JPH0798132B2 - Method for preventing deterioration of catalytic oxidation catalyst activity - Google Patents

Method for preventing deterioration of catalytic oxidation catalyst activity

Info

Publication number
JPH0798132B2
JPH0798132B2 JP63187014A JP18701488A JPH0798132B2 JP H0798132 B2 JPH0798132 B2 JP H0798132B2 JP 63187014 A JP63187014 A JP 63187014A JP 18701488 A JP18701488 A JP 18701488A JP H0798132 B2 JPH0798132 B2 JP H0798132B2
Authority
JP
Japan
Prior art keywords
oxidation catalyst
sulfur compound
exhaust gas
catalytic oxidation
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63187014A
Other languages
Japanese (ja)
Other versions
JPH0240217A (en
Inventor
幸雄 浅見
昇 広岡
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP63187014A priority Critical patent/JPH0798132B2/en
Publication of JPH0240217A publication Critical patent/JPH0240217A/en
Publication of JPH0798132B2 publication Critical patent/JPH0798132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、硫黄化合物を含有する産業用プラントの排ガ
ス中の一酸化炭素あるいは炭化水素類の酸化物を接触酸
化によって除去する際に用いる接触酸化触媒の活性劣化
防止方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a contact used for removing carbon monoxide or oxides of hydrocarbons from exhaust gas of an industrial plant containing a sulfur compound by catalytic oxidation. The present invention relates to a method for preventing activity deterioration of an oxidation catalyst.

(従来の技術) 産業用プラントの排ガスは煙突などにより大気中に拡散
放出されたり、各種のスクラバーで水又は溶媒で洗浄す
ることにより、または排ガス中の可燃性化合物を完全燃
焼せしめるために、新たに灯油やプロパンなどの燃料を
供給して焼却処理を行ったりすることにより、有害な刺
激臭や悪臭その他、公害の発生および被害を最小限にす
る努力が払われてきた。
(Prior art) Exhaust gas from an industrial plant is diffused and released into the atmosphere by a chimney, is washed with water or a solvent by various scrubbers, or in order to completely burn combustible compounds in the exhaust gas, Efforts have been made to minimize the occurrence and damage of harmful irritating odors, bad odors, and other pollution by supplying fuel such as kerosene and propane to incineration.

一般には、これらの有害な刺激臭や悪臭の原因となる排
ガス中の微量成分は、産業用プラント内における未捕集
の主生成物、副生成物、その他であり、炭化水素類の酸
化物や硫黄化合物などが主体であり、特に前記炭化水素
類の酸化物はごく微量存在しても刺激臭や悪臭の原因と
なり、その被害は大きいと言われている。
In general, trace components in exhaust gas that cause these harmful irritating odors and malodors are uncollected main products, by-products, and other substances in industrial plants, and oxides of hydrocarbons and It is mainly composed of a sulfur compound and the like, and it is said that the oxides of the above hydrocarbons cause an irritating odor and an offensive odor even if they are present in a very small amount, and the damage thereof is great.

前記洗浄方式は廃液の処理に要する経費が多大となり、
更に燃料添加による焼却処理法も排ガス量が多大で、可
燃性物質含量が微量の場合、添加すべき燃料の使用量が
多く、経済的でない。
The cleaning method requires a large amount of cost for treating the waste liquid,
Further, in the incineration method by adding fuel, the amount of exhaust gas is large, and when the content of combustible substances is small, the amount of fuel to be added is large, which is not economical.

そこで上記排ガス中の微量可燃性物質を酸化触媒を用い
て接触酸化(完全燃焼)する方法が注目され、実用化さ
れている。コークス炉排ガスや無水フタル酸製造プラン
ト排ガスのように硫黄化合物(SOx)を含有する排ガス
中の有害で、刺激臭もしくは悪臭を呈する一酸化炭素
(CO)あるいは炭化水素類の酸化物を処理する場合も同
様な酸化触媒を用いる方式が採用されている。
Therefore, a method of catalytically oxidizing (completely burning) a slight amount of combustible substances in the exhaust gas by using an oxidation catalyst has been noticed and put into practical use. Treats carbon monoxide (CO) or hydrocarbon oxides that are harmful and have an irritating or offensive odor in exhaust gas containing sulfur compounds (SO x ) such as exhaust gas from coke oven and phthalic anhydride production plant Also in this case, a system using a similar oxidation catalyst is adopted.

酸化触媒としては最近では白金および/またはパラジウ
ムなどの白金族元素を少量γ−アルミナのような担体に
担持したものが主に使用されている(特公昭55−1525
6、55−45257、56−12184)。
As the oxidation catalyst, recently, a small amount of platinum group element such as platinum and / or palladium supported on a carrier such as γ-alumina is mainly used (Japanese Patent Publication No. 55-1525).
6, 55-45257, 56-12184).

しかし、上記した公知触媒は排ガスに含まれる硫黄化合
物成分に被毒され、経時的に性能低下を起こし、寿命が
短い(寿命1〜2年)という問題を抱えている。この性
能劣化の機構は担体であるγ−アルミナが硫黄化合物成
分により硫酸塩化され、Al2(SO4)3を生成し、細孔構造
の変化や、それに伴うBET比表面積の低下のため、担持
白金族元素粒子のシンタリングを生じて酸化活性を失う
ためと考えられている。
However, the above-mentioned known catalyst has a problem that it is poisoned by the sulfur compound component contained in the exhaust gas, its performance deteriorates with time, and its life is short (life of 1 to 2 years). The mechanism of this performance deterioration is that the carrier γ-alumina is sulphated by the sulfur compound component to form Al 2 (SO 4 ) 3, which causes a change in the pore structure and the accompanying decrease in the BET specific surface area. It is considered that this is because the sintering of the platinum group element particles occurs and the oxidation activity is lost.

この劣化対策の一つとして、硫黄化合物成分により硫酸
塩化されない担体、例えば酸化チタン(TiO2)に白金を
担持した酸化触媒が最近提案されている(特公昭61−47
568)。しかし酸化チタン担体のBET比表面積がγ−アル
ミナに比し、70m2/g以下と著しく小さいためか、活性レ
ベルが低く、そのため高価な白金を高濃度にしなければ
ならないという欠点がある。この他、酸化チタン単独で
の成型性が不良で実用触媒としての十分な強度が得難い
こと、また耐熱性を賦与するため高温焼成(一般には60
0℃以上)すると、前述のように低比表面積化し、低活
性しか示さない等の欠点を有し、酸化チタンの有効性
(特に耐硫黄化合物性)を認めながらも、実用上は使用
困難な問題が解消されていない。
As one of the measures against this deterioration, an oxidation catalyst in which platinum is supported on a carrier which is not sulfated by a sulfur compound component, for example, titanium oxide (TiO 2 ) has been proposed (Japanese Patent Publication No. 61-47).
568). However, the BET specific surface area of the titanium oxide carrier is as low as 70 m 2 / g or less as compared with γ-alumina, probably because the activity level is low and therefore expensive platinum must be concentrated at a high concentration. In addition, titanium oxide alone has poor moldability and it is difficult to obtain sufficient strength as a practical catalyst, and high temperature firing (generally 60
If the temperature is higher than 0 ° C), the specific surface area is reduced as described above, and the activity is low. As a result, although the effectiveness of titanium oxide (particularly sulfur compound resistance) is recognized, it is practically difficult to use. The problem has not been resolved.

さらに上記のような耐硫黄化合物性担体触媒を用いる以
外に酸化触媒の活性劣化を防ぐ方法として、酸化触媒層
の前工程に硫黄化合物成分を吸着除去するため固体吸着
剤を充填する乾式除去技術が考えられる。これまで硫黄
化合物成分の吸着剤としては酸化銅のような重金属成分
をγ−アルミナや酸化チタンに担持した複合系吸着剤が
提案されている(特公昭49−17951、59−24849)。しか
し、酸化銅のような重金属成分を含有する吸着剤を酸化
触媒の前工程に充填した場合、その飛散によって白金族
元素を担持した酸化触媒の性能を著しく低下させるた
め、目的とする吸着剤としては使用上の制約がある。更
に上記の重金属成分を含有する吸着剤の使用温度は、一
般に350〜390℃前後の高温に保持しないと十分に機能し
ない欠点を有する。しかも、このような高温に維持する
ことは、入口温度250℃以下での低温操作を特徴とする
接触酸化法の経済性を損なうものである。
Further, as a method for preventing the activity deterioration of the oxidation catalyst other than using the above sulfur-resistant compound-supported catalyst, there is a dry removal technique in which a solid adsorbent is charged in the preceding step of the oxidation catalyst layer to adsorb and remove the sulfur compound component. Conceivable. Hitherto, as a sulfur compound component adsorbent, a composite type adsorbent in which a heavy metal component such as copper oxide is supported on γ-alumina or titanium oxide has been proposed (Japanese Patent Publication No. 49-17951, 59-24849). However, when an adsorbent containing a heavy metal component such as copper oxide is packed in the previous step of the oxidation catalyst, the performance of the oxidation catalyst supporting the platinum group element is significantly reduced due to the scattering of the adsorbent. Has restrictions on use. Further, the operating temperature of the above-mentioned adsorbent containing a heavy metal component generally has a drawback that it does not function sufficiently unless it is maintained at a high temperature of about 350 to 390 ° C. Moreover, maintaining such a high temperature impairs the economical efficiency of the catalytic oxidation method which is characterized by low temperature operation at an inlet temperature of 250 ° C. or lower.

(発明が解決しようとする課題) 従って、本発明は、耐硫黄化合物性に乏しいアルミナ担
体に担持した白金族元素、例えば白金あるいはパラジウ
ム系酸化触媒の活性劣化を防止するために、前記のよう
に予め硫黄酸化物成分を固体吸着剤(保護層)で処理す
ることにより酸化触媒の担体の変質(Al2(SO4)3生成)
による白金もしくはパラジウムのシンタリングを防止
し、その結果として酸化活性の低下を緩和し、酸化触媒
としての寿命を延長することを目的とする。
(Problems to be Solved by the Invention) Therefore, the present invention has the above-mentioned constitution in order to prevent activity deterioration of a platinum group element supported on an alumina carrier having poor sulfur compound resistance, for example, platinum or palladium-based oxidation catalyst. Modification of the oxidation catalyst carrier by previously treating the sulfur oxide component with a solid adsorbent (protective layer) (generation of Al 2 (SO 4 ) 3 )
The purpose is to prevent the sintering of platinum or palladium due to, thereby alleviating the decrease in the oxidation activity and prolonging the life as an oxidation catalyst.

(課題を解決するための手段) 本発明者はアルミナ担体に白金族元素、たとえば白金も
しくはパラジウムを担持した酸化触媒の活性劣化の防止
方法について鋭意検討した結果、通常の酸化触媒より安
価で、かつ酸化触媒の被毒性の少ない固体吸収剤で排ガ
ス中に含有される硫黄化合物成分を低温で効率良く吸着
除去できることを可能とし、あるいは硫黄化合物成分の
除去後、次いで酸化触媒による可燃性物質の処理を行う
場合における触媒寿命を延長し、トータルとして排ガス
処理費の節減が可能となる硫黄化合物成分の吸着剤なら
びに硫黄化合物含有排ガスの処理法を見出し、本発明に
至った。
(Means for Solving the Problems) The present inventor has diligently studied a method for preventing the activity deterioration of an oxidation catalyst in which a platinum group element such as platinum or palladium is supported on an alumina carrier, and as a result, it is cheaper than an ordinary oxidation catalyst, and It is possible to efficiently adsorb and remove the sulfur compound component contained in the exhaust gas at low temperature with a solid absorbent that is less toxic to the oxidation catalyst, or after removing the sulfur compound component, then treat the combustible substance with the oxidation catalyst. The inventors have found a method for treating an exhaust gas containing a sulfur compound and a method for treating an exhaust gas containing a sulfur compound, which makes it possible to prolong the catalyst life in the case of carrying out the treatment and reduce the exhaust gas treatment cost as a whole.

即ち、本発明は、硫黄化合物を含有する排ガス中の一酸
化炭素あるいは炭化水素類の酸化物を接触酸化によって
除去する際に、酸化触媒層に通じる前に、固体吸着剤
(保護層)としてBET比表面積100m2/g以上、細孔容積2.
0cc/g以上の物性を有するケイ酸カルシウム成型体を用
い、排ガスを該固体吸着剤と接触させて200〜450℃の温
度で硫黄化合物を予め吸着除去することを特徴とする接
触酸化触媒の活性劣化防止方法である。
That is, the present invention, when removing the carbon monoxide or the oxides of hydrocarbons in the exhaust gas containing a sulfur compound by catalytic oxidation, BET as a solid adsorbent (protective layer) before reaching the oxidation catalyst layer. Specific surface area 100 m 2 / g or more, pore volume 2.
Using a calcium silicate molded body having a physical property of 0 cc / g or more, the exhaust gas is brought into contact with the solid adsorbent to adsorb and remove a sulfur compound in advance at a temperature of 200 to 450 ° C. This is a method of preventing deterioration.

本発明の固体吸着剤であるケイ酸カルシウム成型体はBE
T比表面積として100m2/g以上、細孔容積として2.0cc/g
以上(細孔径800Å以上)の物性を有することを特徴と
している。細孔容積値2.0cc/gならびに細孔径800Å未満
では、酸化触媒の活性劣化防止効果を長時間維持するこ
とが難しい。これは硫黄化合物成分が吸着除去されるに
従い、徐々に細孔が閉鎖し、排ガスの成型体内部への拡
散が阻害されるためである。成型体の形状は球状および
ペレット状のいずれでも使用できるが、比較的細孔容積
値を大きく維持でき、かつ粉化度が小さいという特徴の
ある球状が好ましい。
The calcium silicate molded body that is the solid adsorbent of the present invention is BE
T specific surface area of 100 m 2 / g or more, pore volume of 2.0 cc / g
It is characterized by having the above physical properties (pore size 800 Å or more). When the pore volume value is 2.0 cc / g and the pore diameter is less than 800Å, it is difficult to maintain the activity deterioration preventing effect of the oxidation catalyst for a long time. This is because the pores are gradually closed as the sulfur compound component is adsorbed and removed, and the diffusion of exhaust gas into the molded body is obstructed. The shape of the molded body may be either spherical or pellet, but a spherical shape is preferable because it has a relatively large pore volume value and a small degree of pulverization.

本発明に従って硫黄化合物成分の吸着除去を行う場合の
吸着工程の温度は200〜450℃であり、好ましくは250〜3
50℃である。温度が200℃未満になると硫黄化合物成分
の吸着速度が小さく、多量の吸着剤を必要とし、経済的
でなくなる。温度が400℃を超えると硫黄化合物成分の
吸着速度より脱着速度が大きくなるためか、結果として
吸着能力が低下する傾向にある。
The temperature of the adsorption step when adsorbing and removing the sulfur compound component according to the present invention is 200 to 450 ° C, preferably 250 to 3
It is 50 ° C. When the temperature is lower than 200 ° C, the adsorption rate of the sulfur compound component is low, a large amount of adsorbent is required, and it is not economical. If the temperature exceeds 400 ° C, the adsorption rate tends to decrease as a result, probably because the desorption rate becomes higher than the adsorption rate of the sulfur compound component.

(実施例) 以下、実施例および比較例に基づき本発明を具体的に説
明する。
(Example) Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples.

実施例1 吸着剤の硫黄化合物吸着性能の測定は下記のように行っ
た。反応管は石英製(内径25mmφ)であり、外部より電
気炉で加熱される。反応管の上部に吸着剤(保護層)と
して市販ケイ酸カルシウム成型体20mlを、下部に市販酸
化触媒(白金/アルミナ:0.2%Pt含有品)を40mlそれぞ
れ充填し、発煙硫酸(H2SO4/n−SO3;SO3約10%)中に
空気を13.3Nl/min.の速度でバブリングしたガスを約2
時間流通させた。保護層温度(即ち酸化触媒入口温度)
を270℃および410℃の2水準に設定した時のケイ酸カル
シウムの吸着硫黄(S)含量の測定結果を表1に示す。
また、上記270℃処理後の酸化触媒についてメタン酸化
活性を測定し、第1図に示す結果を得た。
Example 1 The sulfur compound adsorption performance of the adsorbent was measured as follows. The reaction tube is made of quartz (inner diameter 25 mmφ) and heated from outside by an electric furnace. 20 ml of a commercially available calcium silicate molded body as an adsorbent (protective layer) was filled in the upper part of the reaction tube, and 40 ml of a commercially available oxidation catalyst (platinum / alumina: 0.2% Pt-containing product) was filled in the lower part, and fuming sulfuric acid (H 2 SO 4 / n-SO 3 ; SO 3 about 10%), and bubbling air at a rate of 13.3 Nl / min.
Distributed for hours. Protective layer temperature (ie oxidation catalyst inlet temperature)
Table 1 shows the measurement results of the adsorbed sulfur (S) content of calcium silicate when two levels of 270 ° C. and 410 ° C. were set.
Further, the methane oxidation activity of the oxidation catalyst after the above 270 ° C. treatment was measured, and the results shown in FIG. 1 were obtained.

比較例1〜4 保護層としてγ−アルミナ、マグネシア、シリカゲル、
シリカ・アルミナ成型体を用いた以外は、それぞれ実施
例と同様にして発煙硫酸処理した時の吸着S含量の測定
結果を表1に示した。また270℃処理後の酸化触媒につ
いてメタン酸化活性を測定し、第1図に示す結果を得
た。
Comparative Examples 1 to 4 γ-alumina, magnesia, silica gel, as a protective layer,
Table 1 shows the measurement results of the adsorbed S content when the fuming sulfuric acid treatment was carried out in the same manner as in Example except that the silica / alumina molded body was used. Further, the methane oxidation activity of the oxidation catalyst after the treatment at 270 ° C. was measured, and the results shown in FIG. 1 were obtained.

(発明の効果) 本発明によれば、特定の固体吸着剤を用い、一定の温度
で処理する前処理によって、硫黄化合物を含有する排ガ
ス中の一酸化炭素あるいは炭化水素の酸化物の処理に用
いる接触酸化触媒の活性劣化を防止することができる。
(Effect of the Invention) According to the present invention, a specific solid adsorbent is used for treatment of carbon monoxide or hydrocarbon oxide in exhaust gas containing a sulfur compound by pretreatment of treatment at a constant temperature. It is possible to prevent activity deterioration of the catalytic oxidation catalyst.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明による吸着剤と比較例1〜4による各
種吸着剤を保護層として用いた時の酸化触媒(アルミナ
担体付白金触媒)のメタン酸化活性を示す図である。 図面において、横軸は入口温度(℃)および縦軸はCH4
反応率(%)を示し、 ○印は触媒としてケイ酸カルシウムを用いた実施例1、 △印は触媒としてγ−アルミナを用いた比較例1、 □印は触媒としてマグネシアを用いた比較例2、 ▲印は触媒としてシリカを用いた比較例3、 ×印は触媒としてシリカ・アルミナを用いた比較例4、 をそれぞれ示す。
FIG. 1 is a diagram showing the methane oxidation activity of an oxidation catalyst (alumina-supported platinum catalyst) when the adsorbent of the present invention and various adsorbents of Comparative Examples 1 to 4 were used as a protective layer. In the drawing, the horizontal axis is the inlet temperature (° C) and the vertical axis is CH 4
The reaction rate (%) is shown, ◯ indicates Example 1 using calcium silicate as a catalyst, Δ indicates Comparative Example 1 using γ-alumina as a catalyst, and □ indicates Comparative Example 2 using magnesia as a catalyst. , ▲ indicates Comparative Example 3 using silica as a catalyst, and × indicates Comparative Example 4 using silica-alumina as a catalyst.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】硫黄化合物を含有する排ガス中の一酸化炭
素あるいは炭化水素類の酸化物を接触酸化によって除去
する際に、酸化触媒層に通じる前に、固体吸着剤(保護
層)としてBET比表面積100m2/g以上、細孔容積2.0cc/g
以上の物性を有するケイ酸カルシウム成型体を用い、排
ガスを該固体吸着剤と接触させて200〜450℃の温度で硫
黄化合物を予め吸着除去することを特徴とする接触酸化
触媒の活性劣化防止方法。
1. A BET ratio as a solid adsorbent (protective layer) as a solid adsorbent (catalyst layer) when the carbon monoxide or the oxides of hydrocarbons contained in exhaust gas containing a sulfur compound are removed by catalytic oxidation, before being passed through the oxidation catalyst layer. Surface area 100 m 2 / g or more, pore volume 2.0 cc / g
Using a calcium silicate molded body having the above physical properties, exhaust gas is brought into contact with the solid adsorbent to adsorb and remove a sulfur compound in advance at a temperature of 200 to 450 ° C. to prevent activity deterioration of the catalytic oxidation catalyst. .
JP63187014A 1988-07-28 1988-07-28 Method for preventing deterioration of catalytic oxidation catalyst activity Expired - Lifetime JPH0798132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63187014A JPH0798132B2 (en) 1988-07-28 1988-07-28 Method for preventing deterioration of catalytic oxidation catalyst activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63187014A JPH0798132B2 (en) 1988-07-28 1988-07-28 Method for preventing deterioration of catalytic oxidation catalyst activity

Publications (2)

Publication Number Publication Date
JPH0240217A JPH0240217A (en) 1990-02-09
JPH0798132B2 true JPH0798132B2 (en) 1995-10-25

Family

ID=16198694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63187014A Expired - Lifetime JPH0798132B2 (en) 1988-07-28 1988-07-28 Method for preventing deterioration of catalytic oxidation catalyst activity

Country Status (1)

Country Link
JP (1) JPH0798132B2 (en)

Also Published As

Publication number Publication date
JPH0240217A (en) 1990-02-09

Similar Documents

Publication Publication Date Title
JP4431700B2 (en) Catalyst for removing carbon monoxide and method for removing carbon monoxide using the catalyst
US6251347B1 (en) Sequential adsorptive capture and catalytic oxidation of volatile organic compounds in a reactor bed
US7776780B1 (en) Catalysts for oxidation of mercury in flue gas
JP3895399B2 (en) Emission control system for internal combustion engines
SA97180338B1 (en) A process for reducing the total percentage of sulfur in gases containing hydrogen sulfide and other sulfur compositions
EP2864022B1 (en) Means for purifying fluids, method of its preparation and its use
JP3944094B2 (en) Photocatalyst production method, photocatalyst and gas purification device
JP2014073956A (en) Method of oxidizing carbon monoxide to carbon dioxide by light
KR101538000B1 (en) The method of oxidizing hazardous compounds by the mixture containing manganese
JPH08257105A (en) Hydrophobic deodorant and regeneration thereof
JPH0798132B2 (en) Method for preventing deterioration of catalytic oxidation catalyst activity
JP6140326B1 (en) Method for regenerating adsorbent of volatile organic compound
JP2006226218A (en) Exhaust emission control device and exhaust emission control method
JP3947285B2 (en) Manufacturing method of activated carbon for desulfurization and denitration with high denitration performance
JPH11244711A (en) Method for regeneration of catalyst by microwave
JP5909942B2 (en) Method and apparatus for desulfurization of sulfur compounds in fuel
JP3165719B2 (en) Adsorbent regeneration method
RU2771045C1 (en) Sorption-catalytic material for neutralization of emissions of vocal organic compounds
JP3262017B2 (en) Fuel reformer
Granite et al. Catalysts for oxidation of mercury in flue gas
JPH0975670A (en) Treatment of organic pollutant
SU833482A1 (en) Method of gas purification from nitrogen oxides
JP3066049B2 (en) Catalyst for purifying combustibles in exhaust gas
JPH0663411A (en) Exhaust gas cleaning catalyst for diesel engine
WO1995024258A1 (en) Method for removing nitrous oxide