JPH0810470A - Seat and production thereof - Google Patents

Seat and production thereof

Info

Publication number
JPH0810470A
JPH0810470A JP6149760A JP14976094A JPH0810470A JP H0810470 A JPH0810470 A JP H0810470A JP 6149760 A JP6149760 A JP 6149760A JP 14976094 A JP14976094 A JP 14976094A JP H0810470 A JPH0810470 A JP H0810470A
Authority
JP
Japan
Prior art keywords
seat
resin
melting point
cushion
cushion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6149760A
Other languages
Japanese (ja)
Other versions
JP3589307B2 (en
Inventor
Hideo Isoda
英夫 磯田
Yasushi Yamada
靖司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP14976094A priority Critical patent/JP3589307B2/en
Publication of JPH0810470A publication Critical patent/JPH0810470A/en
Application granted granted Critical
Publication of JP3589307B2 publication Critical patent/JP3589307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chair Legs, Seat Parts, And Backrests (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To provide a seat excellent in the vibration blocking characteristic, heat durability, cushioning characteristic, and the like by forming a reverse- surface deep-drawn shaped portion of the seat by a specific resin molding, forming a cushion layer by a specific net structure, and integrating the resin molding and the net structure by an adhesive. CONSTITUTION:A vehicular seat mainly comprises a seat part and a seat back part each of which formed of a side material, a cushion layer, a reverse-surface deep-drawn shaped portion. The reverse-surface deep-drawn shaped portion of the seat is composed of injected resin moldings 3, 4 with an aperture of 10% or larger. The cushion layer is formed of a net structure 2 having an apparent density of 0.01-0.2g/cm<3> and formed of a thermoplastic elastic resin wherein continuous line springs of fineness of 100,000 denier or less have been bent and wound so as to contact one another and most of the contact potions thereof have been fused. The resin moldings 3, 4 and the net structure 2 are integrated by using an adhesive or by self adhesion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れたクッション性と
耐熱耐久性及び振動吸収性とを有し、リサイクルが可能
な車両用座席とクッション成形体の成形時、深絞り成形
を省略できる座席の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has excellent cushioning properties, heat resistance and vibration absorption properties, and is a recyclable vehicle seat and a seat in which deep-drawing can be omitted when forming a cushion molded body. Regarding the manufacturing method of.

【0002】[0002]

【従来の技術】現在、車両用座席は、発泡ウレタンや捲
縮繊維を接着した樹脂綿や硬綿などをクッション層に使
用されている。
2. Description of the Related Art At present, seats for vehicles use cushioning layers made of urethane foam or resin cotton or hard cotton to which crimped fibers are adhered.

【0003】しかしながら、発泡ウレタンをクッション
層とした座席は、耐久性は極めて良好だが、透湿透水性
に劣り蓄熱性があるため蒸れやすく、かつ、熱可塑性で
は無いためリサイクルが困難となり焼却される場合、焼
却炉の損傷が大きく、かつ、有毒ガス除去に経費が掛か
る。このため埋め立てされることが多くなったが、地盤
の安定化が困難なため埋め立て場所が限定され経費も高
くなっていく問題がある。また、成形加工性は優れるが
製造中に使用される薬品の公害問題などもある。蒸れの
改良法として特開昭63−77482号公報等が提案さ
れているが不充分なものである。
However, a seat having a cushion layer made of urethane foam has extremely good durability, but it is inferior in moisture permeability and water permeability and has a heat storage property, so that it easily steams, and since it is not thermoplastic, it is difficult to recycle and incinerated. In this case, the damage to the incinerator is large and the cost for removing the toxic gas is high. For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent moldability, it also has a problem of pollution of chemicals used during manufacturing. JP-A-63-77482 has been proposed as a method for improving stuffiness, but it is insufficient.

【0004】蒸れを改良した座席として、クッション層
にポリエステル繊維をゴム系又はウレタン系接着剤で接
着した樹脂綿、例えば接着剤にゴム系を用いたものとし
て特開昭60−11352号公報、特開昭61−141
388号公報、特開昭61−141391号公報等があ
る。又、架橋性ウレタンを用いたものとして特開昭61
−137732号公報等がある。これらのクッション層
を用いた座席は耐久性に劣り、且つ、熱可塑性でなく、
単一組成でもないためリサイクルも出来ない等の問題、
及び加工時の煩雑さ、特に深絞り成形が難しく仕上がり
が悪くなる問題がある。また、製造中に使用される薬品
の公害問題などもある。
As a seat with improved stuffiness, Japanese Patent Laid-Open No. 60-11352 discloses a resin cotton in which polyester fibers are bonded to a cushion layer with a rubber-based or urethane-based adhesive, for example, a rubber-based adhesive is used. Kai 61-141
No. 388 and Japanese Patent Laid-Open No. 61-141391. Further, JP-A-61-61 discloses that a cross-linkable urethane is used.
No. 137732, etc. Seats using these cushion layers have poor durability and are not thermoplastic,
The problem that it cannot be recycled because it is not a single composition,
In addition, there is a problem in that it is complicated during processing, especially deep drawing is difficult and the finish is poor. There is also the problem of pollution of chemicals used during manufacturing.

【0005】リサイクルが可能で、火災時、有毒な燃焼
ガス発生が少ない座席になる熱接着繊維を接着剤にした
ポリエステル硬綿を用いたものが、例えば特開平5−2
08470号公報、特開平5−220278号公報、特
開平5−247815号公報、特開平5−269264
号公報、特開平5−329937号公報等が提案されて
いるが、用いている熱接着繊維の接着成分が脆い非晶性
のポリマ−を用いるため接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、接着部分が変形しにくくソフトな
クッション性を付与しにくい問題もある。なお、これら
の方法では深絞り成形が困難である。耐久性を改良する
方法として、接着部分を柔らかい、且つある程度変形し
ても回復するポリエステルエラストマ−を用い、芯成分
に非弾性ポリエステルを用いた熱接着繊維を用いたポリ
エステル硬綿で成形したクッション材がWO−91/1
9032号公報、特開平5−163654号公報、特開
平5−337258号公報等で提案されている。WO−
91/19032号公報のポリエステル硬綿はエラスト
マ−に非晶性成分を含有しており、熱接着部分の形成を
良くしてアメーバー状の接着部を形成しているが塑性変
形しやいため、及び芯成分が非弾性ポリエステルのた
め、特に加熱下での塑性変形が著しくなり、耐熱抗圧縮
性が低下する問題点がある。これらの改良法として、特
開平5−163654号公報にシ−ス成分にイソフタル
酸を含有するポリエステルエラストマ−、コア成分に非
弾性ポリエステルを用いた熱接着複合繊維のみからなる
構造体が提案されているが上述の理由で加熱下での塑性
変形が著しくなり、耐熱抗圧縮性が低下するので車両用
座席のクッション材に使用するには問題がある。他方、
特開平5−337258号公報では、エラストマ−に非
晶性成分を含有しないため、耐熱耐久性は改善され、ア
ニ−リングで更に耐熱耐久性を向上させているが、非エ
ラストマ−成分を含有するので、発泡ポリウレタンに比
較して未だ耐久性は不充分である。また、繊維を熱成形
するので、成形時の煩雑さが解決されていない問題があ
For example, Japanese Patent Application Laid-Open No. 5-2 is used, which uses polyester hard cotton with a thermo-adhesive fiber as an adhesive, which is a seat that can be recycled and produces little toxic combustion gas in the event of a fire.
08470, JP-A-5-220278, JP-A-5-247815, and JP-A-5-269264.
Japanese Patent Application Laid-Open No. 5-329937 and Japanese Patent Application Laid-Open No. 5-329937 have been proposed, but since an amorphous polymer having a brittle adhesive component of the heat-bonding fiber is used, the bonded portion is brittle, and the bonded portion is easy to use during use. There is a problem of inferior durability, such as being damaged by aging and decreasing in form and elasticity. As an improved method, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is largely reduced. In addition, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. Deep drawing is difficult with these methods. As a method of improving durability, a cushioning material formed of polyester hard cotton using a heat-bonding fiber using a non-elastic polyester as a core component, using a polyester elastomer that is soft at the bonded portion and recovers even if it is deformed to some extent. Is WO-91 / 1
9032, JP-A-5-163654, JP-A-5-337258 and the like. WO-
The polyester hard cotton disclosed in Japanese Patent No. 91/19032 contains an amorphous component in the elastomer and improves the formation of a heat-bonded portion to form an amoebar-shaped bonded portion, but is easily plastically deformed, and Since the core component is a non-elastic polyester, there is a problem that the plastic deformation becomes remarkable especially under heating, and the heat resistance and compression resistance deteriorates. As a method for improving these, JP-A-5-163654 proposes a structure consisting of a polyester elastomer containing isophthalic acid as a sheath component and a heat-bonding composite fiber using a non-elastic polyester as a core component. However, due to the above-mentioned reason, plastic deformation under heating becomes remarkable and heat resistance and compression resistance deteriorates, so that there is a problem in using it as a cushion material for a vehicle seat. On the other hand,
In JP-A-5-337258, since the elastomer does not contain an amorphous component, the heat resistance and durability are improved, and the heat resistance and durability are further improved by annealing, but the elastomer does not contain the non-elastomer component. Therefore, durability is still insufficient as compared with foamed polyurethane. Further, since the fiber is thermoformed, there is a problem that the complexity at the time of molding is not solved.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、素材がオレフィンのため耐熱耐久性が著しく
劣り車両用座席のクッション材には使用ができないもの
である。また、特開平1−207462号公報では、塩
化ビニ−ル製のフロアマットの開示があるが、室温での
圧縮回復性が悪く、耐熱性は著しく悪いので、車両用座
席のクッション材としては好ましくないものである。な
お、網状構造体は難燃性や振動減衰、及び、成形加工に
関する配慮が全くなされていない。
A thermoplastic olefin network used for civil engineering work is disclosed in JP-A-47-44839. However, since it is made of olefin, its heat resistance and durability are extremely poor, and it cannot be used as a cushion material for vehicle seats. Further, in JP-A-1-207462, there is disclosed a floor mat made of vinyl chloride, but since it has poor compression recovery at room temperature and remarkably poor heat resistance, it is preferable as a cushioning material for vehicle seats. There is no such thing. It should be noted that the net-like structure has no consideration regarding flame retardancy, vibration damping, and molding processing.

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
振動を遮断し、耐熱耐久性、形態保持性、クッション性
の優れた蒸れ難い、燃焼ガスの毒性指数が低く安全性の
高い熱可塑性弾性樹脂網状体をクッション材に用いた車
両用座席と深絞り成形を簡略化した製法を提供すること
を目的とする。
To solve the above problems,
Seats for vehicles and deep-drawing that use a thermoplastic elastic resin mesh material that has high safety as it has vibration isolation, heat resistance and durability, shape retention and cushioning properties, is hard to stuff, and has a low toxicity index of combustion gas and high safety An object is to provide a manufacturing method in which molding is simplified.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち本発明は、主要部として、側地、クッショ
ン層、裏面深絞り形状部より形成された背部と座部より
なる座席であり、座席裏面深絞り形状部が開孔率10%
以上の射出成形された樹脂成形体からなり、クッション
層が繊度が100000デニ−ル以下の連続した線条を
曲がりくねらせ互いに接触させて該接触部の大部分が融
着した3次元立体構造体を形成した熱可塑性弾性樹脂か
らなる見掛け密度が0.01g/cm3 から0.2g/cm
3 の網状体で構成され、該樹脂成形体と該網状体が一体
接合されていることを特徴とする座席、雌型に所定形状
に切断されたクッション層となる網状体を配し、その上
に裏面又は背面となる深絞り形状に成形された樹脂成形
体を配し、又は網状体と樹脂成形体間に網状体の融点よ
り少なくとも10℃以上低い融点を持つ接着層を配し
て、雄型で上からクッション層を圧縮すると共に樹脂成
形体を介して凹部内側からも凸部を圧縮し、網状体の融
点より5℃高い温度〜融点より50℃低い温度の加熱媒
体で加熱して熱成形により一体化した後、一旦冷却する
か、又は連続して、網状体のガラス転移温度より10℃
高い温度以上、融点より20℃以上低い温度でアニ−リ
ングして得たクッション成形体に側地を取付けて、座席
フレ−ムに固定することを特徴とする座席の製法であ
る。
Means for Solving the Problems The means for solving the above-mentioned problems, that is, the present invention, is a seat including a back portion and a seat portion which are formed by a lateral portion, a cushion layer, and a deep drawing portion on the back surface as a main portion. Yes, the deep drawing area on the back of the seat has an opening rate of 10%
A three-dimensional three-dimensional structure comprising the above-mentioned injection-molded resin molded body, in which the cushion layer is formed by winding continuous filaments having a fineness of 100,000 denier or less and contacting each other, and most of the contact portions are fused. The apparent density of the thermoplastic elastic resin formed is 0.01 g / cm 3 to 0.2 g / cm
The seat formed by the mesh body of 3 and characterized in that the resin molded body and the mesh body are integrally joined, and the mesh body serving as a cushion layer cut into a predetermined shape is arranged on the female mold A resin molded body having a deep drawing shape on the back surface or the back surface, or an adhesive layer having a melting point at least 10 ° C. lower than the melting point of the mesh body between the mesh body and the resin molded body. The mold is used to compress the cushion layer from above and also the convex portion from the inside of the concave portion through the resin molded body, and heated by a heating medium having a temperature of 5 ° C. higher than the melting point of the reticulate body to 50 ° C. lower than the melting point. After being integrated by molding, it is cooled once, or continuously, 10 ° C from the glass transition temperature of the reticulate body.
A seat manufacturing method is characterized in that a cushion molded body obtained by annealing at a temperature higher than a higher temperature and lower than a melting point by 20 ° C. or more is fixed to a seat frame by attaching a side material.

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ルまたは長鎖の炭化水素末端を
カルボン酸または水酸基にしたオレフィン系化合物等を
ブロック共重合したポリエステル系エラストマ−、ポリ
アミド系エラストマ−、ポリウレタン系エラストマ−、
ポリオレフィン系エラストマ−などが挙げられる。熱可
塑性弾性樹脂とすることで、再溶融により再生が可能と
なるため、リサイクルが容易となる。例えば、ポリエス
テル系エラストマ−としては、熱可塑性ポリエステルを
ハ−ドセグメントとし、ポリアルキレンジオ−ルをソフ
トセグメントとするポリエステルエ−テルブロック共重
合体、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエ−テルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダ
イマ−酸等の脂肪族ジカルボン酸または、これらのエス
テル形成性誘導体などから選ばれたジカルボン酸の少な
くとも1種と、1・4ブタンジオ−ル、エチレングリコ
−ル、トリメチレングリコ−ル、テトレメチレングリコ
−ル、ペンタメチレングリコ−ル、ヘキサメチレングリ
コ−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメ
タノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環
族ジオ−ル、またはこれらのエステル形成性誘導体など
から選ばれたジオ−ル成分の少なくとも1種、および平
均分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体等のポリアルキレンジオ−ルのうち少なくとも1種
から構成される三元ブロック共重合体である。ポリエス
テルエステルブロック共重合体としては、上記ジカルボ
ン酸とジオ−ル及び平均分子量が約300〜5000の
ポリラクトン等のポリエステルジオ−ルのうち少なくと
も各1種から構成される三元ブロック共重合体である。
熱接着性、耐加水分解性、伸縮性、耐熱性等を考慮する
と、ジカルボン酸としてはテレフタル酸、または、及び
ナフタレン2・6ジカルボン酸、ジオ−ル成分としては
1・4ブタンジオ−ル、ポリアルキレンジオ−ルとして
はポリテトラメチレングリコ−ルの3元ブロック共重合
体または、ポリエステルジオ−ルとしてポリラクトンの
3元ブロック共重合体が特に好ましい。特殊な例では、
ポリシロキサン系のソフトセグメントを導入したものも
使うこたができる。また、上記エラストマ−に非エラス
トマ−成分をブレンドされたもの、共重合したもの、ポ
リオレフィン系成分をソフトセグメントにしたもの等も
本発明の熱可塑性弾性樹脂に包含される。ポリアミド系
エラストマ−としては、ハ−ドセグメントにナイロン
6、ナイロン66、ナイロン610、ナイロン612、
ナイロン11、ナイロン12等及びそれらの共重合ナイ
ロンを骨格とし、ソフトセグメントには、平均分子量が
約300〜5000のポリエチレングリコ−ル、ポリプ
ロピレングリコ−ル、ポリテトラメチレングリコ−ル、
エチレンオキシド−プロピレンオキシド共重合体等のポ
リアルキレンジオ−ルのうち少なくとも1種から構成さ
れるブロック共重合体を単独または2種類以上混合して
用いてもよい。更には、非エラストマ−成分をブレンド
されたもの、共重合したもの等も本発明に使用できる。
ポリウレタン系エラストマ−としては、通常の溶媒(ジ
メチルホルムアミド、ジメチルアセトアミド等)の存在
または不存在下に、(A)数平均分子量1000〜60
00の末端に水酸基を有するポリエ−テル及び又はポリ
エステルと(B)有機ジイソシアネ−トを主成分とする
ポリイソシアネ−トを反応させた両末端がイソシアネ−
ト基であるプレポリマ−に、(C)ジアミンを主成分と
するポリアミンにより鎖延長したポリウレタンエラスト
マ−を代表例として例示できる。(A)のポリエステ
ル、ポリエ−テル類としては、平均分子量が約1000
〜6000、好ましくは1300〜5000のポリブチ
レンアジペ−ト共重合ポリエステルやポリエチレングリ
コ−ル、ポリプロピレングリコ−ル、ポリテトラメチレ
ングリコ−ル、エチレンオキシド−プロピレンオキシド
共重合体からなるグリコ−ル等のポリアルキレンジオ−
ルが好ましく、(B)のポリイソシアネ−トとしては、
従来公知のポリイソシアネ−トを用いることができる
が、ジフェニルメタン4・4’ジイソシアネ−トを主体
としたイソシアネ−トを用い、必要に応じ従来公知のト
リイソシアネ−ト等を微量添加使用してもよい。(C)
のポリアミンとしては、エチレンジアミン、1・2プロ
ピレンジアミン等公知のジアミンを主体とし、必要に応
じて微量のトリアミン、テトラアミンを併用してもよ
い。これらのポリウレタン系エラストマ−は単独又は2
種類以上混合して用いてもよい。なお、本発明の熱可塑
性弾性樹脂の融点は耐熱耐久性が保持できる140℃以
上が好ましく、160℃以上のものを用いると耐熱耐久
性が向上するのでより好ましい。なお、本発明の網状体
は難燃性を付与するため燐系化合物を含有させるため、
熱安定性が難燃剤を含有しないものよりやや劣るので必
要に応じ、抗酸化剤等を添加して耐熱性や耐久性を向上
させるのが特に好ましい。抗酸化剤は、好ましくはヒン
ダ−ド系抗酸化剤としては、ヒンダ−ドフェノ−ル系と
ヒンダ−ドアミン系があり、窒素を含有しないヒンダ−
ドフェノ−ル系抗酸化剤を1%〜5%添加して熱分解を
抑制すると燃焼時の致死量が少ない有毒ガスの発生を抑
えられるので特に好ましい。本発明の目的である振動や
応力の吸収機能をもたせる成分を構成する熱可塑性弾性
樹脂のソフトセグメント含有量は好ましくは15重量%
以上、より好ましくは30重量%以上であり、耐熱耐へ
たり性からは80重量%以下が好ましく、より好ましく
は70重量%以下である。即ち、本発明の弾性網状体の
振動や応力の吸収機能をもたせる成分のソフトセグメン
ト含有量は好ましくは15重量%以上80重量%以下で
あり、より好ましくは30重量%以上70重量%以下で
ある。
The thermoplastic elastic resin in the present invention means, as the soft segment, an ether type glycol, a polyester type glycol, a polycarbonate type glycol or a long chain hydrocarbon having a molecular weight of 300 to 5,000. Polyester elastomer obtained by block-copolymerizing an olefinic compound having a carboxylic acid or a hydroxyl group at the terminal, a polyamide elastomer, a polyurethane elastomer,
Examples include polyolefin elastomers. By using a thermoplastic elastic resin, it becomes possible to regenerate by remelting, and thus recycling becomes easy. For example, as the polyester elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be illustrated. More specific examples of the polyester ether block copolymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4'dicarboxylic acid. At least one of alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and dicarboxylic acids selected from ester-forming derivatives thereof Seeds and aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1.1 cyclohexane Alicyclic diols such as dimethanol and 1,4-cyclohexane dimethanol, or these Of at least one diole component selected from the ester-forming derivatives thereof and polyethylene glycol having an average molecular weight of about 300 to 5,000.
It is a ternary block copolymer composed of at least one of polyalkylenediol such as propylene, polypropylene glycol, polytetramethylene glycol, and ethylene oxide-propylene oxide copolymer. The polyester ester block copolymer is a ternary block copolymer composed of at least one of the above dicarboxylic acids, diol, and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000. .
Considering heat adhesion, hydrolysis resistance, stretchability, heat resistance, etc., terephthalic acid as dicarboxylic acid, or naphthalene 2.6 dicarboxylic acid, 1.4 butanediol as diole component, and poly The alkylene diol is particularly preferably a terpolymer block copolymer of polytetramethylene glycol or the terpolymer block copolymer of polylactone as the polyester diol. In a special case,
You can also use a kotatsu that has a polysiloxane-based soft segment introduced. Also, the thermoplastic elastomer resin of the present invention includes those obtained by blending the above elastomer with a non-elastomer component, those obtained by copolymerization, those obtained by softening the polyolefin component, and the like. As a polyamide elastomer, the hard segment includes nylon 6, nylon 66, nylon 610, nylon 612,
Polyethylene glycol, polypropylene glycol, polytetramethylene glycol having an average molecular weight of about 300 to 5000 is used as the soft segment in the skeleton of nylon 11, nylon 12, etc. and their copolymerized nylon.
A block copolymer composed of at least one kind of polyalkylenediol such as ethylene oxide-propylene oxide copolymer may be used alone or in combination of two or more kinds. Furthermore, blends of non-elastomer components and copolymers thereof can be used in the present invention.
The polyurethane-based elastomer is (A) number average molecular weight of 1000 to 60 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.).
00 has a hydroxyl group-terminated polyether and / or polyester, and (B) an organic diisocyanate-based polyisocyanate as a main component.
As a typical example, a polyurethane elastomer in which a chain-extended polyamine having a diamine (C) as a main component is added to a prepolymer which is a group having a hydroxyl group can be exemplified. The polyester or polyether of (A) has an average molecular weight of about 1,000.
To 6000, preferably 1300 to 5000, polybutylene adipate copolyester, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, glycol composed of ethylene oxide-propylene oxide copolymer, etc. Polyalkylenedio-
Are preferred, and as the polyisocyanate of (B),
Although a conventionally known polyisocyanate can be used, an isocyanate mainly composed of diphenylmethane 4,4 ′ diisocyanate may be used, and if necessary, a conventionally known triisocyanate and the like may be added in a small amount. (C)
As the polyamine, a known diamine such as ethylenediamine or 1.2-propylenediamine is mainly used, and if necessary, a trace amount of triamine or tetraamine may be used in combination. These polyurethane elastomers are used alone or
You may use it in mixture of 2 or more types. The melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher at which heat resistance and durability can be maintained, and it is more preferable to use a resin having a melting point of 160 ° C. or higher because heat resistance and durability are improved. Since the reticulated body of the present invention contains a phosphorus compound in order to impart flame retardancy,
Since the thermal stability is slightly inferior to that containing no flame retardant, it is particularly preferable to add an antioxidant or the like to improve heat resistance and durability, if necessary. The antioxidant is preferably a hindered antioxidant, which includes a hindered phenol type and a hindered amine type, and does not contain nitrogen.
It is particularly preferable to add 1% to 5% of a dophenol-based antioxidant to suppress thermal decomposition, since the generation of toxic gas with a small lethal amount during combustion can be suppressed. The soft segment content of the thermoplastic elastic resin constituting the component having the function of absorbing vibration and stress which is the object of the present invention is preferably 15% by weight.
As described above, it is more preferably 30% by weight or more, preferably 80% by weight or less, and more preferably 70% by weight or less in view of heat resistance and sag resistance. That is, the soft segment content of the component having the function of absorbing vibrations and stress of the elastic network of the present invention is preferably 15% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less. .

【0010】本発明の座席に用いる網状体及び他の部位
に用いる熱可塑性弾性樹脂は難燃性を有するのが好まし
く、特に燐含有組成物がハロゲン系組成物よりより好ま
しい。難燃性を有する網状体は熱可塑性弾性樹脂中に燐
含有量(Bppm)がソフトセグメント含有量(A重量
%)に対し、60A+200以上を満足しない場合は難
燃性が劣り、100000ppmを越えると可塑化効果
による塑性変形が大きくなり熱可塑性弾性樹脂の耐熱性
が劣るので、60A+200≦B≦100000の関係
を満足するのが好ましい。より好ましい燐含有量(Bp
pm)はソフトセグメント含有量(A重量%)に対し、
30A+1800≦B≦100000であり、更に好ま
しい燐含有量(Bppm)はソフトセグメント含有量
(A重量%)に対し、16A+2600≦B≦5000
0である。難燃性は多量のハロゲン化物と無機物を添加
して高度の難燃性を付与する方法があるが、燃焼時に致
死量の少ない有毒なハロゲンガスを多量に発生し、火災
時の中毒の問題があり、焼却時には、焼却炉の損傷が大
きくなる問題がある。本発明では、ハロゲン化物の含有
量は少なくとも1重量%以下が好ましく、より好ましく
は、ハロゲン化物の含有量は0.5重量%以下、最も好
ましくはハロゲン化物を含有しないものである。本発明
の好ましい燐系難燃剤としては、例えば、ポリエステル
系熱可塑性弾性樹脂の場合、樹脂重合時に、ハ−ドセグ
メント部分に難燃剤として、例えば特開昭51−823
92号公報等に記載された10〔2・3・ジ(2・ヒド
ロキシエトキシ)−カルボニルプロピル〕9・10・ジ
ヒドロ・9・オキサ・10ホスファフェナレンス・10
オキシロ等のカルボン酸をハ−ドセグメントの酸成分の
一部として共重合したポリエステル系熱可塑性弾性樹脂
とする方法や、熱可塑性弾性樹脂に後工程で、例えば、
トリス(2・4−ジ−t−ブチルフェニル)フスファイ
ト等の燐系化合物を添加して難燃性を付与することがで
きる。その他、難燃性を付与できる難燃剤としては、各
種燐酸エステル、亜燐酸エステル、ホスホン酸エステル
(必要に応じハロゲン元素を含有する上記燐酸エステル
類)、もしくはこれら燐化合物から誘導される重合物が
例示できる。本発明は、熱可塑性弾性樹脂中に各種改質
剤、添加剤、着色剤等を必要に応じて添加できる。本発
明の網状体は、好ましくは難燃性を付与するために燐を
含有させており、この理由は、上記している如く、安全
性の観点から、火災時に発生するシアンガス、ハロゲン
ガス等の致死量の少ない有毒ガスをできるだけ少なくす
ることにある。このため、本発明での好ましい難燃性網
状体の燃焼ガスの毒性指数は好ましくは6以下、より好
ましくは5.5以下である。また、側地やワディング層
にポリエステル繊維を使用される場合、好ましくはポリ
エステル系熱可塑性弾性樹脂とすることで分別せずに再
生リサイクルができる。
The reticulate body used in the seat of the present invention and the thermoplastic elastic resin used in other parts preferably have flame retardancy, and the phosphorus-containing composition is more preferable than the halogen-based composition. When the phosphorus content (Bppm) in the thermoplastic elastic resin does not satisfy 60A + 200 or more with respect to the soft segment content (A weight%), the flame-retardant reticulate body is inferior in flame retardance and exceeds 100000ppm. Since the plastic deformation due to the plasticizing effect becomes large and the heat resistance of the thermoplastic elastic resin becomes poor, it is preferable to satisfy the relation of 60A + 200 ≦ B ≦ 100000. More preferable phosphorus content (Bp
pm) is based on the soft segment content (A% by weight)
30A + 1800 ≦ B ≦ 100,000, and more preferable phosphorus content (Bppm) is 16A + 2600 ≦ B ≦ 5000 with respect to the soft segment content (A weight%).
0. For flame retardancy, there is a method to add a high level of flame retardancy by adding a large amount of halides and inorganic substances, but when burning, a large amount of toxic halogen gas with a small lethal amount is generated, and there is a problem of poisoning during fire. There is a problem that damage to the incinerator becomes large during incineration. In the present invention, the halide content is preferably at least 1% by weight or less, more preferably the halide content is 0.5% by weight or less, and most preferably the halide is not contained. The preferred phosphorus-based flame retardant of the present invention is, for example, in the case of polyester-based thermoplastic elastic resin, as a flame retardant in the hard segment portion during resin polymerization, for example, JP-A-51-823.
No. 92, etc., 10 [2.3-di (2-hydroxyethoxy) -carbonylpropyl] 9-10-dihydro-9-oxa-10-phosphaphenalene-10
A method of preparing a polyester-based thermoplastic elastic resin in which a carboxylic acid such as oxylo is copolymerized as a part of the acid component of the hard segment, or a subsequent step in the thermoplastic elastic resin, for example,
Flame retardancy can be imparted by adding a phosphorus compound such as tris (2.4-di-t-butylphenyl) fusphite. Other flame retardants capable of imparting flame retardancy include various phosphoric acid esters, phosphorous acid esters, phosphonic acid esters (the above phosphoric acid esters containing a halogen element as necessary), or polymers derived from these phosphorus compounds. It can be illustrated. In the present invention, various modifiers, additives, colorants and the like can be added to the thermoplastic elastic resin as needed. The reticulate body of the present invention preferably contains phosphorus for imparting flame retardancy. The reason is, as described above, from the viewpoint of safety, cyan gas, halogen gas, etc., which are generated during a fire, are generated. The aim is to minimize the amount of toxic gas with a low lethal dose. Therefore, the toxicity index of the combustion gas of the flame-retardant reticulate material of the present invention is preferably 6 or less, more preferably 5.5 or less. When polyester fibers are used for the side material and the wadding layer, it is preferable to use a polyester-based thermoplastic elastic resin for recycling and recycling without separation.

【0011】本発明の座席は、主要部として側地、クッ
ション層、裏面深絞り形状部より形成された背部と座部
よりなる座席である。本発明での網状体を構成する熱可
塑性弾性樹脂からなる線条は、示差走査型熱量計にて測
定した融解曲線において、融点以下に吸熱ピ−クを有す
るのが好ましい。融点以下に吸熱ピ−クを有するもの
は、耐熱耐へたり性が吸熱ピ−クを有しないものより著
しく向上する。例えば、本発明の好ましいポリエステル
系熱可塑性樹脂として、ハ−ドセグメントの酸成分に剛
直性のあるテレフタル酸やナフタレン2・6ジカルボン
酸などを90モル%以上含有するもの、より好ましくは
テレフタル酸やナフタレン2・6ジカルボン酸の含有量
は95モル%以上、特に好ましくは100モル%とグリ
コ−ル成分をエステル交換後、必要な重合度まで重合
し、次いで、ポリアルキレンジオ−ルとして、好ましく
は平均分子量が500以上5000以下、特に好ましく
は1000以上3000以下のポリテトラメチレングリ
コ−ルを15重量%以上70重量%以下、より好ましく
は30重量%以上60重量%以下共重合量させた場合、
ハ−ドセグメントの酸成分に剛直性のあるテレフタル酸
やナフタレン2・6ジカルボン酸の含有量が多いとハ−
ドセグメントの結晶性が向上し、塑性変形しにくく、か
つ、耐熱抗へたり性が向上するが、溶融熱接着後更に融
点より少なくとも10℃以上低い温度でアニ−リング処
理するとより耐熱抗へたり性が向上する。圧縮歪みを付
与してからアニ−リングすると更に耐熱抗へたり性が向
上する。このような処理をした網状構造体の線条を示差
走査型熱量計で測定した融解曲線に室温以上融点以下の
温度で吸熱ピークをより明確に発現する。なおアニ−リ
ングしない場合は融解曲線に室温以上融点以下に吸熱ピ
−クを発現しない。このことから類推するに、アニ−リ
ングにより、ハ−ドセグメントが再配列され、疑似結晶
化様の架橋点が形成され、耐熱抗へたり性が向上してい
るのではないかとも考えられる。(この処理を疑似結晶
化処理と定義する)この疑似結晶化処理効果は、ポリア
ミド系弾性樹脂やポリウレタン系弾性樹脂にも有効であ
る。
The seat of the present invention is a seat having a back part and a seat part which are formed of a side ground, a cushion layer, and a back deep drawing part as main parts. The filament made of thermoplastic elastic resin constituting the reticulate body in the present invention preferably has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have significantly improved heat resistance and sag resistance than those having no endothermic peak. For example, a preferable polyester-based thermoplastic resin of the present invention contains 90 mol% or more of terephthalic acid or naphthalene 2.6 dicarboxylic acid having rigidity in the acid component of the hard segment, more preferably terephthalic acid or The content of naphthalene 2.6 dicarboxylic acid is 95 mol% or more, particularly preferably 100 mol%, and after transesterification of the glycol component, polymerization is carried out to a required degree of polymerization, and then, as a polyalkylene diol, preferably When the average molecular weight of polytetramethylene glycol having an average molecular weight of 500 or more and 5000 or less, particularly preferably 1000 or more and 3000 or less, is copolymerized in an amount of 15% by weight or more and 70% by weight or less, more preferably 30% by weight or more and 60% by weight or less,
If the content of terephthalic acid or naphthalene 2.6 dicarboxylic acid, which has rigidity in the acid component of the hard segment, is high,
The crystallinity of the de-segment is improved, plastic deformation is less likely to occur, and the heat resistance and fatigue resistance are improved, but if heat treatment is performed at a temperature lower than the melting point by at least 10 ° C or more after annealing by heat, the heat resistance and fatigue resistance will be further improved. The property is improved. If annealing is performed after applying compressive strain, heat resistance and sag resistance are further improved. The endothermic peak is more clearly expressed in the melting curve measured by a differential scanning calorimeter of the linear structure of the network structure treated as described above at a temperature of room temperature or higher and melting point or lower. If annealing is not performed, no endothermic peak appears in the melting curve above room temperature and below the melting point. By analogy with this, it is considered that the annealing causes rearrangement of the hard segments and formation of pseudo-crystallization-like cross-linking points to improve the heat resistance and sag resistance. (This treatment is defined as pseudo crystallization treatment.) This pseudo crystallization treatment effect is also effective for polyamide elastic resin and polyurethane elastic resin.

【0012】本発明座席に使用する側地や樹脂成形体を
構成する熱可塑性非弾性樹脂とは、ポリエステル、ポリ
アミド、ポリオレフィン等が例示できる。なお、本発明
ではガラス転移点温度が少なくとも40℃以上のものを
使用するのが好ましい。例えば、ポリエステルでは、ポ
リエチレンテレフタレ−ト(PET)、ポリエチレンナ
フタレ−ト(PEN)、ポリシクロヘキシレンジメチレ
ンテレフタレ−ト(PCHDT)、ポリシクロヘキシレ
ンジメチレンナフタレ−ト(PCHDN)、ポリブチレ
ンテレフタレ−ト(PBT)、ポリブチレンナフタレ−
ト(PBN)、ポリアリレ−ト等、及びそれらの共重合
ポリエステル等が例示できる。ポリアミドでは、ポリカ
プロラクタム(NY6)、ポリヘキサメチレンアジパミ
ド(NY66)、ポリヘキサメチレンセバカミド(NY
6−10)等が例示できる。ポリオレフィンとしては、
ポリプロピレン(PP)、ポリブテン・1(PB・1)
等が例示できる。本発明に用いる熱可塑性非弾性樹脂と
しては、クッション材の側地にポリエステルを用いる場
合が多いので、廃棄する場合に分離せずにリサイクルが
可能なクッション素材として、耐熱性も良好なPET、
PEN、PBN、PCHDT等のポリエステルが特に好
ましい。なお、樹脂成形体に用いる場合は、必要強度を
保持した範囲で耐衝撃性を向上させる成分、例えば熱可
塑性弾性樹脂やガラス転移点温度の低いPBT,ポリプ
ロピレンテレフタレ−ト(PPT)、ポリヘキシレンテ
レフタレ−ト等を5%未満添加するのが好ましい。本発
明の好ましい実施形態である難燃性を有する網状体は熱
可塑性非弾性樹脂中に燐含有量は、1000ppm未満
では、難燃性が不充分であり、200000ppmを越
えると可塑化効果による塑性変形が大きくなり熱可塑性
非弾性樹脂の耐熱性が劣るので、1000ppm以上2
0000ppm以下含有するのが良い。より好ましい燐
含有量は2000ppm以上10000ppm以下、最
も好ましくは3000ppm以上8000ppmであ
る。難燃性は多量のハロゲン化物と無機物を添加して高
度の難燃性を付与する方法があるが、燃焼時に致死量の
少ない有毒なハロゲンガスを多量に発生し、火災時の中
毒の問題があり、焼却時には、焼却炉の損傷が大きくな
るので好ましくは含有しないものが良い。特に塩化ビニ
−ルは自己消火性を有するが燃焼すると有毒ガスを多く
発生するので本発明に用いるのは好ましくない。本発明
では、ハロゲン化物の含有量は少なくとも1重量%以
下、好ましくは、ハロゲン化物の含有量は0.5重量%
以下、より好ましくはハロゲン化物を含有しないもので
ある。本発明の燐系難燃剤としては、例えば、ポリエス
テル系熱可塑性非弾性樹脂の場合、樹脂重合時に、難燃
剤として、例えば特開昭51−82392号公報等に記
載された10〔2・3・ジ(2・ヒドロキシエトキシ)
−カルボニルプロピル〕9・10・ジヒドロ・9・オキ
サ・10ホスファフェナレンス・10オキシロ等のカル
ボン酸を酸成分の一部として共重合したポリエステル系
熱可塑性非弾性樹脂とする方法や、熱可塑性非弾性樹脂
を射出成形時の後工程で、例えば、トリス(2・4−ジ
−t−ブチルフェニル)フスファイト等の燐系化合物を
添加して難燃性を付与することができる。その他、難燃
性を付与できる難燃剤としては、各種燐酸エステル、亜
燐酸エステル、ホスホン酸エステル(必要に応じハロゲ
ン元素を含有する上記燐酸エステル類)、もしくはこれ
ら燐化合物から誘導される重合物が例示できる。本発明
は、熱可塑性非弾性樹脂中に各種改質剤、添加剤、着色
剤等を必要に応じて添加できる。本発明の座席を構成す
るクッション体は、難燃性を付与するために燐を含有さ
せており、この理由は、上記している如く、安全性の観
点から、火災時に発生するシアンガス、ハロゲンガス等
の致死量の少ない有毒ガスをできるだけ少なくすること
にある。このため、本発明の座席を構成するクッション
体の燃焼ガスの毒性指数は好ましくは6以下、より好ま
しくは5.5以下である。また、側地やワディング層に
好ましくはポリエステル系熱可塑性非弾性樹脂とするこ
とで分別せずに再生リサイクルができる。
Examples of the thermoplastic non-elastic resin constituting the side material and the resin molded body used for the seat of the present invention include polyester, polyamide, polyolefin and the like. In the present invention, it is preferable to use one having a glass transition temperature of 40 ° C. or higher. For example, for polyester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycyclohexylene dimethylene terephthalate (PCHDT), polycyclohexylene dimethylene naphthalate (PCHDN), poly Butylene terephthalate (PBT), polybutylene naphthalate
(PBN), polyarylate and the like, and copolyesters thereof and the like. Polyamide includes polycaprolactam (NY6), polyhexamethyleneadipamide (NY66), polyhexamethylenesebacamide (NY).
6-10) etc. can be illustrated. As a polyolefin,
Polypropylene (PP), Polybutene-1 (PB / 1)
Etc. can be illustrated. As the thermoplastic non-elastic resin used in the present invention, since polyester is often used for the side material of the cushion material, PET having good heat resistance as a cushion material that can be recycled without being separated when discarded,
Polyesters such as PEN, PBN and PCHDT are particularly preferred. When used in a resin molded product, a component that improves impact resistance within a range in which necessary strength is maintained, such as a thermoplastic elastic resin, PBT having a low glass transition temperature, polypropylene terephthalate (PPT), or polyheteropolyamide. It is preferable to add less than 5% of xylene terephthalate or the like. The flame-retardant reticulate body, which is a preferred embodiment of the present invention, has an insufficient flame retardancy when the phosphorus content in the thermoplastic inelastic resin is less than 1000 ppm, and when it exceeds 200,000 ppm, the plasticity due to the plasticizing effect is exerted. Since the deformation becomes large and the heat resistance of the thermoplastic non-elastic resin is poor, 1000 ppm or more 2
It is preferable to contain 0000 ppm or less. A more preferable phosphorus content is 2000 ppm or more and 10000 ppm or less, and most preferably 3000 ppm or more and 8000 ppm. For flame retardancy, there is a method to add a high level of flame retardancy by adding a large amount of halides and inorganic substances, but when burning, a large amount of toxic halogen gas with a small lethal amount is generated, and there is a problem of poisoning during fire. However, when incinerated, the damage to the incinerator becomes large, and therefore it is preferable not to contain them. Particularly, vinyl chloride has a self-extinguishing property, but when burned, a large amount of toxic gas is generated, so that it is not preferable to use it in the present invention. In the present invention, the halide content is at least 1% by weight or less, preferably the halide content is 0.5% by weight.
Below, it is more preferable that the compound does not contain a halide. As the phosphorus-based flame retardant of the present invention, for example, in the case of a polyester-based thermoplastic non-elastic resin, it is described as a flame retardant at the time of resin polymerization, for example, as described in JP-A-51-82392. Di (2-hydroxyethoxy)
-Carbonylpropyl] A method for preparing a polyester-based thermoplastic non-elastic resin obtained by copolymerizing a carboxylic acid such as 9 / 10-dihydro-9-oxa-10-phosphaphenalene-10-oxylo as a part of the acid component, and thermoplasticity. Flame retardancy can be imparted by adding a phosphorus-based compound such as tris (2.4-di-t-butylphenyl) phosphite in a subsequent step of injection molding of the non-elastic resin. Other flame retardants capable of imparting flame retardancy include various phosphoric acid esters, phosphorous acid esters, phosphonic acid esters (the above phosphoric acid esters containing a halogen element as necessary), or polymers derived from these phosphorus compounds. It can be illustrated. In the present invention, various modifiers, additives, colorants and the like can be added to the thermoplastic non-elastic resin as needed. The cushion body constituting the seat of the present invention contains phosphorus for imparting flame retardancy. The reason is, as described above, from the viewpoint of safety, cyan gas and halogen gas generated during a fire. The aim is to minimize the amount of toxic gas with a small lethal dose. Therefore, the toxicity index of the combustion gas of the cushion body constituting the seat of the present invention is preferably 6 or less, more preferably 5.5 or less. In addition, the side material and the wadding layer are preferably made of a polyester-based thermoplastic non-elastic resin so that they can be recycled without being separated.

【0013】本発明は、座席裏面又は背面の深絞り形状
部が開孔率10%以上の射出成形された樹脂成形体から
なり、クッション層が繊度が100000デニ−ル以下
の連続した線条を曲がりくねらせ互いに接触させて該接
触部の大部分が融着した3次元立体構造体を形成した熱
可塑性弾性樹脂からなる見掛け密度が0.01g/cm 3
から0.2g/cm3 の網状体で構成され、該樹脂成形体
と該網状体が接着剤または自己接着により一体接合さ
れ、表面に側地を配した座席(第1図に座席の断面図、
第2図(A)に座部のA−A’間の断面、第2図(B)
に背部のB−B’間の断面を発明の一例として示す。)
である。本発明の座席は、座席裏面又は背面の深絞り形
状部を開孔率が10%以上の樹脂成形体(第3図に座部
用の樹脂成形体、第4図に背部用の樹脂成形体を発明の
一例として示す。)とする事で、熱可塑性弾性樹脂から
なる弾力性と回復性の優れた網状体からなるクッション
層から受ける局部的な応力を接合一体化した樹脂成形体
が面全体で受ける補強機能を有すると共に、サイド部な
どの凸の芯材の働きも兼ね備えるために必要である。網
状体と樹脂成形体が接合一体化していない場合は局部的
に大きい変形を受けると網状体構造が破壊される場合が
あるので好ましくない。樹脂成形体の形状は、耐圧構造
化、例えば補強梁構造を有するものや、中空構造化した
ものが好ましい。このことで金属からなるフレ−ム部材
を少なく出来、軽量化ができる。座席裏面又は背面の深
絞り形状部もクッション層としたものは不織布の補強層
および、金属製補強フレ−ムが必要なため座席重量が重
くなるので好ましくない。しかして、樹脂成形体には、
後述する成形加工時に加熱流体を貫通させる必要と、座
席使用時の通気性保持のため開孔率が10%以上必要で
ある。10%未満では、成形時の昇温速度が遅くなり、
局部的に熱劣化したり、形状形成が不良になったりして
好ましくない。また、網状体の通気性が良好でも背面の
通気が不充分になると蒸れやすくなるので好ましくな
い。蒸れ防止の目的からはサイド部は開孔部が無くても
よいが、好ましくは全面に開孔部があるのが望ましい。
本発明の樹脂成形体の開孔率は、好ましくは20%から
70%、より好ましくは30%から50%である。本発
明のクッション層は繊度が100000デニ−ル以下の
連続した線条を曲がりくねらせ互いに接触させて該接触
部の大部分が融着した3次元立体構造体を形成した熱可
塑性弾性樹脂からなる見掛け密度が0.01g/cm3
ら0.2g/cm3 の網状体で構成されているので、外部
から与えられた振動を熱可塑性弾性樹脂の振動吸収機能
で大部分の振動を吸収減衰し、局部的に大きい変形応力
を与えられた場合でも網状体の表面が熱成形により実質
的にフラット化され接触部の大部分が融着しており、ク
ッション層の面で変形応力を受け止め変形応力を分散さ
せ、熱可塑性弾性樹脂からなる線条が3次元立体構造体
を形成し融着一体化されて補強機能を持つ樹脂成形体と
一体化しているので、座席構造を保持して、網状体は容
易に構造体全体が変形してエネルギ−変換により変形応
力を吸収し、変形応力が解除されると熱可塑性弾性樹脂
のゴム弾性で容易に元の形態に回復する機能があるので
耐へたり性が良好である。公知の非弾性樹脂のみからな
る線条で構成した網状体では、ゴム弾性を持たないので
圧縮変形により塑性変形を生じて回復しなくなり耐久性
が劣る。なお、網状体の線条が連続していない場合は、
接着点が応力の伝達点となるため接着点に著しい応力集
中が起こり構造破壊を生じ前記従来技術にも例示した特
開昭60−11352号公報、特開昭61−13773
2号公報、WO91−19032号公報等に開示された
構造体の如く耐熱耐久性が劣り好ましくない。また、非
弾性樹脂よりなる繊維をマトリックスとした硬綿では、
塑性変形を生じて耐へたり性が劣るのでクッション層に
用いるには好ましくない。融着していない場合は、形態
保持が出来ず、構造体が一体で変形しないため、応力集
中による疲労現象が起こり耐久性が劣ると同時に、形態
が変形して体型保持ができなくなるので好ましくない。
本発明のより好ましい融着の程度は、線条が接触してい
る部分の大半が融着した状態であり、もっとも好ましく
は接触部分が全て融着した状態である。なお、クッショ
ン材の機能は、基本のクッション層は繊度を少し太くし
て少し硬くして体型保持を受け持つ層と振動減衰性の良
い成分で密度を少し高くした振動吸収して振動を遮断す
る層で構成し、表面層はやや繊度を細くし構成線条本数
を多くした少し柔らかな層として適度の沈み込みにより
快適な臀部のタッチを与えて臀部の圧力分布を均一分散
化させると共にクッション層で吸収できなかった振動を
吸収して人体の共振部分の振動を遮断する層が一体化さ
れることで、応力や振動を一体で変形し吸収させ座り心
地を向上させることができる。かくして、振動吸収性と
弾性回復性の良い熱可塑性弾性樹脂からなる連続した線
条が接触部の大部分が融着した3次元立体構造体を形成
し融着一体化され表面が実質的にフラット化されたクッ
ション層とクッション層の裏面に補強機能を持つ樹脂成
形体が接着剤または自己接着により一体接合したクッシ
ョン体は、表面層は面で変形応力を受け止め応力の分散
を良くし、個々の線状に掛かる応力を少なくして樹脂成
形体で支えられ、網状構造全体が形態保持しつつ変形し
て変形応力を吸収し、且つ臀部を支えるクッション性も
向上させ、応力が解除されると回復し、フレ−ムから伝
わる振動も振動吸収性と弾性回復性の良い熱可塑性弾性
樹脂からなるクッション層が吸収して人体の共振部分の
振動を遮断して座り心地と耐久性を向上させることがで
きる。本発明の網状体を形成する振動吸収性と弾性回復
性の良い熱可塑性弾性樹脂からなる線条の繊度は100
000デニ−ル以下である。座席のクッション層の見掛
け密度を0.2g/cm3 以下にした場合、100000
デニ−ルを越えると構成本数が少なくなり、密度斑を生
じて部分的に耐久性の悪い構造ができ、応力集中による
疲労が大きくなり耐久性が低下するので好ましくない。
本発明の熱可塑性弾性樹脂からなる線条の繊度は、繊度
が細すぎると抗圧縮性が低くなり過ぎて変形による応力
吸収性が低下するので100デニ−ル以上であり、構成
本数の低下による構造面の緻密性を損なわない5000
0デニ−ル以下である。より好ましくは500デニ−ル
以上、10000デニ−ル以下である。本発明のクッシ
ョン層を形成する網状体の平均の見掛け密度は、0.0
05g/cm3 では反発力が失われ、振動吸収能力や変形
応力吸収能力が不充分となりクッション機能を発現させ
にくくなる場合があり、0.25g/cm3 以上では反発
力が高すぎて座り心地が悪くなる場合があるので、振動
吸収能力や変形応力吸収機能が生かせてクッション体と
しての機能が発現されやすい0.01g/cm3 以上0.
20g/cm3 以下であり、好ましくは0.03g/cm3
以上0.08g/cm3 以下である。本発明においては繊
度の異なる線状を見掛け密度との組合せで最適な構成と
する異繊度積層構造とする方法も好ましい実施形態とし
て選択できる。本発明の網状体の厚みは特に限定されな
いが、厚みが5mm未満では応力吸収機能と応力分散機能
が低下するので、好ましい厚みは力の分散をする面機能
と振動や変形応力吸収機能が発現できる厚みとして10
mm以上であり、より好ましくは20mm以上である。な
お、本発明座席の樹脂成形体と網状体を接合一体化する
方法に、接着剤を用いる場合は、接着剤としては、網状
体と樹脂成形体の両方に良好な接着性を有する樹脂が好
ましく、特には熱接着性を有するものが良い。特に好ま
しい実施形態としては、例えば、網状体がポリエステル
系熱可塑性弾性樹脂で、樹脂成形体がポリエステル系熱
可塑性弾性樹脂又は、ポリエステル系熱可塑性非弾性樹
脂の場合、少なくとも網状体の熱可塑性弾性樹脂の融点
より10℃以上低い融点のポリエステル系樹脂が良い。
好ましくは、網状体の融点より20℃から50℃低い融
点のものが良い。クッション層の変形に耐えるために
は、熱可塑性弾性樹脂が特に好ましい。接着剤の形態は
特には限定されないが、フィルム、不織布、粉末又は溶
液状のものを塗布する等の方法があるが、取り扱い上か
らと熱風を貫通させて熱接着させるので不織布が特に好
ましい。不織布としては、熱可塑性弾性樹脂からなるス
パンボンド不織布、メルトブロ−不織布、又は、短繊維
不織布などが使える。自己接着の場合は、網状体の線条
に熱接着機能を付与するため、高融点成分と低融点成分
のシ−ス・コア構造又はサイドバイサイド構造とした線
条で網状体を形成する。網状体の線条を複合構造とした
場合、好ましい熱接着機能も付与できる。例えば、シ−
スコア構造ではシ−ス成分の振動や変形応力をエネルギ
−変換が容易なソフトセグメント含有量が多い熱可塑性
弾性樹脂を熱接着成分とし、コア成分の抗圧縮性を示す
ソフトセグメント含有量が少ない熱可塑性弾性樹脂を網
状形態の保持機能をもたせるための高融点成分とする構
成で、熱接着成分の融点を高融点樹脂の融点より10℃
以上低くしたものを用いることにより熱接着機能も付与
できる。また、本発明の難燃性補強網状体の表面層を振
動や変形応力をエネルギ−変換が容易なソフトセグメン
ト含有量が多い低融点の熱可塑性弾性樹脂を熱接着成分
とし積層することでも好ましい熱接着機能を付与でき
る。熱接着機能を発現させるに好ましい網状体中の線条
を形成する熱接着成分の融点は高融点成分の融点より1
5℃から50℃低い融点であり、より好ましくは20℃
から40℃低い融点である。かかるクッション機能を持
つクッション体に側地を被せてフレ−ムに固定された、
例えば第1図の断面を有する本発明の座席は振動を遮断
し、耐熱耐久性、形態保持性、クッション性の優れた蒸
れにくい車両用座席である。なお、本発明座席の側地は
安全性の観点からは難燃性のものを用いるのが特に好ま
しい。
According to the present invention, the deep drawing shape of the back or back of the seat is used.
From a resin molded body that is injection-molded with a porosity of 10% or more
And the cushion layer has a fineness of 100,000 denier or less.
The continuous filaments of the
Heat that formed a three-dimensional solid structure in which most of the touch area was fused
Apparent density made of plastic elastic resin is 0.01g / cm 3
To 0.2 g / cm3And a resin molded body composed of
And the net body are integrally joined by an adhesive or self-adhesion.
A seat with a lateral surface on its surface (see Fig. 1, a sectional view of the seat,
Fig. 2 (A) is a cross section taken along the line A-A 'of the seat, Fig. 2 (B).
The cross section between B-B 'of the back is shown as an example of the invention. )
Is. The seat of the present invention has a deep drawing type on the back or back of the seat.
A resin molding with a porosity of 10% or more (see Fig. 3
Of the resin molding for the back, and FIG. 4 shows the invention of the resin molding for the back.
This is shown as an example. ), The thermoplastic elastic resin
Cushion made of reticulated body with excellent elasticity and recovery
A resin molded body that is integrated with the local stress received from the layers
Has a reinforcing function that the entire surface receives,
It is necessary to combine the functions of any convex core material. network
If the body and the resin molding are not joined and integrated, it is localized
The net structure may be destroyed when subjected to a large deformation.
It is not preferable because it exists. The shape of the resin molding is pressure resistant
For example, those with a reinforced beam structure or a hollow structure
Those are preferable. This makes the frame member made of metal
Can be reduced and weight can be reduced. The depth of the back or back of the seat
Reinforcement layer of non-woven fabric when the drawing shape part is also a cushion layer
Also, since a metal reinforcing frame is required, the seat weight is heavy.
It is not preferable because it becomes Then, in the resin molded body,
It is necessary to penetrate the heating fluid during the molding process described below,
A porosity of 10% or more is required to maintain air permeability when seats are used
is there. If it is less than 10%, the temperature rising rate during molding becomes slow,
Due to local heat deterioration or defective shape formation
Not preferable. Also, even if the mesh has good air permeability,
If the ventilation is insufficient, it tends to get stuffy, which is not preferable.
Yes. For the purpose of preventing stuffiness, even if there are no holes on the side
Although it is good, it is preferable that the entire surface has an opening.
The porosity of the resin molding of the present invention is preferably 20% or less.
70%, more preferably 30% to 50%. Departure
The light cushion layer has a fineness of 100,000 denier or less.
The continuous filaments are bent and brought into contact with each other
A heat-sensitive structure that forms a three-dimensional structure in which most of the parts are fused
Apparent density made of plastic elastic resin is 0.01g / cm3Or
0.2 g / cm3Since it is composed of a mesh body,
Vibration absorption function of thermoplastic elastic resin
Absorbs and dampens most of the vibration, and locally large deformation stress
Even when given a
Is flattened and most of the contact area is fused.
The deformation layer receives the deformation stress and disperses the deformation stress.
And the filaments made of thermoplastic elastic resin have a three-dimensional structure.
A resin molded body that has a reinforcing function by being formed by fusion
Because it is integrated, the seat structure is retained and the mesh is
The entire structure is easily deformed and the energy is converted to
Thermoplastic elastic resin that absorbs force and releases the deformation stress
Since it has the function of easily recovering to its original shape with the rubber elasticity of
Good sag resistance. Only made of known inelastic resin
Since the net-like body composed of linear filaments does not have rubber elasticity,
Durability due to plastic deformation caused by compressive deformation
Is inferior. If the filaments of the mesh are not continuous,
Since the adhesion point serves as a stress transmission point, a significant stress
The inside of the structure causes structural destruction, and
JP-A-60-11352 and JP-A-61-137773.
No. 2, WO 91-19032, etc.
It is not preferable because it has poor heat resistance and durability like the structure. Also, non
In hard cotton with fibers made of elastic resin as a matrix,
Since it causes plastic deformation and has poor sag resistance, it can be used as a cushion layer.
Not preferred to use. If not fused, morphology
Since it cannot be held and the structure does not deform integrally, stress collection
Fatigue phenomenon occurs due to the inside, resulting in poor durability and at the same time the form
Is deformed, and the body shape cannot be maintained, which is not preferable.
The more preferable degree of fusion bonding of the present invention is that the filaments are in contact with each other.
Most of the parts are fused and most preferable
Indicates that all contact portions are fused. In addition,
The basic function of the cushioning material is to make the fineness of the cushion layer slightly thicker.
A layer that is a little harder and is responsible for body shape retention and good vibration damping
Isolate the vibration by increasing the density with a certain component to cut off the vibration
The surface layer is slightly finer and the number of filaments
As a little soft layer with a lot of
Gives comfortable buttocks touch and evenly distributes buttocks pressure distribution
Vibration that could not be absorbed by the cushion layer
The layer that absorbs and blocks the vibration of the resonance part of the human body is integrated.
By absorbing the stress and vibration,
The ground can be improved. Thus, with vibration absorption
Continuous wire made of thermoplastic elastic resin with good elastic recovery
The strip forms a three-dimensional solid structure in which most of the contact area is fused
And fusion-bonded to make the surface substantially flat.
The resin layer with the reinforcing function on the back of the cushion layer and cushion layer
Cushion in which features are joined together by adhesive or self-adhesion
The surface layer is a surface that receives deformation stress and disperses the stress.
To reduce the stress applied to each individual linear
Supported by the shape, the entire network structure deforms while maintaining its shape.
Absorbs deformation stress and also has cushioning properties to support the buttocks
Improve and recover when stress is released and transmitted from the frame.
Even if it vibrates, thermoplastic elasticity has good vibration absorption and elastic recovery.
The cushion layer made of resin absorbs and absorbs the resonance of the human body.
It can block vibration and improve sitting comfort and durability.
Wear. Vibration absorption and elastic recovery forming the mesh body of the present invention
The fineness of the filament made of good thermoplastic thermoplastic resin is 100
It is less than 000 denier. Apparent cushion layer of seat
0.2g / cm3If you do the following, 100,000
If it exceeds denier, the number of components will decrease and density unevenness will occur.
In some cases, a structure with poor durability is partially formed, and stress concentration
It is not preferable because fatigue increases and durability deteriorates.
The fineness of the filament made of the thermoplastic elastic resin of the present invention is
If the thickness is too thin, the compression resistance will be too low and the stress due to deformation
Since the absorbency is reduced, it is 100 denier or more.
5000 which does not impair the denseness of the structural surface due to the decrease in the number
It is 0 denier or less. More preferably 500 denier
The above is 10,000 denier or less. Cushion of the present invention
The average apparent density of the reticulate body that forms the layer is 0.0
05 g / cm3Then, the repulsive force is lost, and the vibration absorption capacity and deformation
Insufficient stress absorption capacity causes cushioning function
It may be difficult, 0.25g / cm3Repulsion above
Vibration may occur because the force may be too high and make you feel uncomfortable.
With the cushioning body, you can take advantage of the absorption capacity and deformation stress absorption function.
0.01g / cm that the function of30.
20 g / cm3Below, preferably 0.03 g / cm3
0.08 g / cm or more3It is the following. In the present invention,
Optimal configuration in combination with apparent density of linear shapes with different degrees
A preferred embodiment is also a method of forming a different fineness laminated structure
Can be selected. The thickness of the reticulate body of the present invention is not particularly limited.
However, if the thickness is less than 5 mm, stress absorption function and stress dispersion function
As the thickness decreases, the preferred thickness is the surface function that distributes the force.
And as a thickness that can exhibit vibration and deformation stress absorption function, 10
mm or more, and more preferably 20 mm or more. What
It should be noted that the resin molding of the seat of the present invention and the net-like body are joined and integrated.
If an adhesive is used in the method, the adhesive is a mesh
A resin that has good adhesiveness to both the body and the resin molding is preferable.
It is particularly preferable that it has thermal adhesiveness. Especially preferred
In a preferred embodiment, for example, the mesh is polyester.
Thermoplastic elastic resin, the resin molding is polyester
Plastic elastic resin or polyester thermoplastic inelastic resin
In the case of fat, at least the melting point of the reticulated thermoplastic elastic resin
A polyester resin having a melting point lower by 10 ° C. or more is preferable.
Preferably, the melting point is 20 ° C to 50 ° C lower than the melting point of the mesh.
Points are good. To withstand the deformation of the cushion layer
Is particularly preferably a thermoplastic elastic resin. The form of the adhesive
The film, non-woven fabric, powder or melt is not particularly limited.
There is a method such as applying a liquid one, but it may be difficult to handle.
A non-woven fabric is especially preferable because it allows hot air to penetrate and heat bond.
Good. Non-woven fabric is made of thermoplastic elastic resin.
Pan-bonded non-woven fabric, melt-blown non-woven fabric, or short fiber
Non-woven fabric can be used. In the case of self-adhesion, reticulated filaments
High-melting point component and low-melting point component to give a heat-bonding function to
Wires with sheath-core structure or side-by-side structure
The strip forms a reticulate body. Reticulated filaments have a composite structure
In this case, a preferable heat adhesion function can be imparted. For example,
With the score structure, the vibration of the sheath component and the deformation stress are
-Thermoplastic with a high content of soft segments, which is easy to convert
Elastic resin is used as a heat-adhesive component, and exhibits the compression resistance of the core component
Made of thermoplastic elastic resin with a low soft segment content
A structure with a high melting point component to have a shape-like shape holding function.
The melting point of the heat-adhesive component is 10 ° C higher than the melting point of the high-melting resin.
A heat-adhesive function is also added by using a lower product
it can. In addition, the surface layer of the flame-retardant reinforcing netting of the present invention is shaken.
Soft segment for easy energy conversion of motion and deformation stress
A low melting point thermoplastic elastic resin with a high content of
It is possible to give a favorable heat-bonding function by stacking
You. Striae in a mesh preferable for exhibiting a heat-bonding function
The melting point of the heat-adhesive component that forms the
5 to 50 ° C lower melting point, more preferably 20 ° C
To 40 ° C lower melting point. Has such cushion function
One side of the cushion body was covered and fixed to the frame.
For example, the seat of the present invention having the cross section of FIG.
It has excellent heat resistance and durability, shape retention and cushioning.
It is a vehicle seat that is hard to be damaged. In addition, the side of the seat of the present invention is
From the viewpoint of safety, it is particularly preferable to use a flame-retardant material.
New

【0014】本発明座席の網状体と側地の間にファイバ
−フィルからなるワディング層を配することで、座席の
タッチを柔らかくする効果があるので好ましい。ワヂィ
ング層は、熱接着繊維が熱可塑性弾性樹脂からなる繊維
を用いた場合、耐熱耐久性とクッション性が良好となる
ので特に好ましい。熱接着繊維に熱可塑性非弾性樹脂か
らなる繊維を用いた場合、耐熱耐久性が劣るので好まし
くない。ワヂィング層を側地とクッション層との熱接着
成分として使用する場合は網状体の熱可塑性弾性樹脂の
融点より少なくとも10℃以上低い融点の熱可塑性弾性
樹脂を熱接着成分とした繊維を用いることで網状構造を
保持して網状体および側地との熱接着が可能となるので
好ましい実施形態である。
It is preferable to dispose a wadding layer made of fiber-fill between the mesh of the seat of the present invention and the side ground because it has the effect of softening the touch of the seat. In the wading layer, when the heat-bonding fiber is a fiber made of a thermoplastic elastic resin, the heat resistance durability and the cushioning property are improved, which is particularly preferable. When a fiber made of a thermoplastic non-elastic resin is used as the heat-bonding fiber, the heat resistance and durability are deteriorated, which is not preferable. When the wading layer is used as a heat-bonding component between the side material and the cushion layer, it is possible to use a fiber containing a thermoplastic elastic resin whose melting point is at least 10 ° C. lower than the melting point of the thermoplastic elastic resin of the reticulate body as a heat-bonding component. This is a preferred embodiment because the network structure is retained and thermal bonding with the network body and the side ground is possible.

【0015】本発明では網状体の線条の断面形状は特に
は限定されないが、中空断面や異形断面にすることで好
ましい抗圧縮性(反発力)やタッチを付与することがで
きるので特に好ましい。抗圧縮性は繊度や用いる素材の
モジュラスにより調整して、繊度を細くしたり、柔らか
い素材では中空率や異形度を高くし初期圧縮応力の勾配
を調整できるし、繊度をやや太くしたり、ややモジュラ
スの高い素材では中空率や異形度を低くして座り心地が
良好な抗圧縮性を付与する。中空断面や異形断面の他の
効果として中空率や異形度を高くすることで、同一の抗
圧縮性を付与した場合、より軽量化が可能となり、自動
車等の座席に用いると省エネルギ−化ができる。好まし
い抗圧縮性(反発力)やタッチを付与することができる
他の好ましい方法として、本発明の網状体の線条を複合
構造とする方法がある。複合構造としては、シ−スコア
構造またはサイドバイサイド構造及びそれらの組合せ構
造などが挙げられる。が、特にはクッション層が大変形
してもエネルギ−変換できない振動や変形応力をエネル
ギ−変換して回復できる立体3次元構造とするために線
状の表面の50%以上を柔らかい熱可塑性弾性樹脂が占
めるシ−スコア構造またはサイドバイサイド構造及びそ
れらの組合せ構造などが挙げられる。すなわち、シ−ス
コア構造ではシ−ス成分は振動や変形応力をエネルギ−
変換が容易なソフトセグメント含有量が多い熱可塑性弾
性樹脂とし、コア成分は抗圧縮性を示すソフトセグメン
ト含有量が少ない熱可塑性弾性樹脂で構成し適度の沈み
込みによる臀部への快適なタッチを与えることができ
る。サイドバイサイド構造では振動や変形応力をエネル
ギ−変換が容易なソフトセグメント含有量が多い熱可塑
性弾性樹脂の溶融粘度をソフトセグメント含有量が少な
い抗圧縮性を示す熱可塑性弾性樹脂の溶融粘度より低く
して線状の表面を占めるソフトセグメント含有量が多い
熱可塑性弾性樹脂の割合を多くした構造(比喩的には偏
芯シ−ス・コア構造のシ−スに熱可塑性弾性樹脂を配し
た様な構造)として線状の表面を占めるソフトセグメン
ト含有量が多い熱可塑性弾性樹脂の割合を80%以上と
したものが特に好ましく、最も好ましくは線状の表面を
占めるソフトセグメント含有量が多い熱可塑性弾性樹脂
の割合を100%としたシ−スコアである。ソフトセグ
メント含有量が多い熱可塑性弾性樹脂の線状の表面を占
める割合が多くなると、溶融して融着するときの流動性
が高いので接着が強固になる効果があり、構造が一体で
変形する場合、接着点の応力集中に対する耐疲労性が向
上し、耐熱性や耐久性がより向上する。
In the present invention, the cross-sectional shape of the filaments of the reticulate body is not particularly limited, but a hollow section or a modified cross section is preferable because it can impart preferable anti-compression property (repulsive force) and touch. The anti-compression property can be adjusted by the fineness and the modulus of the material used to make the fineness fine, or in the soft material the hollowness and the irregularity can be increased to adjust the gradient of the initial compression stress, and the fineness can be made slightly thicker or slightly. A material with a high modulus lowers the hollow ratio and the degree of irregularity to provide anti-compression property with a comfortable sitting feeling. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, if the same anti-compression property is given, the weight can be further reduced, and the energy saving can be achieved when it is used for the seat of an automobile or the like. it can. As another preferable method for imparting preferable anti-compression property (repulsive force) and touch, there is a method of forming the filament of the reticulated body of the present invention into a composite structure. Examples of the composite structure include a score core structure, a side-by-side structure, and a combination structure thereof. However, in particular, 50% or more of the linear surface is made of a soft thermoplastic elastic resin in order to obtain a three-dimensional structure in which vibration and deformation stress that cannot be energy-converted even if the cushion layer is largely deformed can be energy-converted and recovered. And a side-by-side structure and a combination thereof. That is, in the sheath core structure, the sheath component causes vibrations and deformation stresses in energy.
A thermoplastic elastic resin with a high content of soft segments that can be easily converted, and a core component composed of a thermoplastic elastic resin with a low content of soft segments, which gives a comfortable touch to the buttocks due to an appropriate depression. be able to. With the side-by-side structure, the melt viscosity of a thermoplastic elastic resin with a high soft segment content that facilitates energy conversion of vibration and deformation stress is lower than the melt viscosity of a thermoplastic elastic resin with a low soft segment content that exhibits anti-compression properties. A structure in which the proportion of thermoplastic elastic resin occupying a linear surface and having a large amount of soft segment is increased (metaphorically, a structure in which a thermoplastic elastic resin is arranged in an eccentric sheath-core structure) It is particularly preferable that the ratio of the thermoplastic elastic resin having a large soft segment content occupying the linear surface is 80% or more, and most preferably the thermoplastic elastic resin having a large soft segment content occupying the linear surface. Is a score with the ratio of 100% as 100%. When the proportion of the thermoplastic elastic resin with a large soft segment content that occupies the linear surface is large, the flowability when melting and fusing is high, so there is the effect of strengthening the adhesion, and the structure deforms as a unit. In this case, the fatigue resistance against stress concentration at the bonding points is improved, and the heat resistance and durability are further improved.

【0016】次に本発明の製法を述べる。本発明での網
状体は、本発明がなされた時点では公知ではないので特
に詳細にその製法を述べる。複数のオリフィスを持つ多
列ノズルより熱可塑性弾性樹脂を各ノズルオリフィスに
分配し、該熱可塑性樹脂の融点より20℃以上、80℃
未満高い溶融温度で、該ノズルより下方に向けて吐出さ
せ、溶融状態で互いに接触させて融着させ3次元構造を
形成しつつ、引取り装置で挟み込み冷却槽で冷却せしめ
て連続した網状体を得る。本発明では、前記の如く、難
燃性を必要条件とはしないが必要に応じ難燃性を付与す
るために、燐化合物を重合時に添加して共重合する方法
と重合後に添加して混合練り込みする方法ができる。混
合練り込みは二軸混練押出機又はダルメ−ジ、ピン等の
混練機能をもつ単軸押出機を用い、溶融押し出し前に行
う場合と、溶融押し出し時に定量供給等の方法で行う場
合を選択できる。難燃剤の定量供給が出来れば溶融押し
出し時に混練するのが最も安価な方法となる。このよう
な方法で好ましくはソフトセグメント量(A重量%)と
燐含有量(Bppm)が60A+200≦B≦1000
00の関係を満足する燐含有量を熱可塑弾性樹脂に添加
して、次いで溶融押出しして網状体を形成する。溶融し
た燐含有熱可塑弾性樹脂は複数のオリフィスを持つ多列
ノズルに供給し、オリフィスより下方へ吐出する。線条
を複合化する場合は、多数の押出機より別々に溶融混練
りした熱可塑性弾性樹脂を、多列ノズルのオリフィス直
前で複合化するように分配合流させて下方に吐出する。
ス−スコアではコア成分を中央から供給し、その回りか
らシ−ス成分を合流させて吐出する。サイドバイサイド
では左右または前後から各成分を合流させて吐出する。
この時の溶融温度は、熱可塑性弾性樹脂の融点より10
℃〜80℃高い温度である。(複合化される場合は高融
点成分の融点より10℃以上高く、低融点成分の融点よ
り80℃以下の同一の溶融温度が好ましい)熱可塑性弾
性樹脂の融点より80℃を越える高い溶融温度にすると
熱分解が著しくなり熱可塑性弾性樹脂のゴム弾性特性が
低下するので好ましくない。他方、熱可塑性弾性樹脂の
融点より10℃以上高くしないとメルトフラクチャ−を
発生し正常な線条形成が出来なくなり、また、吐出後ル
−プ形成しつつ接触させ融着させる際、線条の温度が低
下して線条同士が融着しなくなり接着が不充分な網状体
となる場合があり好ましくない。好ましい溶融温度は融
点より25℃から60℃高い温度、より好ましくは融点
より30℃から40℃高い温度である。オリフィスの形
状は特に限定されないが、中空断面(例えば三角中空、
丸型中空、突起つきの中空等となるよう形状)及び、又
は異形断面(例えば三角形、Y型、星型等の断面二次モ
−メントが高くなる形状)とすることで前記効果以外に
溶融状態の吐出線条が形成する3次元構造が流動緩和し
難くし、逆に接触点での流動時間を長く保持して接着点
を強固にできるので特に好ましい。特開平1−2075
号公報に記載の接着のための加熱をする場合、3次元構
造が緩和し易くなり平面的構造化し、3次元立体構造化
が困難となるので好ましくない。網状体の特性向上効果
としては、見掛けの嵩を高くでき軽量化になり、また抗
圧縮性が向上し、弾発性も改良できへたり難くなる。中
空断面では中空率が80%を越えると断面が潰れ易くな
るので、好ましくは軽量化の効果が発現できる10%以
上70%以下、より好ましくは20%以上60%以下で
ある。オリフィスの孔間ピッチは線状が形成するル−プ
が充分接触できるピッチとする必要がある。緻密な構造
にするには孔間ピッチを短くし、粗密な構造にするには
孔間ピッチを長くする。本発明の孔間ピッチは好ましく
は3mm〜20mm、より好ましくは5mm〜10mmである。
本発明では所望に応じ異密度化や異繊度化もできる。列
間のピッチ又は孔間のピッチも変えた構成、及び列間と
孔間の両方のピッチも変える方法などで異密度層を形成
できる。また、オリフィスの断面積を変えて吐出時の圧
力損失差を付与すると、溶融した熱可塑性弾性樹脂を同
一ノズルから一定の圧力で押し出される吐出量が圧力損
失の大きいオリフィスほど少なくなる原理を使って長手
方向の区間でオリフィスの断面積が異なる列を少なくと
も複数有するノズルを用い異繊度線条からなる網状構造
体を製造することができる。次いで、該ノズルより下方
に向けて吐出させ、ル−プを形成させつつ溶融状態で互
いに接触させて融着させ3次元構造を形成しつつ、接合
した網状構造体両面を引取りネットで挟み込み、網状体
の表面の溶融状態の曲がりくねった吐出線条を45°以
上折り曲げて変形させて表面をフラット化すると同時に
曲げられていない吐出線条との接触点を接着して構造を
形成後、連続して冷却媒体(通常は室温の水を用いるの
が冷却速度を早くでき、コスト面でも安くなるので好ま
しい)で急冷して本発明の3次元立体網状構造体化した
網状体を得る。ノズル面と引取り点の距離は少なくとも
40cm以下にすることで吐出線条が冷却され接触部が融
着しなくなることを防ぐのが好ましい。吐出線条の吐出
量5g/分孔以上と多い場合は10cm〜40cmが好まし
く、吐出線条の吐出量5g/分孔未満と少ない場合は5
cm〜20cmが好ましい。網状体の厚みは溶融状態の3次
元立体構造体両面を挟み込む引取りネットの開口幅(引
取りネット間の間隔)で決まる。本発明では上述の理由
から引取りネットの開口幅は5mm以上とする。次いで水
切り乾燥するが冷却媒体中に界面活性剤等を添加する
と、水切りや乾燥がしにくくなったり、熱可塑性弾性樹
脂が膨潤することもあり好ましくない。尚、ノズル面と
樹脂を固化させる冷却媒体上に設置した引取りコンベア
との距離、樹脂の溶融粘度、オリフィスの孔径と吐出量
などにより所望のループ径や線径をきめられる。冷却媒
体上に設置した間隔が調整可能な一対の引取りコンベア
で溶融状態の吐出線条を挟み込み停留させることで互い
に接触した部分を融着させつつ連続的に冷却媒体中に引
込み固化させ網状構造体を形成する時、上記コンベアの
間隔を調整することで、融着した網状体が溶融状態でい
る間で厚み調節が可能となり、所望の厚みのものが得ら
れる。コンベア速度も速すぎると、接触点の形成が不充
分になったり、融着点が充分に形成されるまでに冷却さ
れ、接触部の融着が不充分になる場合がある。また、速
度が遅過ぎると溶融物が滞留し過ぎ、密度が高くなるの
で、所望の見掛け密度に適したコンベア速度を設定する
必要がある。かくして得られた網状体は、次いで、座席
のクッション形態にあわせた形に打ち抜き、所定形状の
切断された網状体を得る。網状体をクッション層に用い
る場合、その使用目的、使用部位により使用する樹脂、
繊度、ル−プ径、嵩密度を選択する必要がある。例え
ば、ソフトなタッチと適度の沈み込みと張りのある膨ら
みを付与するためには、低密度で細い繊度、細かいル−
プ径にするのが好ましく、中層のクッション機能も発現
させるには、共振振動数を低くし、適度の硬さと圧縮時
のヒステリシスを直線的に変化させて体型保持性を良く
し、耐久性を保持させるために、中密度で太い繊度、や
や大きいル−プ径の層と低密度で細い繊度、細かいル−
プ径の層を積層一体化した構造にするのが好ましい。ま
た、樹脂製造過程以外でも性能を低下させない範囲で製
造過程から成形体に加工し、座席化する任意の段階で難
燃化、防虫抗菌化、耐熱化、撥水撥油化、着色、芳香等
の機能付与を薬剤添加等の処理加工ができる。他方樹脂
成形体は、一般の公知の射出成形機を用いて熱可塑性弾
性樹脂、又は熱可塑性非弾性樹脂、又はそれらの混合
物、及び必要な改質剤、例えば難燃剤等を、例えば二軸
押出機を用いて溶融混合した溶融樹脂を例えば第3図や
第4図の形状となる金型内へ押し出し、冷却して射出成
形体として得られる。樹脂押し出し時の金型の温度は、
樹脂の融点から樹脂の融点より30℃低い温度として、
金型の壁面に離型剤を付与を少なくして、好ましくは付
与しないで成形したものが、成形時の網状体との接着が
強固となるので望ましい。
Next, the manufacturing method of the present invention will be described. Since the reticulate body of the present invention is not known at the time when the present invention was made, its production method will be described in detail. A thermoplastic elastic resin is distributed to each nozzle orifice from a multi-row nozzle having a plurality of orifices, and the melting point of the thermoplastic resin is 20 ° C. or more and 80 ° C.
At a melting temperature higher than less than, the nozzle is discharged downward from the nozzle, and in a molten state, they are brought into contact with each other and fused to form a three-dimensional structure, sandwiched by a take-up device and cooled in a cooling tank to form a continuous reticulated body. obtain. In the present invention, as described above, flame retardancy is not a necessary condition, but in order to impart flame retardancy as necessary, a method of adding a phosphorus compound at the time of polymerization and copolymerization and a method of adding after mixing and mixing and kneading There is a way to include it. For mixing and kneading, a twin-screw kneading extruder or a single-screw extruder having a kneading function such as a dullage or pin can be used, and it is possible to select whether to perform before melt extrusion or when performing a method such as quantitative supply during melt extrusion. . If a fixed amount of flame retardant can be supplied, kneading at the time of melt extrusion is the cheapest method. In such a method, the soft segment amount (A wt%) and the phosphorus content (Bppm) are preferably 60A + 200 ≦ B ≦ 1000.
A phosphorus content satisfying the relationship of 00 is added to the thermoplastic elastic resin and then melt extruded to form a reticulate body. The molten phosphorus-containing thermoplastic elastic resin is supplied to a multi-row nozzle having a plurality of orifices and discharged downward from the orifices. When the filaments are compounded, the thermoplastic elastic resins melt-kneaded separately from a plurality of extruders are mixed and mixed so that they are compounded immediately before the orifices of the multi-row nozzles, and then discharged downward.
In the core score, the core component is supplied from the center, and the sheath component is merged and discharged from around the core component. On the side-by-side, the components are merged and discharged from the left and right or the front and back.
The melting temperature at this time is 10 from the melting point of the thermoplastic elastic resin.
The temperature is higher by 80 ° C to 80 ° C. (The same melting temperature of 10 ° C. or more higher than the melting point of the high-melting point component and 80 ° C. or lower than the melting point of the low-melting point component is preferable in the case of compounding) A melting temperature higher than 80 ° C. higher than the melting point of the thermoplastic elastic resin Then, thermal decomposition becomes remarkable and the rubber elastic properties of the thermoplastic elastic resin deteriorate, which is not preferable. On the other hand, unless the temperature is higher than the melting point of the thermoplastic elastic resin by 10 ° C. or more, melt fracture occurs and normal filament formation cannot be performed. Further, when the filament is formed by looping after discharge and is brought into contact and fused. The temperature may be lowered and the filaments may not be fused to each other, resulting in a network having insufficient adhesion, which is not preferable. The preferred melting temperature is 25 ° C to 60 ° C above the melting point, more preferably 30 ° C to 40 ° C above the melting point. The shape of the orifice is not particularly limited, but a hollow cross section (for example, triangular hollow,
In addition to the above effects, the melted state can be achieved by using a round hollow shape, a hollow shape with protrusions, etc.) and / or a modified cross-section (for example, a shape with a high secondary cross-sectional moment such as a triangle, Y shape, or star shape). This is particularly preferable because the three-dimensional structure formed by the ejection line makes it difficult to relax the flow, and conversely, the flow time at the contact point can be maintained for a long time to strengthen the adhesion point. Japanese Patent Laid-Open No. 1-2075
In the case of heating for adhesion as described in Japanese Patent Publication, it is not preferable because the three-dimensional structure is likely to be relaxed, a planar structure is formed, and a three-dimensional three-dimensional structure becomes difficult. As an effect of improving the properties of the reticulate body, the apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, and the elasticity can be improved, which is difficult to obtain. In the hollow cross section, if the hollow ratio exceeds 80%, the cross section tends to be crushed. Therefore, it is preferably 10% or more and 70% or less, more preferably 20% or more and 60% or less, which can exhibit the effect of weight reduction. The pitch between the holes of the orifice needs to be a pitch with which the loop formed by the line can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is lengthened for a coarse structure. The pitch between the holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm.
In the present invention, different densities and different fineness can be obtained as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, or a method in which the pitch between both rows and holes is also changed. Also, if the pressure loss difference at the time of discharge is given by changing the cross-sectional area of the orifice, the principle that the discharged amount of molten thermoplastic elastic resin extruded from the same nozzle at a constant pressure becomes smaller for the orifice with larger pressure loss, is used. It is possible to manufacture a reticulated structure composed of filaments of different fineness by using a nozzle having at least a plurality of rows having different cross-sectional areas of orifices in a section in the longitudinal direction. Then, it is discharged downward from the nozzle, and while forming a loop, they are brought into contact with each other in a molten state and fused to form a three-dimensional structure, and both surfaces of the joined network structure are sandwiched by a take-up net, The surface of the net-like body is melted and bent to form a flat surface by bending and deforming the twisted discharge line by 45 ° or more. At the same time, the contact point with the discharge line that is not bent is adhered to form a structure, which is then continued. Then, it is rapidly cooled with a cooling medium (usually, water at room temperature is preferable because the cooling rate can be increased and the cost is also reduced) to obtain the three-dimensional three-dimensional reticulated net-like body of the present invention. The distance between the nozzle surface and the take-off point is preferably at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion not being fused. 10 cm to 40 cm is preferable when the discharge amount of the discharge line is 5 g / min or more, and 5 when the discharge amount of the discharge line is less than 5 g / min.
cm to 20 cm is preferred. The thickness of the net-like body is determined by the opening width (interval between the take-up nets) of the take-up net sandwiching both surfaces of the three-dimensional structure in the molten state. In the present invention, the opening width of the take-up net is set to 5 mm or more for the above reason. Next, it is drained and dried, but if a surfactant or the like is added to the cooling medium, draining and drying may be difficult, or the thermoplastic elastic resin may swell, which is not preferable. The desired loop diameter and wire diameter can be determined by the distance between the nozzle surface and the take-up conveyor installed on the cooling medium for solidifying the resin, the melt viscosity of the resin, the orifice hole diameter and the discharge amount, and the like. A pair of take-up conveyors with adjustable spacing installed on the cooling medium sandwiches and holds the melted discharge filaments so that the portions that are in contact with each other are fused and continuously drawn into the cooling medium to solidify By adjusting the distance between the conveyors when forming the body, the thickness can be adjusted while the fused net-like body is in a molten state, and a desired thickness can be obtained. If the conveyor speed is too high, the formation of contact points may be insufficient, or the contact point may be cooled until the fusion point is sufficiently formed, resulting in insufficient fusion of the contact portion. Further, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set the conveyor speed suitable for the desired apparent density. The reticulate body thus obtained is then punched out in a shape that matches the cushion shape of the seat, and a reticulated body having a predetermined shape is obtained. When a net-like body is used for the cushion layer, a resin used depending on the purpose and site of use,
It is necessary to select the fineness, the loop diameter, and the bulk density. For example, in order to give a soft touch, moderate depression, and bulging with tension, low density, fine fineness, and fine rule
In order to develop the cushioning function of the middle layer, the resonance frequency should be lowered and the hardness and compression hysteresis should be changed linearly to improve body retention and durability. In order to retain, medium density and thick fineness, a layer of slightly larger loop diameter and low density and finer fineness, finer loop
It is preferable to have a structure in which layers having different diameters are laminated and integrated. In addition, other than the resin manufacturing process, it is processed into a molded product from the manufacturing process within the range that does not deteriorate the performance, and flame retardant, insect repellent antibacterial, heat resistant, water and oil repellency, coloring, aroma, etc. at any stage of seating It is possible to perform the processing such as the addition of chemicals to add the function. On the other hand, the resin molded body is prepared by using a generally known injection molding machine to prepare a thermoplastic elastic resin, a thermoplastic non-elastic resin, or a mixture thereof, and a necessary modifier such as a flame retardant, for example, biaxial extrusion. The molten resin melted and mixed by using a machine is extruded into a mold having the shape shown in FIGS. 3 and 4, and cooled to obtain an injection molded body. The temperature of the mold during resin extrusion is
From the melting point of the resin to the temperature 30 ° C lower than the melting point of the resin,
It is desirable to mold the wall surface of the mold with a small amount of the release agent, preferably without the release agent, because the adhesion to the mesh body at the time of molding becomes strong.

【0017】ついで、本発明の座席は、雌型に所定形状
に切断されたクッション層となる網状体を配し、その上
に裏面又は背面となる深絞り形状に成形された樹脂成形
体を配し、又は網状体と樹脂成形体間に網状体の融点よ
り少なくとも10℃以上低い融点を持つ接着層を配し
て、雄型で上からクッション層を圧縮すると共に樹脂成
形体を介して凹部内側からも凸部を圧縮し、網状体の融
点より5℃高い温度〜融点より50℃低い温度の加熱媒
体で加熱して熱成形により一体化した後、一旦冷却する
か、又は連続して、網状体のガラス転移温度より10℃
高い温度以上、融点より20℃以上低い温度でアニ−リ
ングして得たクッション成形体に側地を取付けて、座席
フレ−ムに固定して得られる。以下、図面で成形方法を
説明する。第5図(A)に示すように、通気孔8を有す
る雌金型7に、所定の形状に切断した網状体2及び2’
を乗せて、次いで第5図(B)に示す如く、開孔部4を
有する樹脂成形体3をその上から乗せて、次いで、網状
体2を樹脂成形体3の裏側まで巻き込み、樹脂成形体3
の裏側にある網状体2を止めるフック9に引っ掛けて網
状体2をとめる。次いで、第5図(C)の如く、通気孔
8を有する雄金型10で圧縮する。雄金型10で上から
圧縮することで樹脂成形体3の凸部3’が網状体2の内
側から網状体2の外側へ圧縮力を伝え、雌金型7の形状
にきれいに添う形状に圧縮される。次いで、加熱流体を
矢印の方向から通じて全体を加熱し、熱成形する。この
ときの加熱流体の温度は網状体の一部が塑性緩和して座
席の形状に変形し、樹脂成形体が塑性変形しない温度
で、樹脂成形体と網状体が熱接着できる温度に加熱す
る。例えば、(例1)網状体が単一組成の場合、網状体
の融点より5℃高い温度で加熱し、網状体の線条の表面
を溶融させて樹脂成形体と熱接着させる。網状体の融点
より10℃以上高くすると網状体の形状が崩れてクッシ
ョン機能が低下するので好ましくない。網状体がシ−ス
コア構造の線条からなる場合、例えば、(例2)シ−ス
成分の融点より5℃以上高い温度から網状体のコア成分
の融点より5℃高い温度で熱成形することで、網状体構
造を保持して、所望の座席形状に形成出来、且つ、樹脂
成形体との熱接着が強固にできる好ましい事例である。
コア成分が塑性変形しない温度、例えば、融点より60
℃以上低い温度では所望の座席形状に形成出来なくなる
ので好ましくない。例えば、網状体が単一組成で、接着
剤を用いる場合、(例3)第5図(B)にセットする前
に予め接着剤を樹脂成形体3の表面に塗布するか、又は
(例4)第6図に示すように熱接着不織布12を積層し
て熱成形する場合にも、例えば接着剤の融点が160℃
の熱可塑性弾性樹脂からなる樹脂又はメルトブロー不織
布12、網状体2及び2’の融点が220℃の場合、加
熱温度は170℃以上、225℃以下が好ましい。(例
5)第6図は、本発明の実施形態の一例のワディング層
11にファイバ−フィルを用いた場合であるが、例えば
ポリエステル系熱可塑性弾性樹脂を熱接着成分としたフ
ァイバ−フィルウエッブの熱接着成分の融点が185℃
で、ファイバ−フィルウエッブの母材が融点265℃の
PETで、接着剤のメルトブロー不織布12が160℃
で網状体2及び2’の融点が220℃の場合は、熱接着
成分の融点の高いほうの185℃より10℃高く、網状
体の融点より5℃高い温度、即ち、195℃から225
℃で熱成形するのが好ましい。昇温時間は15分以内に
しないと低融点成分の熱分解が促進され接着機能が低下
したり、生産性が低下するので好ましくない。好ましく
は、10分以内、より好ましくは5分以内に加熱温度ま
で昇温し、1分から5分程度加熱温度を保持し成形し
て、ついで冷却する。本発明の好ましい方法としては、
連続して、又は一旦冷却後、一体成形して製品化に至る
任意の工程で熱可塑性弾性樹脂のガラス転移点温度より
10℃高い温度以上、融点より少なくとも10℃以下の
温度でアニ−リングよる疑似結晶化処理を行うのがより
好ましい製法である。疑似結晶化処理温度は、少なくと
も融点(Tm)より10℃以上低く、ハ−ドセグメント
のガラス転移点温度であるTanδのα分散立ち上がり
温度(Tαcr)以上で行う。この処理で、融点以下に
吸熱ピ−クを持ち、疑似結晶化処理しないもの(吸熱ピ
−クを有しないもの)より耐熱耐へたり性が著しく向上
する。本発明の好ましい疑似結晶化処理温度は(Tαc
r+10℃)から(Tm−20℃)である。連続してア
ニ−リングする場合、例えば、例1ではガラス転移点温
度+10℃以上、融点より20℃以上低い温度まで冷却
して、5分以上その温度を保持後、50℃未満まで冷却
して金型からクッション体を取り出す。例1では、網状
体の融点が220℃でガラス転移点温度が50℃とする
と、60℃以上、好ましくは100℃から200℃未
満、好ましくは150℃未満で5〜10分加熱状態を保
持するのが良い。例2では、シース成分の融点より20
℃以上低い温度からコア成分のガラス転移点温度、例え
ばシ−ス成分の融点が185℃、コア成分のガラス転移
点温度が50℃の場合は、60℃以上、好ましくは10
0℃以上、165℃以下、好ましくは130℃以下の温
度でアニ−ルするのが良い。例3、例4、例5では、同
様に60℃以上、好ましくは100℃以上、140℃以
下、好ましくは130℃以下でアニ−ルするのが良い。
一旦冷却後、非連続してアニ−ルすることで同様の効果
が発現する。かくして、単なる熱処理により疑似結晶化
させても耐熱耐へたり性がより向上したクッション体を
得る。が更には、別途、10%以上の圧縮変形を付与し
てアニ−リングすることで耐熱耐へたり性が著しく向上
するのでより好ましい。かくして得られたクッション体
は、側地1を被せて、好ましくは難燃性の側地、例えば
東洋紡績(株)製の難燃性ポリエステル繊維ハイムを用
いたポリエステルモケットを被せてクッション体に添わ
せてクッション体の裏側で側地を止めると共に、クッシ
ョン表面に側地1を添わして、クッション体の凹部よ
り、例えば、実開昭56−101071号公報、実開昭
60−109499号公報等に開示された引込みボタン
等で樹脂成形体3を貫通させて側地を吊り込み、又は、
公知の吊り込み方法、例えば予め雌金型7の凸部に吊り
込みジグをセットして熱成形後、クッション体凹部より
樹脂成形体3又は、補強フレ−ム6部分で固定して側地
1をクッション体に添わせて固定する方法も採用でき
る。次いで座席のセットフレ−ムに固定して本発明の座
席が得られる。
Next, in the seat of the present invention, a female mold is provided with a net-like body that is cut into a predetermined shape and serves as a cushion layer, and a deep-drawing resin molded body that is the back surface or the back surface is provided thereon. Or, an adhesive layer having a melting point at least 10 ° C. lower than the melting point of the reticulated body is arranged between the reticulated body and the resin molded body, the cushion layer is compressed from above with a male mold, and the inside of the recess is formed through the resin molded body. Also, the convex portion is compressed and heated with a heating medium having a temperature of 5 ° C. higher than the melting point of the reticulated body to a temperature lower than 50 ° C. lower than the melting point and integrated by thermoforming, and then once cooled or continuously reticulated. 10 ℃ above the glass transition temperature of the body
The cushion molded body obtained by annealing at a temperature higher than the melting point and lower than the melting point by 20 ° C. or more is attached to the seat frame and fixed to the seat frame. The molding method will be described below with reference to the drawings. As shown in FIG. 5 (A), a female die 7 having a vent hole 8 is formed into a mesh body 2 and 2 ′ cut into a predetermined shape.
Then, as shown in FIG. 5 (B), the resin molded body 3 having the openings 4 is mounted thereon, and then the mesh body 2 is wound up to the back side of the resin molded body 3 to form a resin molded body. Three
The mesh 2 is stopped by hooking it on the hook 9 for stopping the mesh 2 on the back side of the. Then, as shown in FIG. 5 (C), compression is performed by a male mold 10 having a vent hole 8. By compressing from above with the male mold 10, the convex portion 3 ′ of the resin molded body 3 transmits a compressive force from the inside of the mesh body 2 to the outside of the mesh body 2 and compresses it into a shape that fits neatly to the shape of the female mold 7. To be done. Then, a heating fluid is passed in the direction of the arrow to heat the whole and thermoforming. At this time, the temperature of the heating fluid is such that a part of the mesh body is plastically relaxed and deformed into the shape of the seat, and the resin molded body is not plastically deformed and heated to a temperature at which the resin molded body and the mesh body can be thermally bonded. For example, (Example 1) In the case where the reticulated body has a single composition, the reticulated body is heated at a temperature 5 ° C. higher than the melting point of the reticulated body to melt the surface of the filaments of the reticulated body and thermally adhere to the resin molded body. If the temperature is higher than the melting point of the reticulated body by 10 ° C. or more, the shape of the reticulated body collapses and the cushioning function deteriorates, which is not preferable. When the reticulate body is composed of strands having a sheath core structure, for example, (2) thermoforming is performed at a temperature 5 ° C or more higher than the melting point of the sheath component to 5 ° C higher than the melting point of the core component of the reticulated body. Thus, it is a preferable example in which the net-like structure can be held and formed into a desired seat shape, and the thermal adhesion to the resin molded body can be strengthened.
The temperature at which the core component does not plastically deform, for example, 60 from the melting point
If the temperature is lower than 0 ° C, the desired seat shape cannot be formed, which is not preferable. For example, when the reticulate body has a single composition and an adhesive is used, (Example 3) the adhesive is previously applied to the surface of the resin molded body 3 before being set in FIG. 5 (B), or (Example 4) ) Even when the thermobonded nonwoven fabric 12 is laminated and thermoformed as shown in FIG. 6, the melting point of the adhesive is 160 ° C., for example.
When the melting point of the resin or meltblown non-woven fabric 12 and the reticulate bodies 2 and 2'of 220 thermoplastic resin is 220 ° C, the heating temperature is preferably 170 ° C or higher and 225 ° C or lower. (Example 5) FIG. 6 shows a case where a fiber-fill is used for the wadding layer 11 according to an embodiment of the present invention. For example, a fiber-fill web using a polyester-based thermoplastic elastic resin as a heat-bonding component is shown. The melting point of the heat-adhesive component is 185 ° C
Then, the base material of the fiber-fill web is PET having a melting point of 265 ° C., and the melt-blown nonwoven fabric 12 of the adhesive is 160 ° C.
When the melting points of the reticulate bodies 2 and 2 ′ are 220 ° C., the temperature is 10 ° C. higher than 185 ° C., which is the higher melting point of the heat-adhesive component, and 5 ° C. higher than the melting point of the reticulated body, that is, 195 ° C. to 225 ° C.
Thermoforming at ℃ is preferred. If the temperature rising time is not less than 15 minutes, the thermal decomposition of the low melting point component is promoted, the adhesion function is deteriorated, and the productivity is deteriorated, which is not preferable. Preferably, the temperature is raised to the heating temperature within 10 minutes, more preferably within 5 minutes, the heating temperature is maintained for about 1 to 5 minutes, molding is performed, and then cooling is performed. As a preferred method of the present invention,
Continuously or after cooling once, annealed at a temperature of 10 ° C. or higher higher than the glass transition temperature of the thermoplastic elastic resin and at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin in an arbitrary step of forming into a product. Pseudo-crystallization treatment is a more preferable production method. The pseudo-crystallization treatment temperature is at least 10 ° C. lower than the melting point (Tm), and is higher than the α dispersion rising temperature (Tαcr) of Tan δ which is the glass transition temperature of the hard segment. By this treatment, the heat-resistant sag resistance is remarkably improved as compared with the one having no endothermic peak (having no endothermic peak) having an endothermic peak below the melting point. The preferred pseudo-crystallization treatment temperature of the present invention is (Tαc
r + 10 ° C) to (Tm-20 ° C). In the case of continuous annealing, for example, in Example 1, the glass transition temperature + 10 ° C. or higher and the temperature lower than the melting point by 20 ° C. or more are cooled, the temperature is maintained for 5 minutes or more, and then cooled to less than 50 ° C. Remove the cushion from the mold. In Example 1, when the melting point of the reticulate body is 220 ° C. and the glass transition temperature is 50 ° C., the heating state is maintained at 60 ° C. or higher, preferably 100 ° C. to less than 200 ° C., preferably less than 150 ° C. for 5 to 10 minutes. Is good. In Example 2, the melting point of the sheath component is 20
When the glass transition temperature of the core component is 185 ° C or lower, and the glass transition temperature of the core component is 50 ° C, 60 ° C or higher, preferably 10 ° C or higher.
It is preferable to anneal at a temperature of 0 ° C. or higher and 165 ° C. or lower, preferably 130 ° C. or lower. Similarly, in Examples 3, 4 and 5, it is preferable to anneal at 60 ° C. or higher, preferably 100 ° C. or higher and 140 ° C. or lower, preferably 130 ° C. or lower.
The same effect is exhibited by discontinuously annealing after cooling once. Thus, a cushion body having improved heat resistance and sag resistance even if it is pseudo-crystallized by simple heat treatment is obtained. However, it is more preferable to separately apply compression deformation of 10% or more and anneal so that the heat and sag resistance can be remarkably improved. The cushion body thus obtained is covered with the side material 1, preferably with a flame-retardant side material, for example, a polyester moquette using a flame-retardant polyester fiber heim manufactured by Toyobo Co., Ltd. In addition, the side ground is stopped on the back side of the cushion body, and the side ground 1 is added to the surface of the cushion, and the recessed portion of the cushion body is used, for example, in Japanese Utility Model Publication No. 56-101071 and Japanese Utility Model Publication No. 60-109499. The resin molded body 3 is pierced by the retracting button or the like disclosed in 1) to suspend the side ground, or
A known suspending method, for example, a suspending jig is previously set on the convex portion of the female mold 7 and thermoformed, and then fixed by the resin molded body 3 or the reinforcing frame 6 portion from the recessed portion of the cushion body 1 It is also possible to adopt a method in which the is fixed to the cushion body. Then, the seat of the present invention is obtained by fixing to the set frame of the seat.

【0018】本発明の座席は、回復性と振動吸収性の良
い熱可塑性弾性樹脂からなる網状体をクッション層に用
い、多孔質の樹脂成形体が従来のクッション体での深絞
り成形部を構成して、通気性を良くし、凸部の芯材効果
も果たし、且つクッション体の形態保持性を向上させて
いるので、自動車や鉄道車両用の座席に最適な、振動遮
断性、耐熱耐久性、形態保持性、クッション性の優れ
た、蒸れにくく、難燃性を有し、燃焼ガスの毒性指数が
低い、安全性の高い座席である。また、従来公知のファ
イバ−フィルを用いたクッション体では、深絞り成形が
困難で、成形が煩雑になっているが本発明の方法では、
深絞り成形を省略して一段で成形加工ができるため、成
形加工のコストダウンが図れ安価に有用な座席を提供で
きる。車両用以外に船舶用、事務用、家具用等の座席に
も勿論有用である。
In the seat of the present invention, a net-like body made of a thermoplastic elastic resin having good recoverability and vibration absorption is used for the cushion layer, and the porous resin molded body constitutes the deep-drawing molded portion in the conventional cushion body. As it has good ventilation, core effect of the convex part, and improved shape retention of the cushion body, it is suitable for seats for automobiles and railway vehicles, vibration isolation, heat resistance and durability. The seat is highly safe, has excellent shape retention and cushioning properties, is resistant to stuffiness, has flame retardancy, and has a low toxicity index of combustion gas. Further, in the cushion body using the conventionally known fiber-fill, it is difficult to perform deep drawing and the molding is complicated, but in the method of the present invention,
Since deep-drawing can be omitted and the forming process can be performed in one step, the cost of the forming process can be reduced and a useful seat can be provided at low cost. Of course, it is also useful for seats for ships, offices, furniture, etc. as well as for vehicles.

【0019】[0019]

【実施例】以下に実施例で本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0020】なお、実施例中の評価は以下の方法で行っ
た。 1.融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 2.Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 3.見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値) 4.線条の繊度 試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。各部分の断面写真より各部の断面積(Si)を求
める。また、同様にして得た切片をアセトンでアクリル
樹脂を溶解し、真空脱泡して密度勾配管を用いて40℃
にて測定した比重(SGi)を求める。ついで次式より
線状の9000mの重さを求める。(単位cgs) 繊度=〔(1/n)ΣSi×SGi〕×900000 5.融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 6.耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a+b)/a×100より算出する。単
位%(n=3の平均値) 7.繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚み(b)を求め、処理前の
厚み(a)から次式、即ち(a+b)/a×100より
算出する。単位%(n=3の平均値) 8.燃焼ガスの毒性指数 JIS−K−7217の方法で測定した各燃焼ガス量
(mg)を10分間吸入した時の致死量(mg/10リ
ットル)で除した値の積算値で示す。 9.座り心地 30℃RH75%室内で、本発明の方法により作成した
座席、又は比較の方法で作成した座席にパネラ−を座ら
せ以下の評価をおこなった。(n=5) (1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;× (2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎ (4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;× (5) 総合評価: (1)から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。 10. 耐久性 作成した座席(座部及び背部)の中央、及びサイドに直
径10cmの平板で60kgの圧縮力で繰り返し圧縮できる
装置にて、0.5Hzのサイクルで100回繰り返し圧縮
させて、座席のへたり程度を以下の基準で判定した。
◎:へたりなし。○:へたり軽度。△:少しへこみがあ
り、側地のたるみが出てへたりが判る。×:へこみが大
きく目立ちへたりが著しい。(n=3の平均値)
The evaluations in the examples were carried out by the following methods. 1. Melting point (Tm) and endothermic peak below melting point The endothermic peak (melting peak) is determined from the endothermic curve measured at a temperature rising rate of 20 ° C / min using a TA50, DSC50 type differential thermal analyzer manufactured by Shimadzu Corporation. -H) The temperature was determined. 2. Heat the Tαcr polymer to a melting point of + 10 ° C to a thickness of approximately 300 μm.
Film was prepared and measured using a Vibron DDVII type manufactured by Orientec Co., Ltd. at a rate of 110 Hz and a heating rate of 1 ° C./min. Tan δ (the ratio of the imaginary elastic modulus M ″ to the real part M ′ of the elastic modulus M ″ / The rising temperature of α dispersion corresponding to the transition temperature from the rubber elastic region to the melting region of M ′). 3. Apparent Density The sample is cut into a size of 15 cm × 15 cm, the heights at four positions are measured, the volume is calculated, and the weight of the sample is divided by the volume. (Average value of n = 4) 4. Fineness of filaments Each filament portion is cut out from 10 places, embedded with acrylic resin, the cross section is cut out to make a section, and a cross section photograph is obtained. The cross-sectional area (Si) of each part is obtained from the cross-sectional photograph of each part. In addition, a piece obtained in the same manner was dissolved in acrylic resin with acetone, degassed in vacuum, and a density gradient tube was used to 40 ° C.
Determine the specific gravity (SGi) measured in. Then, a linear weight of 9000 m is obtained from the following equation. (Unit: cgs) Fineness = [(1 / n) ΣSi × SGi] × 9000000 5. Fusing Whether or not the sample is fused by visual judgment Whether the fibers adhering to each other cannot be pulled apart by hand It is judged that something that does not come off is fused. 6. Heat resistance and durability (residual strain at 70 ° C) The sample was cut into a size of 15 cm x 15 cm, compressed by 50%, left in dry heat at 70 ° C for 22 hours, cooled to remove compression strain, and left for 1 day ( b) is obtained, and is calculated from the thickness (a) before processing by the following formula, that is, (a + b) / a × 100. Unit% (average value of n = 3) 7. Cyclic compressive strain A sample is cut into a size of 15 cm x 15 cm, and a Shimadzu servo pulsar is used at 25 ° C and 65% in an RH room at 50%.
The thickness (b) after leaving the sample for 1 day after repeating compression recovery at a cycle of 1 Hz up to the thickness of 1 is determined from the following equation, that is, (a + b) / a × 100. calculate. Unit% (average value of n = 3) 8. Toxicity index of combustion gas The lethal dose (mg / 10 liter) when inhaling each combustion gas amount (mg) measured by the method of JIS-K-7217 for 10 minutes Indicates the integrated value of the divided values. 9. Comfortability to sit In a room of 30% RH and 75%, a paneler was allowed to sit on the seat prepared by the method of the present invention or the seat prepared by the comparative method, and the following evaluation was performed. (N = 5) (1) Feeling on the floor: The degree of "dosun" when sitting and the feeling of hitting the floor were qualitatively and qualitatively evaluated. Not felt; ◎, hardly felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: Feeling stuffy when sitting for 2 hours and the buttocks and the part of the crotch that contacts the seat inside the crotch Qualitatively evaluated. Almost no feeling: ◎, slightly stuffy; ○, slightly stuffy; △, significantly stuffy; × (3) How long you can sit in the seat within 8 hours: within 1 hour; × within 2 hours; △ within 4 hours;
○ 4 hours or more; ◎ (4) A qualitative qualitative evaluation was performed on the degree of waist fatigue when the user sat in the seat for 4 hours. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points from ◎ of the evaluations from (1) to (4), ○
3 points, △ is 2 points, × is 1 point and does not include Δ with 12 points or more; very good (⊚), that with 12 points or more; Good (○), 10 points or more is x It was evaluated as those which did not contain; those which were somewhat bad (Δ) and those which contained x; bad (x). 10. Durability The seat (seat and back) is compressed by a flat plate with a diameter of 10 cm in the center and sides of the seat with a compression force of 60 kg, and the seat is repeatedly compressed 100 times at a 0.5 Hz cycle. The degree of sagging was determined according to the following criteria.
◎: No fatigue. ○: Slightly tired. Δ: There is a slight dent, and sagging of the side ground appears and a sag is visible. X: A large dent and a noticeable dent. (Average value of n = 3)

【0021】実施例1 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤2%を添加混合
練込み後ペレット化し、50℃48時間真空乾燥して得
られた熱可塑性弾性樹脂原料の処方を表1に示す。
Example 1 As a polyester elastomer, dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, and after transesterification by a conventional method, polytetramethylene glycol (PTMG) was added and polycondensation was performed while heating and depressurizing. -Formation of terester block copolymer elastomer, then addition and mixing of 2% of antioxidant, kneading, pelletizing, and vacuum drying at 50 ° C for 48 hours are shown in Table 1. .

【0022】[0022]

【表1】 [Table 1]

【0023】幅50cm、長さ5cmのノズル有効面に幅方
向の孔間ピッチ10mm、長さ方向の孔間ピッチ5mmの千
鳥配列としたオリフィス形状は外径2mm、内径1.6mm
でトリプルブリッジの中空形成性断面としたノズルに、
得られたA−1及びA−2を、2本の混練り機能をもつ
押出機にて、別々に定量供給しつつ、難燃剤として既存
化学物質番号(3)−3735を燐含有量10000p
pmとなるように添加して溶融混練りし、A−1とA−
2をオリフィス直前でA−1をシ−ス成分に、A−2を
コア成分となるように(シ−ス/コア:50/50重量
比)オリフィス背面に分配し、245℃にて単孔当たり
の吐出量2.0g/分にてノズル下方に吐出させ、ノズ
ル面10cm下に冷却水を配し、幅60cmのステンレス製
エンドレスネットを平行に5cm間隔で一対の引取りコン
ベアを水面上に一部出るように配して、両面を挟み込み
つつ毎分1mの速度で25℃の冷却水中へ引込み固化さ
せ、次いで水切り処理した後、所定の大きさに切断して
得られた網状体2の特性を表2に示す。実施例1に用い
る網状体は断面形状がシースコア構造の三角おむすび型
中空断面で中空率が40%、繊度が9000デニ−ル、
燐含有量10000ppm(60A+200=2780
ppm)の線条で形成しており、平均の見掛け密度が
0.045g/cm3 であった。この網状体は柔らかい弾
性樹脂の特性が生かせた網状構造のため耐熱性、常温で
の耐久性に優れたクッション機能を有し、難燃性で燃焼
ガスの毒性指数も低い安全性の高いクッション層であっ
た。
The nozzle shape having a width of 50 cm and a length of 5 cm has a zigzag arrangement with a hole-to-hole pitch of 10 mm in the width direction and a hole-to-hole pitch of 5 mm in the length direction. The orifice shape has an outer diameter of 2 mm and an inner diameter of 1.6 mm.
With a nozzle with a triple bridge hollow forming cross section,
The existing chemical substance number (3) -3735 was added as a flame retardant to the obtained A-1 and A-2 as a flame retardant while supplying them in a fixed amount separately in an extruder having two kneading functions, and a phosphorus content of 10,000 p
It is added so as to be pm and melt-kneaded, and A-1 and A-
Dispense 2 into the rear face of the orifice so that A-1 is the sheath component and A-2 is the core component immediately before the orifice (sees / core: 50/50 weight ratio), and a single hole is made at 245 ° C. A discharge amount of 2.0 g / min per discharge is made below the nozzle, cooling water is arranged 10 cm below the nozzle surface, and stainless steel endless nets with a width of 60 cm are arranged in parallel with a pair of take-up conveyors at intervals of 5 cm on the water surface. The reticulate body 2 obtained by arranging it so that it partially comes out and pulling it into cooling water at 25 ° C. at a speed of 1 m / min while sandwiching both sides to solidify it and then draining it and cutting it to a predetermined size The characteristics are shown in Table 2. The reticulate body used in Example 1 has a triangular cross-sectional hollow cross-section with a sheath core structure and a hollow ratio of 40% and a fineness of 9000 denier.
Phosphorus content 10,000 ppm (60A + 200 = 2780)
(ppm), and the average apparent density was 0.045 g / cm 3 . This net-like structure has a cushioning function with excellent heat resistance and durability at room temperature due to the net-like structure that makes use of the characteristics of soft elastic resin, and is a highly safe cushioning layer that is flame-retardant and has a low combustion gas toxicity index. Met.

【0024】[0024]

【表2】 [Table 2]

【0025】ポリエチレンテレフタレ−ト95部とA−
1を5部とを混合乾燥して、押出機に供給し275℃で
溶融混練りし、全面にφ4mmの開孔部を有するようにし
た背部および座部用樹脂成形体金型に、余熱温度260
℃として、混練り溶融した熱可塑性樹脂を注入して冷却
後取り出し得られた樹脂成形体3は、開孔率が36%で
あった。
Polyethylene terephthalate 95 parts and A-
1 part and 5 parts are mixed and dried, supplied to an extruder, melt-kneaded at 275 ° C., and a residual heat temperature is applied to a resin molding die for a back part and a seat part having an opening of φ4 mm on the entire surface. 260
The resin molded body 3 obtained by injecting the kneaded and melted thermoplastic resin, cooling it, and taking it out had a porosity of 36%.

【0026】相対粘度1.2のPBTと極限粘度0.5
8のPETとを中空C型オリフィス直前に285℃に
て、サイドバイサイドに分配して吐出させ、常法にて未
延伸糸を紡糸し、次いで、延伸した繊維に、機械巻縮を
付与後、乾熱165℃にて立体巻縮を発現させて51mm
に切断し、繊度が13デニ−ル、巻縮度が35%、巻縮
数が23山/インチ、中空率28%の丸断面で立体巻縮
を有するファイバ−フィルウエッブの母材を得た。A−
1をシ−ス成分、A−2をコア成分にして、260℃に
て吐出し、紡糸速度3500m/分にて作成した繊維を
2万デニ−ルに合糸してクリンパ−にて機械巻縮を付与
後51mmに切断して、繊度が5デニ−ル、乾熱160℃
の収縮率が8%、断面形状がシ−ス・コアの中実丸断面
の熱接着繊維を得た。得られた母材60部と熱接着繊維
40部を常法により混繊してカ−ドウエッブを作成し、
積層してニ−ドルパンチして所定の大きさに切断した厚
み10mmのファイバ−フィルウエッブ11を作成した。
PBT having a relative viscosity of 1.2 and an intrinsic viscosity of 0.5
PET of 8 was distributed side by side at 285 ° C. immediately before the hollow C-type orifice and discharged, and an undrawn yarn was spun by a conventional method. Then, the drawn fiber was mechanically crimped and then dried. 51 mm by developing a three-dimensional crimp at heat of 165 ° C
Then, the base material of the fiber-fill web having a round cross section with a fineness of 13 denier, a crimp degree of 35%, a crimp number of 23 peaks / inch, and a hollow ratio of 28% was obtained. . A-
1 was used as a sheath component and A-2 as a core component and discharged at 260 ° C., and the fibers produced at a spinning speed of 3500 m / min were combined into 20,000 denier and mechanically wound by a crimper. After crimping, cut into 51 mm, fineness 5 denier, dry heat 160 ℃
A heat-bonding fiber having a solid round cross section with a shrinkage of 8% and a cross section of the sheath core was obtained. 60 parts of the obtained base material and 40 parts of the heat-bonding fiber were mixed by a conventional method to prepare a card web,
A fiber-fill web 11 having a thickness of 10 mm was prepared by laminating and punching with a needle punch to a predetermined size.

【0027】A−1を240℃にて溶融し、280℃の
加熱空気にて常法により目付け30g/m2 、繊度0.
05デニ−ルの繊維同士が融着したメルトブロ−不織布
12を得た。
[0027] A-1 was melted at 240 ° C., basis weight 30 g / m 2 by a conventional method at 280 ° C. of heated air, fineness 0.
A melt blown nonwoven fabric 12 in which fibers of 05 denier were fused to each other was obtained.

【0028】第6図(A)に示すように、雌金型にファ
イバ−フィルウエッブ11と網状体2及び2’を積層し
て、層間にメルトブロ−不織布12を積層した上に、第
6図(B)に示すように、樹脂成形体3を乗せて押さえ
込み、ファイバ−フィルウエッブ11、網状体2、メル
トブロ−不織布12を樹脂成形体3の裏側まで折り返し
てフック9に引っ掛けて止め、次いで、第6図(C)に
示すように、雄金型10で押さえて圧縮し、200℃の
加熱空気にて強制貫通させ、5分間で加熱昇温させ、2
分間その温度を保持後、加熱空気を130℃に下げて冷
却アン−リングを10分間行い、冷却して熱成形され
た、座部のクッション層の平均見掛け密度が0.058
g/cm3 、背部のクッション層の平均見掛け密度が0.
055g/cm3 のクッション体を得た。次いで、ジメチ
ルテレフタル酸と10〔2・3・ジ(2・ヒドロキシエ
トキシ)−カルボニルプロピル〕9・10・ジヒドロ・
9・オキサ・10ホスファフェナレンス・10オキシロ
を燐含有量で5000ppmとなる量と、グリコ−ル成
分にDEGを少量の触媒と仕込み、常法によりエステル
交換後、昇温減圧しつつ重縮合せしめて得た共重合PE
Tを常法により繊維化した2デニ−ルのステ−プルを用
い、常法により得たポリエステル繊維からなる目付け4
50g/m2 、通気度90cc/cm2 ・秒のモケットの側
地1でクッション体の表面を被い、裏側に引っ張って側
地を張りながら樹脂成形体に止めると共に、サイドと中
央の間の凹部を返しの付いた引込みボタンで樹脂成形体
3を貫通させて側地を吊り込み、補強フレ−ムを樹脂成
形体と固定して。裏面又は背面を裏張して、車両に固定
するフレ−ムに固定して第1図に示す様な座席を作成し
た。表2に示す如く得られた座席の座り心地は良好で、
耐久性も実用使用に耐えるものであった。座席の端を火
炎に曝すと側地やワディング層と共に網状体も燃え始め
るとドリップになり火炎の広がりは抑制されすぐに消炎
した。難燃性の良好な素材を用いた場合は、火災時も安
全性が確保できる例である。
As shown in FIG. 6 (A), the fiber-fill web 11 and the reticulate bodies 2 and 2'are laminated on the female mold, and the melt blown nonwoven fabric 12 is laminated between the layers, and then, FIG. As shown in (B), the resin molded body 3 is placed and pressed down, the fiber-fill web 11, the mesh body 2, and the meltblown nonwoven fabric 12 are folded back to the back side of the resin molded body 3 and hooked on the hooks 9 to be stopped, and then, As shown in FIG. 6 (C), the male mold 10 is pressed and compressed, and forcedly penetrated by heated air at 200 ° C., and heated for 5 minutes to raise the temperature.
After holding the temperature for a minute, the heating air was lowered to 130 ° C., cooling unannealing was carried out for 10 minutes, and the cushion layer of the seat portion, which was cooled and thermoformed, had an average apparent density of 0.058.
g / cm 3 , the average apparent density of the back cushion layer is 0.
A cushion body of 055 g / cm 3 was obtained. Then, dimethyl terephthalic acid and 10 [2.3 · di (2-hydroxyethoxy) -carbonylpropyl] 9 · 10 · dihydro.
9 ・ Oxa ・ 10 phosphaphenalene ・ 10 oxylo was added to the phosphorus content of 5000 ppm and DEG was added to the glycol component with a small amount of catalyst. After transesterification by a conventional method, polycondensation was performed while heating and depressurizing. Copolymerized PE obtained at most
A unit weight of polyester fiber obtained by a conventional method using a 2-denier staple obtained by converting T into a fiber by a conventional method 4
While covering the surface of the cushion body with the side ground 1 of the moquette with 50 g / m 2 and an air permeability of 90 cc / cm 2 · sec, pull it to the back side to stop the resin molding while stretching the side ground, and between the side and the center. The resin molding 3 was pierced by the pull-in button having the recessed portion and the side ground was suspended, and the reinforcing frame was fixed to the resin molding. The back side or the back side was lined and fixed to a frame to be fixed to the vehicle to prepare a seat as shown in FIG. The seating comfort obtained as shown in Table 2 is good,
It was durable enough for practical use. When the edge of the seat was exposed to flames, the net and the wadding layer as well as the net started to burn, becoming a drip and suppressing the spread of flames, and the flames extinguished immediately. This is an example in which safety can be ensured even in the case of fire when a material with good flame retardancy is used.

【0029】実施例2 ジメチルイソフタレ−ト(DMI)20モル%とDMT
80モル%及び1・4ブタンジオ−ル(1・4BD)を
少量の触媒と仕込み、実施例1の方法と同様にして得た
ポリエステル系熱可塑性弾性樹脂の処方を表1に示す。
A−3をオリフィスの孔形状を孔径φ1mmの丸断面とし
たノズルを用いた以外実施例1と同様にして得た網状体
の特性を表−2に示す。なお、中実丸断面の繊度が90
00デニ−ル、の線条から形成されており、網状体の平
均の見掛け密度が0.043g/cm3 であった。次い
で、実施例1と同様にして作成した、座部のクッション
層の平均見掛け密度が0.056g/cm3 、背部のクッ
ション層の平均見掛け密度が0.053g/cm3 のクッ
ション体を用いて得た座席の評価結果を表2に併記す
る。表2で明らかなごとく、網状体の耐熱性と常温での
耐久性は実用上使用可能で、燃焼ガスの毒性指数も低い
安全性の高いクッション材であり、作成した座席は、座
り心地の優れたクッション機能を有し、耐久性も実用使
用が可能なものであることが判る。
Example 2 20 mol% of dimethyl isophthalate (DMI) and DMT
Table 1 shows the formulation of the polyester-based thermoplastic elastic resin obtained in the same manner as in Example 1 by charging 80 mol% and 1.4-butanediol (1.4-BD) with a small amount of a catalyst.
Table 2 shows the characteristics of the reticulated body obtained in the same manner as in Example 1 except that A-3 was a nozzle having a circular cross section with a hole diameter of 1 mm. The fineness of the solid round section is 90
It was formed of filaments of 00 denier, and the average apparent density of the reticulate body was 0.043 g / cm 3 . Was then prepared in the same manner as in Example 1, the average of the cushioning layer of the seat apparent density of 0.056 g / cm 3, the average apparent density of the back of the cushion layer using a cushion of 0.053 g / cm 3 The evaluation results of the obtained seats are also shown in Table 2. As is clear from Table 2, the reticulate body is a cushioning material that can be used practically for its heat resistance and normal temperature durability and has a low toxicity index of combustion gas, and is highly safe. It can be seen that it has a cushion function and is durable and can be used practically.

【0030】実施例3 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで抗酸化
剤2%を添加混合練込み後ペレット化し真空乾燥してポ
リエ−テル系ウレタンポリマ−の処方を表3に示す。
Example 3 As a polyurethane elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG and 1.4BD as a chain extender were added and polymerized, and then 2% of an antioxidant was added and mixed. Table 3 shows the formulation of the polyether urethane polymer after kneading, pelletizing and vacuum drying.

【0031】[0031]

【表3】 [Table 3]

【0032】得られた熱可塑性弾性樹脂B−1を溶融温
度220℃とした以外実施例1と同様にして得た網状体
の特性を表2に示す。実施例3はクッション層の網状体
の線条は断面形状が三角おむすび型の中空断面で中空率
は41%、繊度が9800デニ−ルの線条から形成され
ており、平均の見掛け密度が0.045g/cm3 の耐熱
性、常温での耐久性ともに優れたクッション機能を有
し、燃焼ガスの毒性指数も低い網状体であった。次い
で、流動開始温度が135℃の熱可塑性ポリウレタフイ
ルムを接着剤12として用い、ファイバ−フルウエッブ
を使用しなかった以外実施例1と同様に積層圧縮し、熱
成形温度を172℃とし、アニーリング温度を80℃と
した以外実施例1と同様にして成形した、座部のクッシ
ョン層の平均見掛け密度が0.060g/cm3 、背部の
クッション層の平均見掛け密度が0.056g/cm3
クッション体を用いて得た実施例3の座席は、柔らかい
ウレタンの特性を生かした座り心地が優れ、耐久性も実
用使用に耐える優れた座席であることが判る。
Table 2 shows the properties of the reticulate body obtained in the same manner as in Example 1 except that the melting temperature of the obtained thermoplastic elastic resin B-1 was 220 ° C. In Example 3, the filaments of the mesh layer of the cushion layer have a triangular cross-sectional hollow section, are formed from filaments having a hollow ratio of 41% and a fineness of 9800 denier, and have an average apparent density of 0. The reticulate body had a cushioning function excellent in heat resistance of 0.045 g / cm 3 and durability at room temperature, and had a low toxicity index of combustion gas. Then, the thermoplastic polyureta film having a flow starting temperature of 135 ° C. was used as the adhesive 12 and laminated and compressed in the same manner as in Example 1 except that the fiber-full web was not used, and the thermoforming temperature was 172 ° C., and the annealing temperature was set. Cushions molded in the same manner as in Example 1 except that the cushion layer in the seat portion had an average apparent density of 0.060 g / cm 3 and the cushion layer in the back portion had an average apparent density of 0.056 g / cm 3 . It can be seen that the seat of Example 3 obtained by using the body is an excellent seat that takes advantage of the characteristics of soft urethane and has excellent durability and practical use.

【0033】比較例1 相対粘度1.20のポリブチレンテレフタレ−ト(PB
T)を溶融温度270℃とした以外、実施例2と同様に
して得た線条の繊度が比較例1は8800デニ−ル、見
掛け密度が0.044g/cm3 の網状体の特性を表2に
示す。次いで、熱成形温度を250℃とし、疑似結晶化
の為のアニ−リングをしなかった以外、実施例2と同様
にして作成した座部のクッション層の平均見掛け密度が
0.055g/cm3 、背部のクッション層の平均見掛け
密度が0.052g/cm3 のクッション体を用いて得た
比較例1の座席は、元々耐熱耐久性が悪い熱可塑性非弾
性ポリエステルからなる網状体をクッション層に使用し
ているため、硬くて座り心地が悪く、耐久性も悪い座席
となった例である。
Comparative Example 1 Polybutylene terephthalate (PB) having a relative viscosity of 1.20
Comparative Example 1 has a fineness of 8800 denier and an apparent density of 0.044 g / cm 3 except that the melting temperature is 270 ° C. 2 shows. Then, the thermoforming temperature was set to 250 ° C. and the average apparent density of the cushion layer of the seat portion prepared in the same manner as in Example 2 was 0.055 g / cm 3 except that annealing for pseudo crystallization was not performed. In the seat of Comparative Example 1 obtained by using the cushion body having an average apparent density of the back cushion layer of 0.052 g / cm 3 , the cushion layer is made of a reticulated body made of thermoplastic inelastic polyester, which originally has poor heat resistance and durability. This is an example of a seat that is hard, uncomfortable to sit in, and has poor durability because it is used.

【0034】比較例2 樹脂成形体及びファイバ−フィルウエッブを用いない
で、実施例2で作成した網状体のみを用いて座部のクッ
ション体の平均見掛け密度が0.062g/cm3、背部
のクッション体の平均見掛け密度が0.056g/cm3
となるように積層圧縮して熱成形し、アニ−リングしな
いで急速に冷却した以外、実施例2と同様にして作成し
たクッション体は、樹脂成形体を使用しないためサイド
部の凸状形状の表面仕上がりが不良となり、表2に示す
得られた座席の特性も、座り心地は良好だが、耐久性が
劣り座席としては好ましくない例である。
Comparative Example 2 The average apparent density of the cushion body of the seat portion was 0.062 g / cm 3 , and the back portion of the cushion portion was made using only the mesh body prepared in Example 2 without using the resin molding and the fiber-fill web. The average apparent density of the cushion body is 0.056g / cm 3
The cushion body produced in the same manner as in Example 2 except that it was laminated and compressed so that it was thermoformed, and was rapidly cooled without annealing, had a convex shape of the side portion because no resin molding was used. The surface finish is poor, and the characteristics of the obtained seat shown in Table 2 are good in sitting comfort, but poor in durability, which is an example not preferable as a seat.

【0035】比較例3 網状体を用いずに、実施例1で作成したファイバ−フィ
ルウエッブのみをクッション層に用いて、クッション層
の平均見掛け密度が0.062g/cm3 、背部のクッシ
ョン体の平均見掛け密度が0.056g/cm3 となるよ
うに積層圧縮して熱成形し、アニ−リングしないで急速
に冷却した以外、実施例2と同様にして作成したクッシ
ョン体を用いて作成した、表2に示す座席の特性は、座
り心地は良好だが、耐熱耐久性の優れた熱可塑性弾性樹
脂からなる網状体を使用しないため、耐久性が劣り座席
としては好ましくない例である。
Comparative Example 3 Using the fiber-fill web prepared in Example 1 alone as the cushion layer without using the mesh body, the average apparent density of the cushion layer was 0.062 g / cm 3 , and the back cushion member It was prepared by using the cushion body prepared in the same manner as in Example 2 except that the laminate was compressed and thermoformed so as to have an average apparent density of 0.056 g / cm 3, and was rapidly cooled without annealing. The characteristics of the seat shown in Table 2 are not preferable as a seat because the seat has a good seating comfort but does not use a mesh made of a thermoplastic elastic resin having excellent heat resistance and durability and thus has poor durability.

【0036】比較例4 180g/分の吐出量で、ノズル面下5cmに引取りコン
ベアネットを配して引取り速度1.2m/分にて引取っ
た以外、実施例2と同様にして得た繊度が1800デニ
−ル、燐含有量が9000ppm(60A+200=3
320ppm)、平均の見掛け密度が0.006g/cm
3 の網状体を用いて、座部及び背部のクッション層の見
掛け密度が0.009g/cm3 となるように積層圧縮
し、疑似結晶化処理をしなかった以外実施例2と同様に
して得たクッション体を用いた座席は、密度が低すぎて
座り心地が著しく劣り、耐久性も劣る座席の例である。
Comparative Example 4 Obtained in the same manner as in Example 2 except that a take-up conveyor net was placed 5 cm below the nozzle surface at a discharge rate of 180 g / min and the take-up speed was 1.2 m / min. Fineness of 1800 denier and phosphorus content of 9000 ppm (60A + 200 = 3)
320 ppm), average apparent density is 0.006 g / cm
Using the reticulate body of No. 3 , laminated compression was performed so that the apparent density of the cushion layers of the seat portion and the back portion was 0.009 g / cm 3, and the same procedure as in Example 2 was performed except that the pseudo crystallization treatment was not performed. A seat using such a cushion body is an example of a seat which is too low in density and remarkably inferior in comfort and inferior in durability.

【0037】比較例5 単孔当たりの吐出量3g/分にて吐出させ、引取りコン
ベアネットの速度を0.3m/分とした以外実施例2と
同様して得た線条繊度が13000デニ−ルで、平均見
掛け密度が0.21g/cm3 の網状体を用い、座部及び
背部のクッション層の密度が0.25g/cm3 となるよ
うに積層圧縮して熱成形し、アニ−リングしないで急速
に冷却した以外、実施例2と同様にして作成したクッシ
ョン体を用いて得た座席は、クッション層が硬いため座
り心地がやや劣り、耐久性が不充分な例である。
Comparative Example 5 A linear fineness of 13,000 denier was obtained in the same manner as in Example 2 except that the discharge amount per single hole was 3 g / min, and the speed of the take-up conveyor net was 0.3 m / min. , A net having an average apparent density of 0.21 g / cm 3 was used, laminated and compressed so that the cushion layers of the seat portion and the back portion had a density of 0.25 g / cm 3, and thermoformed. The seat obtained by using the cushion body prepared in the same manner as in Example 2 except that it was cooled rapidly without ringing is an example in which the cushioning layer is hard and the seating comfort is slightly inferior, and the durability is insufficient.

【0038】比較例6 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ10mm、長さ方向の孔間ピッチ20mmの千鳥配列とし
たオリフィス径φ2mmとしたノズルを用いて単孔当たり
の吐出量25g/分にて吐出させて、ノズル面30cm下
に引取りコンベアネットを配して1m/分にて引き取っ
た以外、比較例2と同様にして得た線条の繊度は113
000デニ−ルで平均見掛け密度が0.15g/cm3
網状体を用いて、座部及び背部のクッション層の見掛け
密度が0.035g/cm3 となるように積層圧縮し、疑
似結晶化処理をしなかった以外実施例2と同様にして得
たクッション体を用いた座席は、網状体の線条繊度が著
しく太く密度斑があるため、耐久性が悪くなり、座り心
地もやや悪くなる座席の例である。
Comparative Example 6 Using a nozzle having a diameter of 2 mm and a staggered arrangement with a hole pitch of 10 mm in the width direction and a hole pitch of 20 mm in the length direction on a nozzle effective surface of 50 cm in width and 5 cm in length, a single hole was used. The fineness of the filaments obtained in the same manner as in Comparative Example 2 was 113 except that the discharge rate was 25 g / min and the take-up conveyor net was placed 30 cm below the nozzle surface and the rate was 1 m / min.
Pseudo-crystallization was performed by using a reticulate body having an average apparent density of 0.15 g / cm 3 at 000 denier so that the cushion layers of the seat and back have an apparent density of 0.035 g / cm 3 . The seat using the cushion obtained in the same manner as in Example 2 except that the treatment was not carried out, the reticulate fineness of the reticulate body is remarkably thick and has density unevenness, so that the durability is poor and the sitting comfort is slightly poor. It is an example of a seat.

【0039】比較例7 ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、実施例2
と同様の方法で得た網状体の特性の一部を表2に示す。
なお、接着状態が不良で形態保持が悪いため、50%圧
縮時反発力、見掛け密度、補強効果、70℃残留歪、繰
返圧縮歪みの評価はしていない。次いで、この線条がば
らばらの網状体を雌金型に詰め込み、クッション層の見
掛け密度が0.055g/cm3 となるように積層圧縮
し、疑似結晶化処理をしなかった以外実施例2と同様に
して得たクッション体を用いた座席は、網状体の線条が
融着していないので座り心地が悪く、網状形態が固定さ
れていないのでクッション材の損傷が大きくなり耐久性
も劣る例である。
Comparative Example 7 Example 2 was repeated except that a take-up conveyor net was placed 60 cm below the nozzle surface and no pseudo-crystallization treatment was performed after the take-up conveyor net was taken out.
Table 2 shows a part of the properties of the reticulate body obtained by the same method as described above.
Since the adhesive state is poor and the shape retention is poor, the repulsive force at 50% compression, apparent density, reinforcing effect, residual strain at 70 ° C., and repeated compression strain were not evaluated. Then, the mesh-like body having the filaments separated from each other was packed in a female mold, laminated and compressed so that the apparent density of the cushion layer was 0.055 g / cm 3, and no pseudo-crystallization treatment was carried out. A seat using the cushion obtained in the same manner is uncomfortable to sit because the filaments of the reticulate body are not fused, and the cushioning material is damaged and the durability is poor because the reticulated form is not fixed. Is.

【0040】比較例8 実施例2で得た網状体を用い、実施例1で用いた樹脂成
形体の表面にシリコ−ン油膜を塗布し、接着剤を用いな
いでクッション層の見掛け密度が0.055g/cm3
なるように積層圧縮し、疑似結晶化処理をしなかった以
外実施例2と同様にして得た樹脂成形体と網状体が接合
一体化されていないクッション体を用いて作成した座席
は、座り心地は悪くないが、耐久性が劣る座席であっ
た。
Comparative Example 8 Using the reticulate body obtained in Example 2, a silicone oil film was applied to the surface of the resin molding used in Example 1, and no apparent density of the cushion layer was obtained without using an adhesive. It was prepared by using a cushion body in which the resin molded body and the mesh body obtained by the same procedure as in Example 2 were laminated and compressed so that the weight became 0.055 g / cm 3, and the pseudo-crystallization treatment was not performed. The seats I had were not uncomfortable to sit in, but were less durable.

【0041】[0041]

【発明の効果】本発明の座席は、回復性と振動吸収性の
良い熱可塑性弾性樹脂からなる線条が融着一体化した網
状体をクッション層に用い、多孔質の樹脂成形体が従来
のクッション体での深絞り成形部を構成してクッション
層と接合一体化しているため、通気性を良くし、凸部の
耐久性とクッション体の形態保持性を向上させているの
で、自動車や鉄道車両用の座席に最適な、振動遮断性、
耐熱耐久性、形態保持性、クッション性の優れた、蒸れ
にくく、分別せずにリサイクルが可能な座席である。ま
た、従来公知のファイバ−フィルを用いたクッション体
では、深絞り成形が困難で、成形が煩雑になっているが
本発明の方法では、深絞り成形を省略して一段で成形加
工ができるため、成形加工のコストダウンが図れ安価に
有用な座席を提供できる。車両用以外に船舶用、事務
用、家具用等の座席にも勿論有用である。
EFFECT OF THE INVENTION The seat of the present invention uses, as the cushion layer, a mesh-like body in which filaments made of a thermoplastic elastic resin having good recovery and vibration absorption are fused and integrated. Since the deep-drawing part of the cushion body is formed and joined and integrated with the cushion layer, the air permeability is improved, and the durability of the convex portion and the shape retention of the cushion body are improved. Vibration isolation, ideal for vehicle seats
It is a seat that has excellent heat resistance and durability, shape retention and cushioning properties, is resistant to stuffiness, and can be recycled without separation. Further, with a cushion body using a conventionally known fiber-fill, it is difficult to perform deep drawing and the molding is complicated, but in the method of the present invention, deep drawing can be omitted and molding can be performed in one step. In addition, the cost of the molding process can be reduced and a useful seat can be provided at low cost. Of course, it is also useful for seats for ships, offices, furniture, etc. as well as for vehicles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明座席の縦断面概念図を示す。FIG. 1 shows a conceptual view of a longitudinal section of a seat of the present invention.

【図2】本発明座席の背部及び座部の横断面概念図を示
す図である。
FIG. 2 is a view showing a conceptual cross-sectional view of a back portion and a seat portion of the seat of the present invention.

【図3】本発明座席の背部に用いる樹脂成形体の斜視図
である。
FIG. 3 is a perspective view of a resin molded body used for the back portion of the seat of the present invention.

【図4】本発明座席の座部に用いる樹脂成形体の斜視図
である。
FIG. 4 is a perspective view of a resin molded body used for the seat portion of the seat of the present invention.

【図5】本発明座席の成形加工工程の概念を示す図であ
り(A)→(B)→(C)の順に工程は進行する。
FIG. 5 is a view showing the concept of a seat forming process of the seat of the present invention, which proceeds in the order of (A) → (B) → (C).

【図6】本発明座席の成形加工工程の概念を示す図であ
り、(A)→(B)→(C)の順に工程は進行する。
FIG. 6 is a view showing the concept of a seat forming process of the seat of the present invention, and the process proceeds in the order of (A) → (B) → (C).

【符号の説明】[Explanation of symbols]

1:側地 2:網状体 3:樹脂成形体 4:樹脂成形体
の開孔部 5:裏張り部 6:補強フレ−
ム 7:雌金型 10:雄金型 11:ファイバ−フィルウエッブ 12:接着剤層、
1: Side ground 2: Reticulated body 3: Resin molded body 4: Opening portion of resin molded body 5: Backing portion 6: Reinforcing frame
Mu 7: Female mold 10: Male mold 11: Fiber-fill web 12: Adhesive layer,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B32B 31/20 7148−4F B65G 7/06 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B32B 31/20 7148-4F B65G 7/06 C

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 主要部として、側地、クッション層、裏
面深絞り形状部より形成された背部と座部よりなる座席
であり、座席裏面深絞り形状部が開孔率10%以上の射
出成形された樹脂成形体からなり、クッション層が繊度
が100000デニ−ル以下の連続した線条を曲がりく
ねらせ互いに接触させて該接触部の大部分が融着した3
次元立体構造体を形成した熱可塑性弾性樹脂からなる見
掛け密度が0.01g/cm3 から0.2g/cm3 の網状
体で構成され、該樹脂成形体と該網状体が接着剤または
自己接着により一体接合されていることを特徴とする座
席。
1. A seat having a back portion and a seat portion formed of a side ground, a cushion layer, and a back deep drawing portion as a main portion, and the seat back deep drawing portion having an opening ratio of 10% or more. The cushion layer is formed by bending the continuous filaments having a fineness of 100,000 denier or less to make them contact with each other, and most of the contact portions are fused.
A three-dimensional structure is formed of a thermoplastic elastic resin, which is composed of a mesh body having an apparent density of 0.01 g / cm 3 to 0.2 g / cm 3 , and the resin molded body and the mesh body are adhesive or self-adhesive. A seat characterized by being integrally joined by.
【請求項2】 網状体と側地の間にファイバ−フィルか
らなるワディング層を配してなる請求項1記載の座席。
2. The seat according to claim 1, wherein a wadding layer made of fiber-fill is arranged between the mesh body and the side ground.
【請求項3】 雌型に所定形状に切断されたクッション
層となる網状体を配し、その上に裏面又は背面となる深
絞り形状に成形された樹脂成形体を配し、又は網状体と
樹脂成形体間に網状体の融点より少なくとも10℃以上
低い融点を持つ接着層を配して、雄型で上からクッショ
ン層を圧縮すると共に樹脂成形体を介して凹部内側から
も凸部を圧縮し、網状体の融点より5℃高い温度〜融点
より50℃低い温度の加熱媒体で加熱して熱成形により
一体化した後、一旦冷却するか、又は連続して、網状体
のガラス転移温度より10℃高い温度以上、融点より2
0℃以上低い温度でアニ−リングして得たクッション成
形体に側地を取付けて、座席フレ−ムに固定することを
特徴とする座席の製法。
3. A female die is provided with a mesh body which is cut into a predetermined shape and serves as a cushion layer, and a deep-drawing resin molded body which is a back surface or a back surface is arranged thereon, or An adhesive layer having a melting point at least 10 ° C. lower than the melting point of the reticulate body is arranged between the resin moldings, and the cushion layer is compressed from above with the male mold and the convex portions are compressed from the inside of the recesses through the resin molding. Then, it is heated with a heating medium having a temperature of 5 ° C. higher than the melting point of the reticulate body to a temperature of 50 ° C. lower than the melting point to be integrated by thermoforming, and then once cooled or continuously, the glass transition temperature of the reticulated body is exceeded. Above 10 ℃, above melting point 2
A seat manufacturing method characterized in that a cushion molded body obtained by annealing at a low temperature of 0 ° C. or more is provided with side fabrics and fixed to a seat frame.
【請求項4】 クッション成形体と側地間にワディング
層を配することを特徴とする請求項3記載の座席の製法
4. The method for manufacturing a seat according to claim 3, wherein a wadding layer is provided between the cushion molded body and the side ground.
JP14976094A 1994-06-30 1994-06-30 Seat and recipe Expired - Lifetime JP3589307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14976094A JP3589307B2 (en) 1994-06-30 1994-06-30 Seat and recipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14976094A JP3589307B2 (en) 1994-06-30 1994-06-30 Seat and recipe

Publications (2)

Publication Number Publication Date
JPH0810470A true JPH0810470A (en) 1996-01-16
JP3589307B2 JP3589307B2 (en) 2004-11-17

Family

ID=15482151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14976094A Expired - Lifetime JP3589307B2 (en) 1994-06-30 1994-06-30 Seat and recipe

Country Status (1)

Country Link
JP (1) JP3589307B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537472B2 (en) 2000-02-29 2003-03-25 Asahi Kasei Kabushiki Kaisha Process for producing a cushioning article
WO2008077197A1 (en) * 2006-12-22 2008-07-03 Daniel Vladeta Back support device
CN113768309A (en) * 2021-09-26 2021-12-10 安吉顾友家具有限公司 Multifunctional adjusting device for chair chassis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537472B2 (en) 2000-02-29 2003-03-25 Asahi Kasei Kabushiki Kaisha Process for producing a cushioning article
WO2008077197A1 (en) * 2006-12-22 2008-07-03 Daniel Vladeta Back support device
US9486375B2 (en) 2006-12-22 2016-11-08 Daniel Vladeta Back support device
CN113768309A (en) * 2021-09-26 2021-12-10 安吉顾友家具有限公司 Multifunctional adjusting device for chair chassis
CN113768309B (en) * 2021-09-26 2024-02-02 安吉顾友家具有限公司 Multifunctional adjusting device for chair chassis

Also Published As

Publication number Publication date
JP3589307B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
JP3596623B2 (en) Seat and manufacturing method
JP3473710B2 (en) Mixed fineness reticulated body, manufacturing method and products using it
JP3589307B2 (en) Seat and recipe
JP3620604B2 (en) Flame retardant seating and manufacturing method
JP3431097B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3473711B2 (en) Polyester wadding material and its manufacturing method
JP3622861B2 (en) Vehicle seat and manufacturing method
JP3431098B2 (en) Flame-retardant reinforced mesh, manufacturing method and products using the same
JP2002000408A (en) Vehicle seat
JP3541969B2 (en) Bed mat
JP2001061605A (en) Seat for vehicle
JP3444375B2 (en) Multilayer net, manufacturing method and products using the same
JP2003260278A (en) Seat for vehicle
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430445B2 (en) Composite net, its manufacturing method and products using it
JP3351488B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430446B2 (en) Composite elastic network, its production method and products using it
JP3526041B2 (en) Mat and its manufacturing method
JP3351491B2 (en) Flame-retardant laminated net, manufacturing method and product using the same
JP3351489B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3351490B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JPH08336443A (en) Bed mattress and manufacturing method
JP3346507B2 (en) Flame-retardant reticulated body, manufacturing method and products using the same
JP3444372B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3444369B2 (en) Laminated net, manufacturing method and product using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040811

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

EXPY Cancellation because of completion of term