%、平均粒径約8μm)
7重量%、Ni(純度約99.5%、平均粒径約3μ
m)35重量%の4種類の粉末を混合し、有機溶媒とし
てエチルアルコールを用い回転ボールミルにて48時間
粉砕を行った。得られたスラリーにポリエチレングリコ
ールを3%添加し粘度調整を行った後、ディスクアトマ
イザー式スプレードライヤーを用いて造粒処理を行い平
均粒径が約46μmの造粒粉を作製した。この造粒粉を
Ar雰囲気中1100℃で1時間焼結した後、解砕し
て、分級を行い粒径26〜50μmの溶射用粉末を得
た。得られた溶射用粉末は概ね球形の多孔質粒子からな
り(図1参照)、気孔率は約40%であり、平均粒径は
約41μmであった。
Example 1 49% by weight of MoB (purity about 99.5%, average particle size about 6 μm), WB (purity about 99.4%, average particle size about 4 μm) 9
% By weight, Mo (purity about 99.8%, average particle size about 8 μm)
7% by weight, Ni (purity about 99.5%, average particle size about 3μ
m) Four kinds of powder of 35% by weight were mixed and pulverized for 48 hours by a rotary ball mill using ethyl alcohol as an organic solvent. After 3% of polyethylene glycol was added to the obtained slurry to adjust the viscosity, a granulation process was performed using a disc atomizer type spray dryer to produce granulated powder having an average particle size of about 46 μm. This granulated powder was sintered in an Ar atmosphere at 1100 ° C. for 1 hour, then crushed and classified to obtain a thermal spraying powder having a particle size of 26 to 50 μm. The obtained thermal spray powder consisted of substantially spherical porous particles (see FIG. 1), had a porosity of about 40% and an average particle size of about 41 μm.

【0031】この溶射用粉末をサンドブラスト処理を行
った厚さ6mmの炭素鋼(S45C)の基板の上に、メ
テコ社製ダイヤモンドジェット式の溶射機を用い、膜厚
が約100μmになるように溶射した。得られた基板2
0上の溶射被膜10は図2の顕微鏡写真に示したように
緻密で均質であり、気孔率(断面写真より画像解析によ
り求めた、以下同じ)が0.2%、平均硬度(断面に荷
重300gのマイクロビッカースを打ちこんで測定し
た)Hv300 が1010kg/mm2 の特性を示した。
CuKα線を用いるX線回折法によって得られた溶射被
膜中の生成相を同定したところ、複ホウ化物相の回折ピ
ークは顕著に現れた(図3の回折ピーク1)が、Ni基
合金相の回折ピークは認められなかった。別にEPMA
で調べたところ、Ni基合金相の存在が認められたの
で、Ni基合金相は非晶質化しているものと考えられ
る。
This thermal spraying powder was sprayed onto a carbon steel (S45C) substrate having a thickness of 6 mm, which had been subjected to a sandblasting process, using a diamond jet type thermal spraying machine manufactured by Metco Co., to a film thickness of about 100 μm. did. The obtained substrate 2
The thermal sprayed coating 10 on No. 0 is dense and homogeneous as shown in the micrograph of FIG. 2, the porosity (determined by image analysis from the cross-sectional photograph, the same applies hereinafter) is 0.2%, and the average hardness (load on the cross-section) Hv 300 exhibited a characteristic of 1010 kg / mm 2 (measured by driving in 300 g of micro Vickers).
When the generated phase in the thermal spray coating obtained by the X-ray diffraction method using CuKα ray was identified, the diffraction peak of the double boride phase was conspicuous (diffraction peak 1 in FIG. 3), but No diffraction peak was observed. Separately EPMA
As a result of the examination, it was confirmed that the Ni-based alloy phase was present, and therefore it is considered that the Ni-based alloy phase is amorphized.

【0032】実施例2 Fe−15重量%B合金(純度約99%、平均粒径約1
0μm)を28重量%、Fe−13重量%Cr合金(純
度約99.5%、平均粒径約6μm)を32.3重量
%、前記Moを35.5重量%、前記Niを2.1重量
%、カーボニルFe(純度約99.6%、平均粒径約
2.5μm)を1.8重量%、C(純度約99.5%、
平均粒径約5μm)を0.3重量%の6種類の粉末を混
合し、焼結温度を1150℃とし、他は実施例1に準じ
た条件で溶射用粉末を作製した。この溶射原料を実施例
1と同様に溶射したところ、気孔率が0.3%、平均硬
度がHv30 0 =850kg/mm2 の緻密かつ均質な溶
射被膜を得た。
Example 2 Fe-15 wt% B alloy (purity about 99%, average particle size about 1
0 μm), 28% by weight, Fe-13% by weight Cr alloy (purity about 99.5%, average particle size about 6 μm) 32.3% by weight, said Mo 35.5% by weight, said Ni 2.1. % By weight, 1.8% carbonyl Fe (purity about 99.6%, average particle size about 2.5 μm), C (purity about 99.5%,
Six kinds of powders having an average particle diameter of about 5 μm) of 0.3% by weight were mixed, the sintering temperature was set to 1150 ° C., and the thermal spraying powder was produced under the same conditions as in Example 1. The thermal spray material was sprayed in the same manner as in Example 1, a porosity of 0.3%, an average hardness was obtained dense and uniform spray coating of Hv 30 0 = 850kg / mm 2 .

【0033】実施例3 前記MoB合金を54重量%、Co(純度約99.6
%、平均粒径約5μm)を45重量%、前記Moを1重
量%の3種類の粉末を混合し、焼結温度を1000℃と
し、他は実施例1に準じた条件で溶射用粉末を作製し
た。この溶射粉末を実施例1と同様に溶射したところ、
気孔率1.0%、平均硬度Hv300 =1200kg/m
2 で緻密かつ均質な溶射被膜を得た。
Example 3 54% by weight of the MoB alloy, Co (purity of about 99.6)
%, Average particle size of about 5 μm), 45% by weight, and 1% by weight of Mo described above are mixed, the sintering temperature is 1000 ° C., and the powder for thermal spraying is prepared under the same conditions as in Example 1. It was made. When this sprayed powder was sprayed in the same manner as in Example 1,
Porosity 1.0%, average hardness Hv 300 = 1200 kg / m
A dense and uniform thermal spray coating was obtained at m 2 .

【0034】実施例4 実施例1と同様にして処理した原料粉末のスラリーを減
圧下で乾燥した。この乾燥粉末を0.1Torrの真空
中において1200℃で5時間乾燥したものを粉砕して
分級し、粒径10μm以下と粒径40μm以上を除いて
平均粒径25μmの粒子からなる粉末を得た。この粉末
を用いて、実施例1と同じ条件で溶射を行ったところ、
気孔率1.2%、平均硬度Hv300 が880kg/mm
2 の溶射被膜が得られた。この溶射被膜をX線回折で調
べたところ、実施例1の場合と同様の回折図を得た。
Example 4 A slurry of raw material powder treated in the same manner as in Example 1 was dried under reduced pressure. The dried powder was dried in a vacuum of 0.1 Torr at 1200 ° C. for 5 hours, pulverized and classified to obtain a powder composed of particles having an average particle size of 25 μm except particle sizes of 10 μm or less and 40 μm or more. . When this powder was used for thermal spraying under the same conditions as in Example 1,
Porosity 1.2%, average hardness Hv 300 is 880 kg / mm
A thermal spray coating of 2 was obtained. When this thermal spray coating was examined by X-ray diffraction, the same diffraction pattern as in Example 1 was obtained.

【0035】なお、これらの実施例において調合した原
料の化学組成と得られた溶射被膜の化学組成の間の有意
差は化学分析の精度と同程度であった。
The significant difference between the chemical composition of the raw materials prepared in these examples and the chemical composition of the sprayed coatings obtained was similar to the accuracy of the chemical analysis.

【0036】比較例1、2 実施例1において作製した造粒粉末を比較例1ではその
まま、比較例2では750℃で焼結した後解砕し、実施
例1と同様に分級を行って溶射用粉末とした。得られた
溶射用粉末は比較例1と比較例2では球形で多孔質であ
ったが、比較例2では解砕時に球形が崩れたものが多く
なった。
Comparative Examples 1 and 2 The granulated powder prepared in Example 1 was used as it is in Comparative Example 1, and in Comparative Example 2 it was sintered at 750 ° C. and then crushed, and then classified as in Example 1 and sprayed. The powder was used. The obtained thermal spraying powders were spherical and porous in Comparative Examples 1 and 2, but in Comparative Example 2, many spherical shapes were broken during crushing.

【0037】これらの溶射用粉末を実施例1と同様に溶
射しようとしたが、比較例1では微粉が発生して粉末の
流動性が悪いため粉末供給装置が粉末で閉塞し溶射被膜
を形成できなかった。また、比較例2でも膜厚約100
μmまで溶射したとき、粉末供給装置が粉末で閉塞して
溶射不能となった。この比較例2で得られた溶射被膜は
気孔率が6%、平均硬度がHv300 =650kg/mm
2 であり、非常に不均質な組織を有していた。この溶射
被膜の生成相中には相当量のMoBが含まれたいた。
These thermal spraying powders were tried to be sprayed in the same manner as in Example 1. In Comparative Example 1, however, fine powder was generated and the fluidity of the powder was poor, so that the powder supply device was clogged with the powder and a sprayed coating could be formed. There wasn't. In Comparative Example 2, the film thickness is about 100.
When thermal spraying was performed up to μm, the powder supply device was blocked by the powder, and thermal spraying became impossible. The thermal sprayed coating obtained in Comparative Example 2 had a porosity of 6% and an average hardness of Hv 300 = 650 kg / mm.
2 and had a very heterogeneous structure. A considerable amount of MoB was contained in the formation phase of this thermal spray coating.

【0038】比較例3 平均粒径が20〜50μmの範囲にある原料粉末を実施
例1と同じ組成に混合し、これをそのまま溶射用粉末と
して実施例1に準じた条件で溶射を行った。得られた溶
射被膜は気孔率が7%、平均硬度がHv300 =650を
示し、不均質な組織を有していた。また、被膜内に含ま
れている(Mo,W)2 NiB2 相は重量比で40%未
満であった。
Comparative Example 3 A raw material powder having an average particle size in the range of 20 to 50 μm was mixed with the same composition as in Example 1, and this was used as it was as a powder for thermal spraying under the same conditions as in Example 1 for thermal spraying. The obtained sprayed coating had a porosity of 7% and an average hardness of Hv 300 = 650, and had a heterogeneous structure. The (Mo, W) 2 NiB 2 phase contained in the coating was less than 40% by weight.

【0039】[0039]

【発明の効果】本発明のFe、Ni、Coから選ばれる
1種以上の元素とMo及び/又はWとの複ホウ化物を主
体とするセラミックスと、Fe、Ni、Coから選ばれ
る1種以上の元素を主体とする金属との複合粉末を用い
て形成した溶射被膜は、耐磨耗性用途に従来用いられて
いる自溶性合金などの溶射被膜よりも硬度と耐食性が高
く、超硬合金やクロム炭化物/金属複合耐の溶射被膜に
比べて密着性と耐熱性に優れている。また、鋼材に対し
て熱膨張率の差が小さいため溶射被膜の膜厚も厚くでき
る。従って、本発明が提供する溶射粉末による溶射被膜
は、耐食性、硬度、耐熱性が同時に要求される温間また
は熱間鍛造用の金型類やアルミニウム鋳造用の金型類に
用いるとこれらの金型類の寿命が大幅に向上すると共
に、加工される製品の歩留まりや品質も向上する。さら
に、より一般的な摺動や粒子に対する耐磨耗性が求めら
れる部材に、この溶射被膜を形成しても部材の寿命延長
等に大きな効果があるので、その産業上の利用価値は多
大である。
EFFECTS OF THE INVENTION Ceramics mainly composed of a complex boride of one or more elements selected from Fe, Ni and Co and Mo and / or W of the present invention, and one or more kinds selected from Fe, Ni and Co. The thermal spray coating formed by using the composite powder with the metal mainly composed of the element is higher in hardness and corrosion resistance than the thermal spray coating such as the self-fluxing alloy which is conventionally used for the wear resistance application, and the cemented carbide or Superior in adhesion and heat resistance compared to chromium carbide / metal composite thermal spray coating. Further, since the difference in the coefficient of thermal expansion is small with respect to the steel material, the film thickness of the sprayed coating can be increased. Therefore, the thermal spray coating of the thermal spray powder provided by the present invention, corrosion resistance, hardness, heat resistance at the same time when used for hot or hot forging dies and aluminum casting dies The life of the molds will be greatly improved, and the yield and quality of processed products will be improved. Furthermore, even if this sprayed coating is formed on a member that requires more general sliding and abrasion resistance against particles, it has a great effect on extending the life of the member, etc., so its industrial utility value is great. is there.

【0040】本発明のFe、Ni、Coから選ばれる1
種以上の元素とMo及び/又はWとの複ホウ化物を主体
とするセラミックスと、Fe、Ni、Coから選ばれる
1種以上の元素を主体とする金属との溶射用セラミック
ス・金属複合粉末は、原料粉末の造粒処理を行った後に
一定の条件で焼結することによって、組織的に均質で一
次粒子同士が多孔質に焼結した球状の粒子とされる。こ
の粒子からなる溶射用粉末は好ましくは概ね球形とする
ことによって流動性に優れ、さらに多孔質とすることに
よって高速フレーム溶射の熱源により十分に溶融するた
め、気孔率が小さい、均質な組織を有する複ホウ化物・
金属複合溶射被膜を容易に得ることができる。
1 selected from Fe, Ni and Co of the present invention
A ceramic / metal composite powder for thermal spraying of a ceramic mainly composed of a complex boride of one or more elements and Mo and / or W and a metal mainly composed of one or more elements selected from Fe, Ni and Co By performing the granulation process of the raw material powder and then sintering the powder under a certain condition, spherical particles in which the primary particles are structurally homogeneous and the primary particles are sintered to be porous are formed. The thermal spraying powder consisting of these particles preferably has a substantially spherical shape for excellent fluidity, and when it is porous, it is sufficiently melted by a heat source for high-speed flame spraying, and thus has a small porosity and a uniform structure. Compound boride
A metal composite sprayed coating can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の溶射用セラミックス・金属複合粉末の
外観を示す顕微鏡写真である。
FIG. 1 is a photomicrograph showing the appearance of a ceramic / metal composite powder for thermal spraying of the present invention.

【図2】本発明の溶射用セラミックス・金属複合粉末を
用いて得た溶射被膜の断面を示す顕微鏡写真である。。
FIG. 2 is a micrograph showing a cross section of a thermal spray coating obtained by using the ceramics-metal composite powder for thermal spraying of the present invention. .

【図3】本発明の溶射用セラミックス・金属複合粉末を
用いて得た溶射被膜中の生成相を示すX線回折図であ
る。
FIG. 3 is an X-ray diffraction diagram showing a generated phase in a thermal spray coating obtained by using the ceramic / metal composite powder for thermal spraying of the present invention.

【符号の説明】[Explanation of symbols]

10…セラミックス・金属複合溶射被膜 20…炭素鋼の基板 1…(Mo,W)2 NiB2 相の回折ピーク10 ... Ceramic / metal composite thermal spray coating 20 ... Carbon steel substrate 1 ... (Mo, W) 2 NiB 2 phase diffraction peak

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 公彦 兵庫県高砂市梅井5丁目6番1号 旭硝子 株式会社高砂工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kimihiko Sato 5-6-1, Umei, Takasago, Hyogo Prefecture Asahi Glass Co., Ltd. Takasago Plant

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】Fe、Ni及びCoから選ばれる一種以上
の元素とMo及び/又はWとの複合ホウ化物を主体とす
るセラミックス相と、Fe、Ni及びCoから選ばれる
一種以上の元素を主体とする金属結合相とで構成されて
いる粒子からなることを特徴とする溶射用セラミックス
・金属複合粉末。
1. A ceramic phase mainly composed of a composite boride of Mo and / or W and one or more elements selected from Fe, Ni and Co, and one or more elements selected from Fe, Ni and Co. A ceramics / metal composite powder for thermal spraying, characterized in that it is composed of particles composed of a metal binder phase and
【請求項2】前記粒子が造粒後焼結され、概ね球形の多
孔質の粒子とされている請求項1記載の溶射用セラミッ
クス・金属複合粉末。
2. The ceramic-metal composite powder for thermal spraying according to claim 1, wherein said particles are granulated and then sintered to form substantially spherical porous particles.
【請求項3】前記粒子の気孔率が20〜60%である請
求項2記載の溶射用セラミックス・金属複合粉末。
3. The ceramic-metal composite powder for thermal spraying according to claim 2, wherein the porosity of the particles is 20 to 60%.
【請求項4】前記セラミックス相を50〜90重量%含
む請求項1〜3のいずれかに記載の溶射用セラミックス
・金属複合粉末。
4. The ceramic-metal composite powder for thermal spraying according to claim 1, which contains the ceramic phase in an amount of 50 to 90% by weight.
【請求項5】前記セラミックス相の70重量%以上が
(Mo,W)X FeY2 (但しX=1.8〜2.2、
Y=0.9〜1.1)であり、前記金属結合相の70重
量%以上がFeである請求項1〜4のいずれかに記載の
溶射用セラミックス・金属複合粉末。
5. 70% by weight or more of the ceramic phase is (Mo, W) X Fe Y B 2 (where X = 1.8 to 2.2,
Y = 0.9 to 1.1), and 70% by weight or more of the metal binding phase is Fe. The ceramics-metal composite powder for thermal spraying according to claim 1.
【請求項6】前記セラミックス相の70重量%以上が
(Mo,W)X NiY2 (但しX=1.8〜2.2、
Y=0.9〜1.1)であり、前記金属結合相の70重
量%以上がNiである請求項1〜4のいずれかに記載の
溶射用セラミックス・金属複合粉末。
6. 70% by weight or more of the ceramic phase is (Mo, W) X Ni Y B 2 (where X = 1.8 to 2.2,
Y = 0.9 to 1.1), and 70% by weight or more of the metal binder phase is Ni. The ceramics-metal composite powder for thermal spraying according to claim 1.
【請求項7】前記セラミックス相の70重量%以上が
(Mo,W)X CoY2 (但しX=0.9〜1.1、
Y=0.9〜1.1)であり、前記金属結合相の70重
量%以上がCoである請求項1〜4のいずれかに記載の
溶射用セラミックス・金属複合粉末。
7. 70% by weight or more of the ceramic phase is (Mo, W) X Co Y B 2 (where X = 0.9 to 1.1,
Y = 0.9 to 1.1), and 70% by weight or more of the metal binder phase is Co. 5. The ceramic / metal composite powder for thermal spraying according to claim 1.
【請求項8】焼結された粒子の平均粒径が20〜70μ
mである請求項1〜7のいずれかに記載の溶射用セラミ
ックス・金属複合粉末。
8. The average particle diameter of the sintered particles is 20 to 70 μm.
The ceramic / metal composite powder for thermal spraying according to any one of claims 1 to 7, which is m.
【請求項9】請求項1〜8のいずれか記載の溶射用セラ
ミックス・金属複合粉末を用いて溶射を行うことを特徴
とする溶射被膜の形成方法。
9. A method for forming a thermal spray coating, which comprises performing thermal spraying using the ceramics-metal composite powder for thermal spray according to any one of claims 1 to 8.
【請求項10】Ni及び/又はCoとMo及び/又はW
との複合ホウ化物を主体とするセラミックス相と、Ni
及び/又はCoを主体とする金属結合相とで構成され、
気孔率が1.5%以下、ビッカース硬度Hv300 が90
0kg/mm2 以上であることを特徴とする溶射被膜。
10. Ni and / or Co and Mo and / or W
A ceramic phase mainly composed of a compound boride of
And / or a metallic binder phase composed mainly of Co,
Porosity less than 1.5%, Vickers hardness Hv 300 is 90
A thermal spray coating characterized in that it is at least 0 kg / mm 2 .
JP6268398A 1994-10-05 1994-10-05 Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating Expired - Fee Related JP2988281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6268398A JP2988281B2 (en) 1994-10-05 1994-10-05 Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6268398A JP2988281B2 (en) 1994-10-05 1994-10-05 Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating

Publications (2)

Publication Number Publication Date
JPH08104969A true JPH08104969A (en) 1996-04-23
JP2988281B2 JP2988281B2 (en) 1999-12-13

Family

ID=17457928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6268398A Expired - Fee Related JP2988281B2 (en) 1994-10-05 1994-10-05 Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating

Country Status (1)

Country Link
JP (1) JP2988281B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001090A1 (en) * 2002-06-25 2003-12-31 Ebara Corporation Ceramic particle-containing self-melting alloy thermal spraying material
US6984255B2 (en) 2003-03-31 2006-01-10 Fujimi Incorporated Thermal spraying powder and method of forming a thermal sprayed coating using the same
WO2010103563A1 (en) * 2009-03-10 2010-09-16 東洋鋼鈑株式会社 Highly corrosion-resistant and wearing-resistant member with thermal-spraying deposit and powder for thermal-spraying deposit formation for forming the same
US7862911B2 (en) 2006-02-09 2011-01-04 Fujimi Incorporated Thermal spray coating and thermal spray powder
JP2011102691A (en) * 2009-11-10 2011-05-26 Pegatron Corp Vapor chamber and method for manufacturing the same
JPWO2014142017A1 (en) * 2013-03-13 2017-02-16 株式会社フジミインコーポレーテッド Thermal spray slurry, thermal spray coating, and method of forming thermal spray coating
US10196729B2 (en) 2015-09-25 2019-02-05 Fujimi Incorporated Slurry for thermal spraying, sprayed coating, and method for forming sprayed coating
US10377905B2 (en) 2013-03-13 2019-08-13 Fujimi Incorporated Slurry for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
CN112063955A (en) * 2020-09-15 2020-12-11 昆明理工大学 Method for improving high-temperature mechanical property of zirconium alloy surface
US11066734B2 (en) 2014-09-03 2021-07-20 Fujimi Incorporated Thermal spray slurry, thermal spray coating and method for forming thermal spray coating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725000B2 (en) * 2002-12-19 2011-07-13 旭硝子株式会社 Glass forming jig and manufacturing method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001090A1 (en) * 2002-06-25 2003-12-31 Ebara Corporation Ceramic particle-containing self-melting alloy thermal spraying material
US6984255B2 (en) 2003-03-31 2006-01-10 Fujimi Incorporated Thermal spraying powder and method of forming a thermal sprayed coating using the same
US7862911B2 (en) 2006-02-09 2011-01-04 Fujimi Incorporated Thermal spray coating and thermal spray powder
EP2407573A4 (en) * 2009-03-10 2016-07-13 Toyo Kohan Co Ltd Highly corrosion-resistant and wearing-resistant member with thermal-spraying deposit and powder for thermal-spraying deposit formation for forming the same
US9228253B2 (en) 2009-03-10 2016-01-05 Toyo Kohan Co., Ltd. Highly corrosion-resistant and wear-resistant member with thermal sprayed layer formed thereon and thermal-sprayed layer forming powder for forming the same
WO2010103563A1 (en) * 2009-03-10 2010-09-16 東洋鋼鈑株式会社 Highly corrosion-resistant and wearing-resistant member with thermal-spraying deposit and powder for thermal-spraying deposit formation for forming the same
US10273565B2 (en) 2009-03-10 2019-04-30 Toyo Kohan Co., Ltd. Highly corrosion-resistant and wear-resistant member with thermal-sprayed layer formed thereon and thermal-sprayed layer forming powder for forming the same
JP2011102691A (en) * 2009-11-10 2011-05-26 Pegatron Corp Vapor chamber and method for manufacturing the same
JPWO2014142017A1 (en) * 2013-03-13 2017-02-16 株式会社フジミインコーポレーテッド Thermal spray slurry, thermal spray coating, and method of forming thermal spray coating
US10196536B2 (en) 2013-03-13 2019-02-05 Fujimi Incorporated Slurry for thermal spraying, thermal spray coating, and method for forming thermal spray coating
US10377905B2 (en) 2013-03-13 2019-08-13 Fujimi Incorporated Slurry for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
US11066734B2 (en) 2014-09-03 2021-07-20 Fujimi Incorporated Thermal spray slurry, thermal spray coating and method for forming thermal spray coating
US10196729B2 (en) 2015-09-25 2019-02-05 Fujimi Incorporated Slurry for thermal spraying, sprayed coating, and method for forming sprayed coating
CN112063955A (en) * 2020-09-15 2020-12-11 昆明理工大学 Method for improving high-temperature mechanical property of zirconium alloy surface

Also Published As

Publication number Publication date
JP2988281B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
US6641917B2 (en) Spray powder and method for its production
US9919358B2 (en) Sintered molybdenum carbide-based spray powder
US5122182A (en) Composite thermal spray powder of metal and non-metal
US3313633A (en) High temperature flame spray powder
KR102265373B1 (en) Method for producing spray powders containing chromium nitride
US3378392A (en) High temperature flame spray powder and process
JP4359442B2 (en) Thermal spray powder and method for forming thermal spray coating using the same
JP2004510050A (en) Thermal coating of piston rings for mechanically alloyed powders.
CN110000376B (en) Nickel-molybdenum-chromium-diamond alloy composite powder and preparation method and application thereof
CA2567089C (en) Wear resistant alloy powders and coatings
EP1711342B1 (en) Wear resistant materials
JP2988281B2 (en) Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating
WO2005068673A1 (en) Chrome composite materials
CA2267960C (en) Coating powder and method for its production
US4678511A (en) Spray micropellets
JPH0913177A (en) Cermet build-up metallic parts by welding and production thereof
JPH093618A (en) Production of titanium boride coated article thus produced
JPH11209863A (en) Production of wear resistant parts
JP2002173758A (en) Powder for flame spraying and parts with flame sprayed coating by using the powder
JPH06116703A (en) Hearth roller having heat resistance and wear resistance
US3395030A (en) Carbide flame spray material
JPH115191A (en) Cermet cladding metal parts and manufacture thereof
JPH1112758A (en) Metallic parts coated with cermet sintered compact, and their production
US20050136279A1 (en) Chrome composite materials
JPH09268361A (en) Powder for boride cermet thermal spraying

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees