JPH079869B2 - Method for manufacturing aluminum electrode material for electrolytic capacitor - Google Patents

Method for manufacturing aluminum electrode material for electrolytic capacitor

Info

Publication number
JPH079869B2
JPH079869B2 JP2699387A JP2699387A JPH079869B2 JP H079869 B2 JPH079869 B2 JP H079869B2 JP 2699387 A JP2699387 A JP 2699387A JP 2699387 A JP2699387 A JP 2699387A JP H079869 B2 JPH079869 B2 JP H079869B2
Authority
JP
Japan
Prior art keywords
aluminum foil
titanium
vapor deposition
electrode material
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2699387A
Other languages
Japanese (ja)
Other versions
JPS63194320A (en
Inventor
達雄 大塚
秀一 室岡
智子 荒井
武 西崎
Original Assignee
昭和アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和アルミニウム株式会社 filed Critical 昭和アルミニウム株式会社
Priority to JP2699387A priority Critical patent/JPH079869B2/en
Publication of JPS63194320A publication Critical patent/JPS63194320A/en
Publication of JPH079869B2 publication Critical patent/JPH079869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は電解コンデンサ用アルミニウム電極材料の製
造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an aluminum electrode material for an electrolytic capacitor.

なおこの明細書において、アルミニウムの語はアルミニ
ウム合金を含む意味において用いる。
In this specification, the term aluminum is used to include an aluminum alloy.

従来の技術 電解コンデンサ用電極材料として、アルミニウム箔の表
面をエッチング処理等により粗面化して、表面積を拡大
したものが従来より用いられている。しかしこのような
電極材では、表面積の拡大効果に限界があり、静電容量
の増大による電解コンデンサの小形、高性能化に対し、
これに満足を与えうるものではなかった。
2. Description of the Related Art As an electrode material for an electrolytic capacitor, a material having a surface area enlarged by roughening the surface of an aluminum foil by etching or the like has been conventionally used. However, with such an electrode material, there is a limit to the effect of increasing the surface area, and in order to reduce the size and performance of the electrolytic capacitor due to the increase in electrostatic capacity,
This was not satisfactory.

そこで、表面積をさらに拡大して静電容量を増大しうる
電極材料として、本出願人は先に、粗面化したアルミニ
ウム箔の表面に、蒸着法によるチタン皮膜を形成した電
極材料を提案した(特開昭61−180420号、特開昭61−21
4420号)。かかる電極材料によれば、アルミニウム箔表
面の凹凸効果がチタン皮膜に波及するとともに、これに
チタン皮膜自体の凹凸効果が相俟って皮膜表面を粗な状
態となしうる結果、チタン皮膜を形成しないアルミニウ
ム箔に較べて拡面率を向上しえ、ひいては静電容量の増
大化が可能となる。
Therefore, as an electrode material capable of further increasing the surface area and increasing the electrostatic capacity, the present applicant has previously proposed an electrode material in which a titanium film is formed by vapor deposition on the surface of a roughened aluminum foil ( JP-A-61-180420, JP-A-61-21
No. 4420). According to such an electrode material, the unevenness effect on the surface of the aluminum foil spreads to the titanium film, and the unevenness effect of the titanium film itself can be combined with this to make the film surface rough, so that the titanium film is not formed. The area expansion ratio can be improved as compared with the aluminum foil, and the capacitance can be increased.

発明が解決しようとする問題点 ところが、上記のような電極材料において、同じチタン
蒸着皮膜を形成したものであっても、静電容量が小さい
ものとなる場合があることが発明者らのその後の研究に
より判明した。
The problem to be solved by the invention is that even if the same titanium vapor-deposited film is formed on the electrode material as described above, the electrostatic capacitance may be small in some cases. Research revealed.

この発明はかかる事情に鑑み、静電容量の大きな電極材
料を確実に提供することを目的としてなされたものであ
る。
In view of such circumstances, the present invention has been made for the purpose of reliably providing an electrode material having a large capacitance.

問題点を解決するための手段 上記目的において、発明者はさらに実験と研究を重ねた
結果、アルミニウム箔にチタン蒸着皮膜を形成するに際
しての蒸着処理工程中におけるアルミニウム箔の表面温
度が、チタン皮膜表面の凹凸状態ひいては静電容量の大
きさに著しい影響を与えうるものであることを知見する
に至り、かかる知見に基いてこの発明を完成しえたもの
である。
Means for Solving the Problems With the above object, the inventors further conducted experiments and studies, and as a result, the surface temperature of the aluminum foil during the vapor deposition treatment step in forming the titanium vapor deposition film on the aluminum foil was The inventors have come to find that the irregularity state of 1) and, consequently, the magnitude of the electrostatic capacity can be significantly affected, and the present invention has been completed based on such knowledge.

即ちこの発明は、粗面化されたアルミニウム箔の表面
に、チタン蒸着処理を施してチタン皮膜を形成するに際
し、蒸着処理工程中を通じてアルミニウム箔の表面温度
を300℃以下に保持することを特徴とする電解コンデン
サ用アルミニウム電極材料の製造方法を要旨とするもの
である。
That is, the present invention, the surface of the roughened aluminum foil, when performing a titanium vapor deposition treatment to form a titanium film, the surface temperature of the aluminum foil is maintained at 300 ℃ or less throughout the vapor deposition treatment step, The subject is a method for producing an aluminum electrode material for an electrolytic capacitor.

上記アルミニウム箔の組成は特に限定されるものではな
く、電解コンデンサ用として用いられるものであれば良
い。
The composition of the aluminum foil is not particularly limited as long as it is used for an electrolytic capacitor.

アルミニウム箔の粗面化は、その凹凸効果をチタン皮膜
表面に波及せしめて、チタン皮膜表面の拡面率向上を助
長するために施されるものである。この粗面化は、一般
的には、電気化学的あるいは化学的な湿式エッチングに
より行われる。粗面化の状態や程度は特に限定されない
が、好ましい粗面化状態として、第1図に示すように、
アルミニウム箔(1)の表面を海綿状組織層(2)に形
成した場合を挙げうる。この海綿状組織層(2)とは、
同図に示すように、三次元方向においてほぼ連続気泡状
態に複雑に連通した空隙部(2a)を有する組織層をい
う。
The roughening of the aluminum foil is carried out in order to spread the unevenness effect on the surface of the titanium film and promote the improvement of the surface expansion rate of the surface of the titanium film. The roughening is generally performed by electrochemical or chemical wet etching. The state and degree of surface roughening are not particularly limited, but as a preferable surface roughening state, as shown in FIG.
The case where the surface of the aluminum foil (1) is formed in the spongy tissue layer (2) may be mentioned. This spongy tissue layer (2) is
As shown in the same figure, it refers to a tissue layer having voids (2a) that are intricately communicated with each other in a substantially continuous cell state in the three-dimensional direction.

チタン皮膜(3)をアルミニウム箔表面へ形成するため
の蒸着処理法は、従来行われているものを任意に採用し
うるが、好ましい処理法とし連続的巻き取り蒸着法を挙
げうる。即ちこの方法は、第2図に示すように、図示し
ない処理層内において、コイル状アルミニウム箔(1)
を、回転する冷却ロール(4)の下部周面に沿わせて搬
送しつつ巻き取る一方で、冷却ロール(4)の下方に電
子ビーム蒸発源(5)を配設し、冷却ロール(4)の周
面に沿って移動中のアルミニウム箔(1)に前記蒸発源
(5)からチタンを蒸発せしめて付着させ、チタン皮膜
(3)を形成するものである。なお第2図において、
(6)はガイドロール、(7)はアルミニウム箔(1)
への蒸着範囲を規制する規制板である。この方法によれ
ば、冷却ロール(4)に沿ってアルミニウム箔が移動す
ることから、該箔の位置によって蒸発源(5)からのチ
タン粒子の該箔に対する入射角が変化することとなる。
この入射角の変化がチタン皮膜表面をより粗な状態と
し、容量増加に対して好ましい影響を与えうる。
As the vapor deposition treatment method for forming the titanium film (3) on the surface of the aluminum foil, any conventional vapor deposition treatment method can be adopted, but a preferable treatment method is a continuous winding vapor deposition method. That is, as shown in FIG. 2, this method is used in a coiled aluminum foil (1) in a treatment layer (not shown).
Is wound along the lower peripheral surface of the rotating cooling roll (4) while being conveyed, while the electron beam evaporation source (5) is arranged below the cooling roll (4) to cool the cooling roll (4). The titanium film (3) is formed by evaporating and adhering titanium from the evaporation source (5) to the aluminum foil (1) which is moving along the peripheral surface of. In addition, in FIG.
(6) is a guide roll, (7) is an aluminum foil (1)
Is a regulation plate that regulates the vapor deposition range on the substrate. According to this method, since the aluminum foil moves along the cooling roll (4), the incident angle of the titanium particles from the evaporation source (5) to the foil changes depending on the position of the foil.
This change in the incident angle causes the surface of the titanium film to become rougher, which may have a favorable effect on the increase in capacity.

而してこの発明では、チタン蒸着処理工程中におけるア
ルミニウム箔(1)の表面温度を300℃以下に保持しな
ければならない。冷却手段を施さなければ高温となり、
300℃を超えるとアルミニウム箔表面に付着したチタン
粒子が互いに融合しあって被覆表面が平滑化され、拡面
率の向上ひいては静電容量の増大化を達成できなくなる
からである。一方アルミニウム箔表面の保持温度が低過
ぎると、チタン被膜(3)とアルミニウム箔(1)との
密着性に劣るものとなるという新たな欠点を派生するこ
とから、望ましくは0℃〜300℃、特に好適には50℃〜1
50℃の温度に保持するのが良い。ここでチタン蒸着処理
工程とは、例えば前述の第1図に示すような連続的巻き
取り蒸着法においては、蒸発されたチタンが最初に付着
する入口部(8)から最後に付着する出口部(9)まで
の工程をいい、この間においてアルミニウム箔(1)の
表面温度が300℃以下に保持されることを必要とする。
Therefore, in the present invention, the surface temperature of the aluminum foil (1) during the titanium vapor deposition treatment step must be maintained at 300 ° C. or lower. If no cooling means is applied, the temperature will rise,
This is because if the temperature exceeds 300 ° C., the titanium particles adhered to the surface of the aluminum foil will fuse with each other to smooth the coated surface, and it will not be possible to achieve an improvement in the surface expansion rate and thus an increase in the capacitance. On the other hand, if the holding temperature of the aluminum foil surface is too low, a new defect that the adhesion between the titanium coating (3) and the aluminum foil (1) will be inferior will be derived. Particularly preferably 50 ℃ ~ 1
It is better to keep the temperature at 50 ° C. Here, the titanium vapor deposition treatment step is, for example, in the continuous winding vapor deposition method as shown in FIG. 1 described above, from the inlet portion (8) to which vaporized titanium is first attached to the outlet portion (8) to which vaporized titanium is finally attached. The process up to 9) is required, during which the surface temperature of the aluminum foil (1) needs to be maintained at 300 ° C. or lower.

その他の蒸着処理条件、例えば、蒸着雰囲気の種類、雰
囲気圧、蒸発距離、蒸着速度等は特に限定されるもので
はないが、望ましくはこれらを次のように設定するのが
良い。即ち、雰囲気はAr等の不活性ガス雰囲気とするの
が形成Ti皮膜の表面の粗面化の点から好ましい。雰囲気
圧は1×10-4〜5×10-3Torrとするのが良い。1×10-4
Torr未満では皮膜の微細粗面化効果が減少して静電容量
の小さいものとなる虞れがあるからであり、逆に5×10
-3を超える圧力に設定すると、チタンが蒸発しにくくな
るうえ、アルミニウム箔との密着性が悪くなる虞れがあ
るからである。量産性を考えた場合、好適には1×10-3
Torr程度の圧力に設定するのが良い。蒸発距離は150〜4
00mmとするのが良い。400mmを超えるとチタンの付着効
率(チタン皮膜の形成量/チタンの蒸発量)が悪くなる
恐れがあるからであり、逆に150mm未満では、付着効率
は良くなるが蒸発源からの輻射熱でアルミニウム箔表面
の温度上昇をきたすとともに、ガス圧の影響が少なくな
り静電容量が低下する虞れがあるからである。蒸着速度
は4.5×10-3〜0.225mg/cm2secとするのが良い。0.225mg
/cm2secを超える蒸着速度ではガス圧の影響が少なくな
り、静電容量が低下するなどの欠点を派生する虞れがあ
るからであり、逆に4.5×10-3mg/cm2sec未満の蒸着速度
では生産性が悪く処理コストが高くつくからである。ま
たチタン皮膜の厚さは0.2〜3μmとするのが良い。0.2
μm未満では皮膜表面が平滑なものとなり、ひいては静
電容量が小さいものとなってしまう恐れがあるからであ
り、逆に3μmを超えても使用チタン材料の増大、コス
ト上昇にみあうだけの効果が得られない虞れがるからで
ある。なおチタン皮膜の厚さを皮膜量に換算すると、0.
2〜3μmは0.09〜1.35mg/cm2となる。
Other vapor deposition processing conditions, such as the type of vapor deposition atmosphere, atmospheric pressure, vaporization distance, vapor deposition rate, etc., are not particularly limited, but it is desirable to set these as follows. That is, the atmosphere is preferably an inert gas atmosphere such as Ar from the viewpoint of roughening the surface of the formed Ti film. The atmospheric pressure is preferably 1 × 10 -4 to 5 × 10 -3 Torr. 1 x 10 -4
If it is less than Torr, the effect of finely roughening the coating may be reduced and the electrostatic capacity may be reduced.
This is because when the pressure exceeds -3 , titanium is less likely to evaporate, and the adhesion with the aluminum foil may deteriorate. Considering mass productivity, it is preferably 1 × 10 -3
It is better to set the pressure to about Torr. Evaporation distance is 150-4
00mm is good. If it exceeds 400 mm, the adhesion efficiency of titanium (titanium film formation amount / titanium evaporation amount) may deteriorate. On the contrary, if it is less than 150 mm, the adhesion efficiency improves but the radiation heat from the evaporation source causes aluminum foil. This is because the temperature of the surface may rise and the influence of the gas pressure may decrease, and the capacitance may decrease. The deposition rate should be 4.5 × 10 -3 to 0.225 mg / cm 2 sec. 0.225 mg
This is because, if the deposition rate exceeds / cm 2 sec, the influence of gas pressure will be less, and there is a risk of causing defects such as a decrease in capacitance. Conversely, less than 4.5 × 10 -3 mg / cm 2 sec This is because the productivity is poor and the processing cost is high at the vapor deposition rate of. Further, the thickness of the titanium film is preferably 0.2 to 3 μm. 0.2
If the thickness is less than μm, the surface of the film will be smooth, which may result in a small electrostatic capacity. On the contrary, if the thickness exceeds 3 μm, the effect of increasing the titanium material used and increasing the cost will be achieved. This is because there is a risk that the Converting the thickness of the titanium film into the amount of film gives 0.
2-3 μm is 0.09 to 1.35 mg / cm 2 .

上記によりチタン皮膜(3)を形成したアルミニウム箔
は、これをそのまま電解コンデンサ用陰極材料としても
良く、あるいはその後硼酸、硼酸アンモニウム、酒石
酸、酒石酸アンモニウム等の溶液中で陽極酸化処理し、
酸化皮膜を形成して陽極材料とし使用しても良い。
The aluminum foil on which the titanium film (3) has been formed as described above may be used as it is as a cathode material for an electrolytic capacitor, or thereafter anodized in a solution of boric acid, ammonium borate, tartaric acid, ammonium tartrate, etc.,
An oxide film may be formed and used as an anode material.

発明の効果 この発明は上述の次第で、粗面化されたアルミニウム箔
の表面に、チタン蒸着処理を施してチタン皮膜を形成す
るに際し、蒸着処理工程中を通じてアルミニウム箔の表
面温度を300℃以下に保持することを特徴とするもので
あるから、アルミニウム箔の粗面化による凹凸状態を顕
出し、さらにその上に皮膜自体の微細な凹凸を有する著
しく粗な表面状態のチタン皮膜を確実に形成せしめるこ
とが可能となる。その結果、静電容量の大きなかつその
値にバラツキのない高品質の電解コンデンサ用アルミニ
ウム電極材料を確実に提供することができる。
EFFECTS OF THE INVENTION According to the present invention, the surface of the roughened aluminum foil is subjected to a titanium vapor deposition treatment to form a titanium film, and the surface temperature of the aluminum foil is kept at 300 ° C. or lower throughout the vapor deposition treatment step. Since it is characterized by holding, it makes it possible to reveal the uneven state due to the roughening of the aluminum foil, and to surely form a titanium film with a remarkably rough surface state with fine unevenness of the film itself on it It becomes possible. As a result, it is possible to reliably provide a high-quality aluminum electrode material for an electrolytic capacitor, which has a large capacitance and has no variation in the value.

実施例 次にこの発明の実施例について説明する。Embodiment Next, an embodiment of the present invention will be described.

厚さ5μm、純度99.8%のアルミニウム箔を、液温50
℃、HCl:200m1/l、HNO3:6m1/l、H3PO4:3m1/l、H2SO4:1m
1/lの混合溶液中に浸漬し、20A/dm2の電流密度で2分間
交流電解エッチングを行った。このエッチング処理によ
り、各アルミニウム箔表面には、厚さ最大約15μmの海
綿状組織層が形成されていた。
Aluminum foil with a thickness of 5 μm and a purity of 99.8% is used at a liquid temperature of 50
℃, HCl: 200m1 / l, HNO 3: 6m1 / l, H 3 PO 4: 3m1 / l, H 2 SO 4: 1m
It was immersed in a mixed solution of 1 / l and subjected to alternating current electrolytic etching at a current density of 20 A / dm 2 for 2 minutes. By this etching treatment, a spongy tissue layer having a maximum thickness of about 15 μm was formed on the surface of each aluminum foil.

次に各アルミニウム箔につき、第2図に示した連続的巻
き取り蒸着法を用いて、チタン蒸着処理を施し、箔表面
にチタン皮膜を形成した。蒸着条件はいずれも1×10-3
TorrAr雰囲気中にて、蒸発距離250mm、蒸発速度5×10
-3mg/cm2secに設定する一方、冷却ロールの温度コント
ロールによりアルミニウム箔表面の温度のみを下記第1
表に示すように各種に変えて蒸着処理を実行した。また
チタン皮膜の厚さがいずれも平均1μm(皮膜量換算0.
45mg/cm2)となるように行った。
Next, each aluminum foil was subjected to titanium vapor deposition treatment using the continuous winding vapor deposition method shown in FIG. 2 to form a titanium film on the foil surface. The evaporation conditions are all 1 × 10 -3
In TorrAr atmosphere, evaporation distance 250mm, evaporation rate 5 × 10
While setting it to -3 mg / cm 2 sec, control the temperature of the chill roll so that only the temperature of the aluminum foil surface is
As shown in the table, the vapor deposition process was performed by changing various types. In addition, the titanium coatings have an average thickness of 1 μm (converted into a coating amount of 0.
45 mg / cm 2 ).

そして上記により得た各種の電解コンデンサ用アルミニ
ウム陰極材料の各々について、その静電容量を液温30
℃、10%硼酸アンモニウム溶液中で測定した。その結果
を第1表に併せて示す。
Then, for each of the various aluminum cathode materials for electrolytic capacitors obtained as described above, its capacitance was measured at a liquid temperature of 30
Measured in a 10% ammonium borate solution at 0 ° C. The results are also shown in Table 1.

また冷却ロールによる冷却を施さなかった場合の静電容
量を測定したところ1000μF以下であった。
When the electrostatic capacity was measured without cooling with a cooling roll, it was 1000 μF or less.

上記結果から明らかなように、本発明によれば静電容量
の大きな電解コンデンサを提供しうるものであることを
確認しえた。
As is clear from the above results, it was confirmed that the present invention can provide an electrolytic capacitor having a large capacitance.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明によって製造される電極材料の一例を
示す模式的断面図、第2図はこの発明を実施する蒸着処
理法の一例としての連続的巻き取り蒸着法の構成を示す
説明的断面図である。 (1)…アルミニウム箔、(3)…チタン皮膜、(4)
…冷却ロール、(5)…蒸発源。
FIG. 1 is a schematic cross-sectional view showing an example of an electrode material manufactured by the present invention, and FIG. 2 is an explanatory cross-sectional view showing the structure of a continuous winding vapor deposition method as an example of a vapor deposition treatment method for carrying out the present invention. It is a figure. (1) ... Aluminum foil, (3) ... Titanium film, (4)
... Cooling roll, (5) ... Evaporation source.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】粗面化されたアルミニウム箔の表面に、チ
タン蒸着処理を施してチタン皮膜を形成するに際し、蒸
着処理工程中を通じてアルミニウム箔の表面温度を300
℃以下に保持することを特徴とする電解コンデンサ用ア
ルミニウム電極材料の製造方法。
1. When the surface of a roughened aluminum foil is subjected to a titanium vapor deposition treatment to form a titanium film, the surface temperature of the aluminum foil is kept at 300 during the vapor deposition treatment step.
A method for producing an aluminum electrode material for an electrolytic capacitor, which is characterized by holding at a temperature of not higher than ° C.
JP2699387A 1987-02-06 1987-02-06 Method for manufacturing aluminum electrode material for electrolytic capacitor Expired - Lifetime JPH079869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2699387A JPH079869B2 (en) 1987-02-06 1987-02-06 Method for manufacturing aluminum electrode material for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2699387A JPH079869B2 (en) 1987-02-06 1987-02-06 Method for manufacturing aluminum electrode material for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS63194320A JPS63194320A (en) 1988-08-11
JPH079869B2 true JPH079869B2 (en) 1995-02-01

Family

ID=12208684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2699387A Expired - Lifetime JPH079869B2 (en) 1987-02-06 1987-02-06 Method for manufacturing aluminum electrode material for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH079869B2 (en)

Also Published As

Publication number Publication date
JPS63194320A (en) 1988-08-11

Similar Documents

Publication Publication Date Title
EP0344316B1 (en) Method for producing an electrolytic capacitor
US4763229A (en) Aluminum capacitor plate for electrolytic capacitor and process for making the same
US4309810A (en) Porous metal films
US5482743A (en) Manufacturing a plate for an electrode of an electrolytic condenser
JP3475193B2 (en) Method and apparatus for forming a porous coating of an electrolytic capacitor and a cathode film
JP2008010490A (en) Manufacturing method of electrode for electrolytic capacitor
JPS6215813A (en) Anode material for electrolytic capacitor
GB2056503A (en) Porous metal films
JPH079869B2 (en) Method for manufacturing aluminum electrode material for electrolytic capacitor
US6452783B1 (en) Process for the production of an anode for an electrolytic capacitor, anode produced by such process, and capacitor having such anode
JPH0738368B2 (en) Method for manufacturing aluminum electrode material for electrolytic capacitor
JPH0263284B2 (en)
JPH0748462B2 (en) Method for manufacturing aluminum electrode material for electrolytic capacitor
JPS63160322A (en) Aluminum electrode material for electrolytic capacitor
EP1730756A1 (en) Electrode sheet for capacitors, method for manufacturing the same, and electrolytic capacitor
JP3548583B2 (en) Electrode foil
JPH0260048B2 (en)
JP3155750B2 (en) Method for producing aluminum electrode for electrolytic capacitor
JP3685820B2 (en) Aluminum foil for electrolytic capacitors
JPH079868B2 (en) Electrode material for electrolytic capacitors
JP3796694B2 (en) Metal-deposited plastic substrate and method for producing the same
JP3548582B2 (en) Electrode foil
JPS63100711A (en) Manufacture of electrode material for electrolytic capacitor
JP2012089688A (en) Electrode foil for aluminum electrolytic capacitor, aluminum electrolytic capacitor using it, and method of manufacturing electrode foil for aluminum electrolytic capacitor
RU2098878C1 (en) Method for manufacturing of cathode foil and cathode foil for electrolytic capacitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term