JPH08103855A - Production of fe-co base alloy thin wire - Google Patents

Production of fe-co base alloy thin wire

Info

Publication number
JPH08103855A
JPH08103855A JP26102394A JP26102394A JPH08103855A JP H08103855 A JPH08103855 A JP H08103855A JP 26102394 A JP26102394 A JP 26102394A JP 26102394 A JP26102394 A JP 26102394A JP H08103855 A JPH08103855 A JP H08103855A
Authority
JP
Japan
Prior art keywords
molten metal
atmosphere
thin wire
liquid layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26102394A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishikawa
洋 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP26102394A priority Critical patent/JPH08103855A/en
Publication of JPH08103855A publication Critical patent/JPH08103855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To produce a good quality Fe-Co base alloy thin wire without any pore by forming stable oxide film on the surface of molten metal jet before charging it into a cooling liquid layer. CONSTITUTION: Gaseous argon and gaseous oxygen are introduced from a gas introducing hole 14 while sensing the oxygen partial pressure in the atmosphere with an oxygen sensor 13 in order to accurately control the mixing ratio of the gaseous argon with the gaseous oxygen forming the atmosphere in a box 12, thereby obtaining a normal mixing ratio. While supplying the metal raw material beforehand charged into a crucible 6 to a heating device 9 under the inert gas atmosphere, the metal is melted in the heating device 9 and the molten metal is jetted from a nozzle 7 at the tip part of the crucible 6 by the pressure of inert gas for jetting introduced from the introducing hole 11 of the inert gas to form a molten metal flow 8 jetted toward a liquid layer 5. By this method, the jetted molten metal flow 8 is immediately advanced into the liquid layer 5 and attracted to the inner wall of a rotary cylindrical drum 1 with the centrifugal force and quickly cooled to form the metal thin wire.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転液中紡糸法による
Fe−Co系合金細線の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing Fe-Co based alloy fine wires by a spinning submerged spinning method.

【0002】[0002]

【従来の技術】Fe−Co系合金は、730℃近傍に規
則−不規則変態点が存在する。この規則相は、大変脆い
相であり、そのままでは冷間加工ができない。そこで、
従来は溶解、熱間加工した後、その後の冷間加工前に、
高温から急冷することによって、規則化を阻止している
のが現状であるが、その臨界急冷速度は103〜104
/sであって、非常に大きな値である。つまり、これま
でのバッチ式での水焼き入れは、冷媒である水の攪拌や
炉から冷媒に移動する時間の管理を厳密に行う必要があ
った。
2. Description of the Related Art An Fe--Co alloy has an order-disorder transformation point near 730 ° C. This ordered phase is a very brittle phase and cannot be cold worked as it is. Therefore,
Conventionally, after melting and hot working, before subsequent cold working,
It is the current situation that quenching is prevented by quenching from a high temperature, but the critical quenching rate is 10 3 to 10 4 ° C.
/ S, which is a very large value. That is, in the batch type water quenching that has been performed so far, it is necessary to strictly control the stirring of water as a refrigerant and the time for moving from the furnace to the refrigerant.

【0003】近年、溶融金属より円形断面を有する金属
細線を製造する方法として、一般に言われている回転液
中紡糸法が提案され、その技術確立が急速に進んでい
る。すなわち、特開昭55−64948号、特開昭56
−165016号、特開昭57−52550号、特開昭
57−79052号等があり、これら先行技術の特徴
は、回転する円筒状ドラムの円周内面に遠心力によって
液体層を形成し、その液体層中に溶融金属をジェットと
して噴出し、これを急速凝固させて金属細線を製造する
ものであって、これらの方法によれば、断面が円形で優
れた特性を有する金属細線が容易に得られ、旧来法に比
して、冷却速度を著しく大きくすることができるので、
非晶質金属あるいは結晶質の金属細線等の製造に適して
いる。
In recent years, as a method for producing a metal thin wire having a circular cross section from a molten metal, a generally-known spinning method in a submerged liquid has been proposed, and its technology has been rapidly established. That is, JP-A-55-64948 and JP-A-56
No. 165,016, JP-A-57-52550, JP-A-57-79052 and the like. The characteristics of these prior arts are that a liquid layer is formed on the inner surface of the circumference of a rotating cylindrical drum by centrifugal force. It is a method for producing a metal thin wire by jetting molten metal as a jet into a liquid layer and rapidly solidifying this, and according to these methods, a metal thin wire having a circular cross section and excellent characteristics can be easily obtained. The cooling rate can be significantly increased as compared with the conventional method.
It is suitable for the production of amorphous metal or crystalline thin metal wires.

【0004】しかし、Fe−Co系合金の場合には、こ
の方法によれば、冷却媒体の種類によっては、細線とい
うよりも、むしろ金属粉末しか得られなかったり、又細
線が得られたにしても、その細線表面に凹凸が存在した
り、仮に、その細線が円形断面を呈していても、その内
部にガスを封じ込めたポア(ガス孔)が生じていたり
と、実用上、好ましからぬ現象が多々生じていた。この
主な原因は、Fe−Co系合金の溶融ジェットが、冷却
媒体に入り込んだ瞬間に、その冷却媒体と反応するため
であることが分かってきている。
However, in the case of an Fe-Co alloy, according to this method, depending on the type of cooling medium, rather than a fine wire, only a metal powder is obtained, or a fine wire is obtained. However, there is an undesired phenomenon in practical use, such as the presence of irregularities on the surface of the thin wire, or even if the thin wire has a circular cross section, there are pores (gas holes) that contain gas inside. It happened a lot. It has been found that the main cause of this is that the molten jet of the Fe—Co alloy reacts with the cooling medium at the moment when it enters the cooling medium.

【0005】[0005]

【発明が解決しようとする課題】そこで、これまで、そ
の冷却媒体との反応を抑える方法として、溶融ジェット
の冷却速度を上げて、冷却媒体との反応時間を可能な限
り短縮するといった試み、例えば、線径を小さくする等
が行われているが、現在のところ、Fe−Co系合金に
関しては、前述の制約条件を全て満足するような手法が
なく、根本的な解決方法が見つかっていない。
Therefore, hitherto, as a method of suppressing the reaction with the cooling medium, an attempt has been made to increase the cooling rate of the molten jet to shorten the reaction time with the cooling medium as much as possible, for example, Although the wire diameter has been reduced, at present, there is no method for satisfying the above-mentioned constraint conditions for Fe-Co alloys, and a fundamental solution has not been found.

【0006】本発明の技術課題は、回転している円筒状
ドラム内に、遠心力により冷却液体層を形成し、前記冷
却液体層中にFe−Co系合金の溶湯をジェットとして
噴射し、凝固させてFe−Co系合金細線を製造する際
に、溶湯と冷却媒体との反応を起させないで凝固させ、
断面が円形で、ポアのない、良好なFe−Co系合金細
線を製造する方法を提供することにある。
A technical problem of the present invention is to form a cooling liquid layer in a rotating cylindrical drum by centrifugal force, and inject the molten Fe-Co alloy as a jet into the cooling liquid layer to solidify it. Then, when producing the Fe-Co alloy thin wire, it solidifies without causing a reaction between the molten metal and the cooling medium,
An object of the present invention is to provide a method for producing a good Fe—Co based alloy fine wire having a circular cross section and no pores.

【0007】[0007]

【課題を解決するための手段】本発明者は、Fe−Co
系合金の溶融ジェットが、冷却媒体と反応するという問
題点を解決するため、種々研究した結果、Fe系合金細
線の製造を不活性ガスと酸素ガスの混合ガス雰囲気中で
行うと、冷却媒体と反応せずに、円形断面である連続細
線が得られることを見い出し、本発明に到達した。
Means for Solving the Problems The present inventors have found that Fe--Co
As a result of various studies, in order to solve the problem that a molten jet of a Fe-based alloy reacts with a cooling medium, when a Fe-based alloy fine wire is manufactured in a mixed gas atmosphere of an inert gas and an oxygen gas, The present invention has been achieved by finding that a continuous thin wire having a circular cross section can be obtained without reacting.

【0008】すなわち、回転する円筒状ドラムの円周面
に遠心力による冷却液体層を形成し、その液体層中に溶
融金属をジェットとして噴射し、これを急速凝固させて
金属細線を製造する際に、その溶融ジェットの表面部
に、溶融ジェットが冷却媒体に入り込む以前に、その冷
却媒体と反応しないよう、安定な酸化皮膜を生成してお
く。そして、この酸化皮膜は、溶融金属の噴射を不活性
ガスと酸素ガスの混合ガス雰囲気で行うことによって形
成される。
That is, when a cooling liquid layer is formed on the circumferential surface of a rotating cylindrical drum by centrifugal force, molten metal is jetted into the liquid layer as a jet, and this is rapidly solidified to produce a thin metal wire. First, a stable oxide film is formed on the surface of the molten jet so that the molten jet does not react with the cooling medium before it enters the cooling medium. The oxide film is formed by injecting molten metal in a mixed gas atmosphere of an inert gas and an oxygen gas.

【0009】[0009]

【作用】溶融金属のジェットを噴射する際に、このジェ
ットが冷却媒体に突入する前に、その表面に酸化皮膜を
形成しておく。この酸化被膜が保護膜として作用して、
溶融金属と冷却媒体との急激な反応を抑止し、断面が円
形で表面が滑らかであり、内部にガス孔の存在しない合
金細線が作製可能となる。
When a jet of molten metal is jetted, an oxide film is formed on the surface of the jet before the jet rushes into the cooling medium. This oxide film acts as a protective film,
A rapid reaction between the molten metal and the cooling medium is suppressed, and a fine alloy wire having a circular cross section and a smooth surface and no gas holes inside can be produced.

【0010】[0010]

【実施例】以下に、本発明の実施例を図1に示す製造装
置によって説明する。
Embodiments of the present invention will be described below with reference to the manufacturing apparatus shown in FIG.

【0011】図1において、1は駆動部10によって回
転する円筒状ドラム(以下、回転円筒ドラムという)
で、3は回転軸2を支える軸受を示す。回転円筒ドラム
1の構造は、円心力によって液体層5と、その液体層5
の深さを保持する円周部の外端のドーナツ状の支え板4
とからなる。6は溶融金属のるつぼ、7はノズルであ
る。そして、12は細線製造の際の雰囲気制御ボックス
であって、14はその雰囲気制御ボックス内へのガス導
入口である。又、ボックス内の雰囲気を形成するアルゴ
ンガスと酸素ガスとの混合比率を正確に制御するため
に、酸素センサー13により、雰囲気内の酸素分圧を感
知しつつ、先のガス導入口14より、アルゴンガスおよ
び酸素ガスを導入し、規定の混合比率とする。液体層5
に向けて噴出する金属流8は、予めるつぼ6の中に投入
された金属原料を不活性ガス雰囲気下で供給しつつ、加
熱装置9によって溶融し、不活性ガスの導入口11より
導入した噴出用不活性ガスの圧力によって、るつぼ6の
先端のノズル7より噴出せしめることによって、噴出金
属流8は直ちに液体層5に進入して、回転円筒状ドラム
1の内壁に円心力によって引き付けられ、急速に冷却さ
れて金属細線となる。
In FIG. 1, reference numeral 1 denotes a cylindrical drum which is rotated by a drive unit 10 (hereinafter referred to as a rotating cylindrical drum).
Reference numeral 3 denotes a bearing that supports the rotary shaft 2. The structure of the rotating cylindrical drum 1 is such that the liquid layer 5 and the liquid layer 5 are formed by the circular force.
Donut-shaped support plate 4 at the outer edge of the circumference that holds the depth of
Consists of 6 is a crucible of molten metal, and 7 is a nozzle. Further, 12 is an atmosphere control box at the time of manufacturing the thin wire, and 14 is a gas introduction port into the atmosphere control box. Further, in order to accurately control the mixing ratio of the argon gas and the oxygen gas forming the atmosphere in the box, the oxygen sensor 13 senses the oxygen partial pressure in the atmosphere, and the Argon gas and oxygen gas are introduced to obtain a prescribed mixing ratio. Liquid layer 5
The metal flow 8 ejected toward the molten metal is melted by the heating device 9 while the metal raw material previously charged into the crucible 6 is supplied under an inert gas atmosphere, and is ejected from the inert gas introduction port 11. By the pressure of the inert gas for use, it is ejected from the nozzle 7 at the tip of the crucible 6, and the ejected metal stream 8 immediately enters the liquid layer 5 and is attracted to the inner wall of the rotating cylindrical drum 1 by the concentric force. It is cooled to become a fine metal wire.

【0012】(実施例1と比較例1〜4)図1に示した
内径500mmφの回転円筒ドラムを有する装置を用
い、その装置全体の雰囲気(紡糸雰囲気)を、表1に示
すように、予めAr−10%O2、及び比較例として、
100%Ar雰囲気、真空(10Torr)雰囲気の3
水準に設定して、2種類の合金組成よりなるFeCo系
合金をアルゴン雰囲気中で融点より50℃高い温度で溶
融し、孔系50μmの紡糸ノズルより、アルゴンガス圧
を制御して、430m/分の速度で溶融金属を深さ20
mmの冷却液(2℃以下)に対して噴射して6種類の合
金細線を紡糸した。冷却液としては、水道水に1%添加
した食塩水を用いた。この時の回転ドラムの速度は、5
00m/分であった。ここで用いた合金組成、および得
られた合金細線の形成性(連続性、断面真円度)、およ
び細線内部のポア(ガス孔)の存在の有無について、表
1に示した。
(Example 1 and Comparative Examples 1 to 4) Using an apparatus having a rotating cylindrical drum having an inner diameter of 500 mmφ shown in FIG. 1, the atmosphere (spinning atmosphere) of the entire apparatus was set in advance as shown in Table 1. Ar-10% O 2 , and as a comparative example,
100% Ar atmosphere, vacuum (10 Torr) atmosphere 3
Set to a standard level, an FeCo alloy composed of two alloy compositions is melted at a temperature 50 ° C. higher than the melting point in an argon atmosphere, and the argon gas pressure is controlled from a spinning nozzle having a hole system of 50 μm to 430 m / min. Depth of molten metal at a rate of 20
6 kinds of fine alloy wires were spun by jetting into a mm-mm cooling liquid (2 ° C. or less). As the cooling liquid, a saline solution containing 1% of tap water was used. The speed of the rotating drum at this time is 5
It was 00 m / min. Table 1 shows the alloy composition used here, the formability (continuity, circularity of cross section) of the obtained alloy fine wire, and the presence or absence of pores (gas holes) inside the thin wire.

【0013】[0013]

【表1】 [Table 1]

【0014】表1に示すように、実施例1(試料No.
1および2)と比較例1,2,3,4との比較におい
て、合金細線形成性に関する結果は、まったく異なって
おり、本発明により、著しく細線形成性が向上してい
る。これは、細線製造する雰囲気中に、細線表面を酸化
させるための酸素ガスが存在しなければならいことを明
かに表しており、細線形成性の向上のために果たす雰囲
気中アルゴンと酸素の混合ガスの役割が、大きいことを
意味する。つまり、細線製造雰囲気としてアルゴンとの
酸素の混合ガスを用いることにより、細線形成性のよい
靭性のあるFe−Co系合金細線を製造することができ
ることがわかった。
As shown in Table 1, Example 1 (Sample No.
In the comparison between 1 and 2) and Comparative Examples 1, 2, 3, and 4, the results regarding the alloy fine wire formability are completely different, and the present invention significantly improves the fine wire formability. This clearly shows that the oxygen gas for oxidizing the surface of the thin wire must be present in the atmosphere for manufacturing the thin wire, and the mixed gas of argon and oxygen in the atmosphere to improve the thin wire forming property. Means that the role of is large. That is, it was found that by using a mixed gas of oxygen and argon as a thin wire manufacturing atmosphere, it is possible to manufacture a Fe—Co alloy thin wire having good toughness and good toughness.

【0015】(実施例2と比較例5〜6)表2に示すよ
うに、紡糸雰囲気を予めAr−x%O2雰囲気[但しx
=0、0.5(比較例5にかかる試料No.7,8)、
1.0,3.0,5.0(実施例2にかかる試料No.9,1
0,11)、7.0(比較例6にかかる試料No.1
2)]、及び真空(10-5Torr)雰囲気(比較例6
に係る試料No.13)の7水準に設定したこと、およ
び合金組成はFe50Co50、1種類としたこと以外は、
実施例1と同様にして、7種類のFe−Co系合金細線
を紡糸した。得られた合金細線の形成性(連続性、断面
真円度)、細線内部の内部ポアの存在有無について調
べ、実施例2に係る試料No.9,10,11と比較例
に係る試料No.7,8,12,13とを比較して表2
に示す。
(Example 2 and Comparative Examples 5 to 6) As shown in Table 2, the spinning atmosphere was previously set to an Ar-x% O 2 atmosphere [however, x
= 0, 0.5 (Sample Nos. 7 and 8 according to Comparative Example 5),
1.0, 3.0, 5.0 (Sample No. 9, 1 according to Example 2
0, 11), 7.0 (Sample No. 1 according to Comparative Example 6)
2)], and a vacuum (10 −5 Torr) atmosphere (Comparative Example 6)
Except that the sample No. 13) is set to 7 levels, and the alloy composition is Fe 50 Co 50 , and one kind.
In the same manner as in Example 1, seven types of Fe-Co alloy thin wires were spun. The formability (continuity, circularity of cross section) of the obtained alloy thin wire and the presence or absence of internal pores inside the thin wire were examined, and sample Nos. 9, 10 and 11 according to Example 2 and sample No. according to Comparative Example. Table 2 comparing with 7, 8, 12, 13
Shown in

【0016】[0016]

【表2】 [Table 2]

【0017】表2に示すように、紡糸雰囲気としては、
比較的酸素混合率の低い試料No.8においては、まだ
その酸化皮膜が非常に薄く、合金の冷却凝固の際の収縮
でその皮膜が容易に剥がれた結果としてポアも依然とし
て存在するものと思われる。アルゴン100%の紡糸雰
囲気による試料No.7では、EPMA分析の結果、表
面の酸化皮膜は検出されなかった。紡糸雰囲気が酸素濃
度1%から5%までの範囲においては、著しく連続性、
断面真円度、およびポアの存在について、いずれも向上
しており、酸化皮膜の厚みもEPMAによって約20μ
存在することが判明した。このことから、約20μの膜
厚が非常に重要であるといえる。これは、細線製造する
雰囲気中に、細線表面を酸化させるための酸素ガスが、
ある一定以上存在しなければならないことを如実に表し
ている。つまり、細線形成性の向上のために果たす雰囲
気中の酸素ガスの役割が大きい。さらに、酸素濃度が増
加した試料No.12の場合は、確かに断面真円度は良
好なるもジェットノズルがつまり易くなり、結果とし
て、細線が切れ易くなり、かつ皮膜厚もばらついてい
る。又、比較例に係る試料No.13のように、真空雰
囲気中での紡糸実験では、試料No.7のアルゴンガス
雰囲気でのものとほぼ同等の表面状態のものしか得られ
ていない。このように、Fe−Co系合金細線の紡糸雰
囲気として、酸素濃度が1%〜5%の範囲とした酸素ガ
スと不活性ガスとの混合ガスを用いることにより、特性
の優れたFe−Co合金を製造することができる。
As shown in Table 2, the spinning atmosphere is:
In Sample No. 8 having a relatively low oxygen mixing ratio, the oxide film was still very thin, and it is considered that pores still exist as a result of the film easily peeling off due to contraction during cooling and solidification of the alloy. . In sample No. 7 in a spinning atmosphere of 100% argon, no oxide film on the surface was detected as a result of EPMA analysis. When the spinning atmosphere has an oxygen concentration of 1% to 5%, the continuity is remarkably high.
Both the roundness of the cross section and the existence of pores have been improved, and the thickness of the oxide film is about 20μ by EPMA.
Proved to exist. From this, it can be said that a film thickness of about 20 μ is very important. This is because the oxygen gas for oxidizing the surface of the thin wire is
It clearly shows that it must exist above a certain level. That is, the oxygen gas in the atmosphere plays a large role in improving the thin wire forming property. Further, in the case of the sample No. 12 in which the oxygen concentration was increased, the circularity of the cross section was certainly good, but the jet nozzle was easily clogged, and as a result, the fine line was easily cut and the film thickness was varied. Further, as in the sample No. 13 according to the comparative example, in the spinning experiment in the vacuum atmosphere, only the surface state substantially the same as that of the sample No. 7 in the argon gas atmosphere was obtained. As described above, by using a mixed gas of oxygen gas and an inert gas having an oxygen concentration in the range of 1% to 5% as a spinning atmosphere for Fe-Co alloy thin wires, an Fe-Co alloy having excellent characteristics is obtained. Can be manufactured.

【0018】[0018]

【発明の効果】以上のように、本発明Fe−Co系合金
細線の製造方法によると、回転している円筒状ドラム内
に、円心力により冷却液体層を形成し、前記冷却液体層
中に溶融金属をジェットとして噴射し、凝固させて金属
細線を製造するに際し、該溶融金属ジェットが、前記冷
却液体層に入り込む以前に、その表面に安定な酸化皮膜
を形成することにより、連続性が良好で、断面が真円で
あり、ポアの存在しない良質なFe−Co系合金細線の
製造が可能となった。
As described above, according to the method for producing the Fe-Co alloy thin wire of the present invention, the cooling liquid layer is formed by the centripetal force in the rotating cylindrical drum, and the cooling liquid layer is formed in the cooling liquid layer. When producing a thin metal wire by injecting molten metal as a jet and solidifying it, the molten metal jet forms a stable oxide film on the surface before entering the cooling liquid layer, resulting in good continuity. Thus, it was possible to manufacture a high-quality Fe-Co alloy thin wire having a perfect circular cross section and no pores.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で使用した回転液中紡糸装置の構成を示
す断面図。
FIG. 1 is a cross-sectional view showing the structure of a rotating submerged spinning device used in Examples.

【符号の説明】[Explanation of symbols]

1 回転円筒ドラム 2 回転軸 3 軸受 4 支え板 5 液体層 6 るつぼ 7 ノズル 8 金属流 9 加熱装置 10 駆動部 11 ガス導入口 12 雰囲気制御ボックス 13 酸素センサー 13a 管 14 雰囲気ガス導入口 15 支持台 16 支持アーム 17 支持部材 18 不活性ガスの導入口 1 Rotating Cylindrical Drum 2 Rotating Shaft 3 Bearing 4 Support Plate 5 Liquid Layer 6 Crucible 7 Nozzle 8 Metal Flow 9 Heating Device 10 Drive Unit 11 Gas Inlet 12 Atmosphere Control Box 13 Oxygen Sensor 13a Pipe 14 Atmospheric Gas Inlet 15 Support 16 Support arm 17 Support member 18 Inlet gas inlet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 1/02 F 38/10 C23C 8/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C22C 1/02 F 38/10 C23C 8/10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転している円筒状ドラム内に遠心力に
より冷却液体層を形成し、前記冷却液体層中にノズルか
ら溶融金属のジェットを噴射し凝固させてFe−Co系
合金細線を製造する方法において、前記溶融金属のジェ
ットが、前記冷却液体層に突入する前に、前記溶融金属
のジェットの表面に安定な酸化皮膜を形成することを特
徴とするFe−Co系合金細線の製造方法。
1. A Fe-Co alloy thin wire is produced by forming a cooling liquid layer in a rotating cylindrical drum by centrifugal force, and injecting a jet of molten metal into the cooling liquid layer from a nozzle to solidify the molten liquid. In the method for producing a Fe-Co alloy thin wire, the molten metal jet forms a stable oxide film on the surface of the molten metal jet before entering the cooling liquid layer. .
【請求項2】 請求項1記載のFe−Co系合金細線の
製造方法において、前記安定な酸化皮膜を、不活性ガス
と酸素ガスの混合ガス雰囲気中に溶融金属のジェットを
噴射することによって形成することを特徴とするFe−
Co系合金細線の製造方法。
2. The method for producing a Fe—Co alloy thin wire according to claim 1, wherein the stable oxide film is formed by injecting a jet of molten metal into a mixed gas atmosphere of an inert gas and an oxygen gas. Fe- characterized by
Manufacturing method of Co-based alloy fine wire.
JP26102394A 1994-09-30 1994-09-30 Production of fe-co base alloy thin wire Pending JPH08103855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26102394A JPH08103855A (en) 1994-09-30 1994-09-30 Production of fe-co base alloy thin wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26102394A JPH08103855A (en) 1994-09-30 1994-09-30 Production of fe-co base alloy thin wire

Publications (1)

Publication Number Publication Date
JPH08103855A true JPH08103855A (en) 1996-04-23

Family

ID=17355977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26102394A Pending JPH08103855A (en) 1994-09-30 1994-09-30 Production of fe-co base alloy thin wire

Country Status (1)

Country Link
JP (1) JPH08103855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280877A (en) * 2008-05-21 2009-12-03 Technische Univ Wien Method for producing clathrate compound
CN114192781A (en) * 2020-08-28 2022-03-18 丰田自动车株式会社 Method for producing thin metal wire made of aluminum or aluminum alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280877A (en) * 2008-05-21 2009-12-03 Technische Univ Wien Method for producing clathrate compound
CN114192781A (en) * 2020-08-28 2022-03-18 丰田自动车株式会社 Method for producing thin metal wire made of aluminum or aluminum alloy
CN114192781B (en) * 2020-08-28 2024-02-09 丰田自动车株式会社 Preparation method of metal thin wire made of aluminum or aluminum alloy

Similar Documents

Publication Publication Date Title
SU1184436A3 (en) Method of continuous casting of metal strip from amorphous alloy
US4212344A (en) Method of manufacturing an amorphous alloy
JP2001297629A (en) Adhesion-resistant oxygen-free copper rough drawing wire, and method and apparatus for manufacturing the same
JPH08103855A (en) Production of fe-co base alloy thin wire
RU2201311C2 (en) Method for making contact wires of copper and its alloys
JP2006312174A (en) Continuous casting method for molten metal
JPS63290210A (en) Production of metal powder
JP4833694B2 (en) Oxygen-free copper and oxygen-free copper alloy rough wire rods with excellent peelability
JP2916924B2 (en) TiNiCu-based shape memory alloy fine wire and method for producing the same
JP2001172704A (en) Method of manufacturing metallic flake
JP2593877B2 (en) Carbide precipitation hardening type Co-based alloy welding wire and method for producing the same
JP2928965B2 (en) Injection molding method for ultra heat resistant and difficult to process materials
JPS61135459A (en) Quick liquid cooling device
JPH04220144A (en) Manufacture of ti alloy fine wire
JPS6050853B2 (en) Alloy melting and refining method and its casting method
JP3247240B2 (en) Manufacturing method of fine metal wire
JPS62275561A (en) Production of complex material having excellent high temperature oxidizing resistance and hot workability
JPH07145408A (en) Production of rapidly solidified powder
JPH0580122B2 (en)
JPH0524210B2 (en)
JPH0366461A (en) Manufacture of ti-ni series alloy fine wire and ti-ni series alloy
JPH0191948A (en) Method and apparatus for semi-continuously casting cast billet
JPH0371956A (en) Manufacture of alloy fine wire
JPH0679413A (en) Manufacture of metal fine wire
JPH0533086A (en) Alloy fine wire and its production