JPH0796468B2 - Method for producing heat-resistant inorganic fiber molded body - Google Patents

Method for producing heat-resistant inorganic fiber molded body

Info

Publication number
JPH0796468B2
JPH0796468B2 JP61258778A JP25877886A JPH0796468B2 JP H0796468 B2 JPH0796468 B2 JP H0796468B2 JP 61258778 A JP61258778 A JP 61258778A JP 25877886 A JP25877886 A JP 25877886A JP H0796468 B2 JPH0796468 B2 JP H0796468B2
Authority
JP
Japan
Prior art keywords
weight
resistant inorganic
heat
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61258778A
Other languages
Japanese (ja)
Other versions
JPS63112478A (en
Inventor
淳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP61258778A priority Critical patent/JPH0796468B2/en
Publication of JPS63112478A publication Critical patent/JPS63112478A/en
Publication of JPH0796468B2 publication Critical patent/JPH0796468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックス、ガラス、各種金属酸化物等の焼
成において、炉の内張、棚板、およびトレイ等として使
用することのできる耐熱性無機質繊維を主体とする成形
体や、バーナープレート、排ガス浄化用触媒担体として
使用することのできる軽量、高強度で、耐熱衝撃性に優
れた耐熱性無機質繊維成形体の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a heat-resistant inorganic material that can be used as a lining of a furnace, a shelf plate, a tray, etc. in the firing of ceramics, glass, various metal oxides and the like. The present invention relates to a method for producing a heat-resistant inorganic fiber molded body that is lightweight, has high strength, and can be used as a burner plate, a catalyst carrier for exhaust gas purification, and has excellent thermal shock resistance, which is mainly composed of fibers.

〔従来の技術〕[Conventional technology]

耐熱性無機質繊維を主体とする成形体は、軽量(多孔
質)で耐熱衝撃性に優れているという特徴から種々の工
業分野で利用されている。特に最近になって、前記耐熱
性無機質繊維に無機物質を複合させることにより、従来
より高密度で高強度の成形体が得られるようになり、た
とえば、コンデンサー、センサー、IC基板等の電子機能
部品焼成用の内張、棚板、浅い鉢(以下トレイという)
等に使用されたり、多孔性を利用して触媒担体として使
用されたりしている。
Molded products mainly composed of heat-resistant inorganic fibers are used in various industrial fields because they are lightweight (porous) and have excellent thermal shock resistance. Particularly recently, by compounding the heat-resistant inorganic fiber with an inorganic substance, it has become possible to obtain a molded body having a higher density and higher strength than ever before. For example, electronic functional parts such as capacitors, sensors and IC substrates. Liners, shelves, and shallow pots for baking (hereinafter called trays)
It is also used as a catalyst carrier due to its porosity.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記した如く、耐熱性無機質繊維を主体とする成形体
は、各種形状に成形され、種々の用途に使用されている
が、従来の製造方法は、耐熱性無機質繊維と無機物質等
の添加剤を多量に水中にて分散混合後、凝集させてから
成形用型に真空吸引成形させる方法が汎用されていた。
この方法では、かさ密度の低い成形体は成形可能である
が、特に、電子機能部品焼成用の棚板・敷板・トレイ・
匣鉢等の各種焼成治具や触媒担体の用途に関しては、高
密度で高強度の材質が必要となり従来の製造方法では成
形できず、平板状に成形、プレス後、各種形状に加工し
て使用されたり、熱可塑性樹脂、熱硬化性樹脂中に耐熱
性無機質繊維を混練させてから成形したり、さらには、
空気中に浮遊させたまま各種物質の混合を行なうという
方法が考えられてきた。
As described above, the molded product mainly composed of the heat-resistant inorganic fiber is molded into various shapes and used for various purposes, but the conventional manufacturing method is to use the heat-resistant inorganic fiber and the additive such as the inorganic substance. A method has been widely used in which a large amount is dispersed and mixed in water, agglomerated, and then vacuum suction molded in a molding die.
With this method, molded products with low bulk density can be molded, but in particular, shelves, floor plates, trays, trays, etc. for firing electronic functional parts.
As for the use of various baking jigs such as saggers and catalyst supports, high density and high strength materials are required, which cannot be formed by conventional manufacturing methods. Molding, kneading the heat-resistant inorganic fiber in the thermoplastic resin, thermosetting resin, or further,
A method of mixing various substances while suspended in the air has been considered.

たとえば、耐熱性無機質繊維と無機バインダー(例えば
粘土、シリカゾル、アルミナゾル等)を大量の水でスラ
リー状となし平板状に真空吸引、プレス、乾燥後、所定
の形状に切削加工したものは、繊維が厚み方向に積層し
ているため切削の方向により成形体の一部が特に弱くな
るという問題点があった。具体的には、第1図の模式図
にあるように積層面相互の強度がないため、図の矢印の
部分で強度不足となり欠損がよく生じた。また、図のよ
うに底の深い形状物に対しては原料収率が低くなって製
品が高価となる問題があり量産には不向きであった。ま
た、凝集剤を使うことにより無機結合剤が集合離散する
ために強度が低かった。
For example, heat-resistant inorganic fibers and an inorganic binder (for example, clay, silica sol, alumina sol, etc.) with a large amount of water are vacuum-suctioned into a slurry form, pressed into a flat plate form, pressed, dried, and then cut into a predetermined shape. Since the layers are laminated in the thickness direction, there is a problem that a part of the molded body becomes particularly weak depending on the cutting direction. Specifically, as shown in the schematic view of FIG. 1, there is no mutual strength between the laminated surfaces, so the strength is insufficient at the portion indicated by the arrow in the drawing, and defects often occur. Further, as shown in the figure, for a product having a deep bottom, the raw material yield is low and the product becomes expensive, which is not suitable for mass production. Moreover, the strength was low because the inorganic binder was aggregated and dispersed by using the coagulant.

また、セラミックスの成形によく使用される顆粒状の原
料をプレスする方法は、耐熱性無機質繊維を核とする顆
粒がプレスにより破壊されず、また、破壊してしまうと
密度を小さくできないため粒状の繊維集合体が連続して
つながった構造となり、繊維集合粒子間の強度の全くな
い成形体となってしまい、第2図のようにエッヂの部分
に強度不足からよく欠損が生ずる問題があった。
In addition, the method of pressing a granular raw material that is often used for forming ceramics is such that the granules having the heat-resistant inorganic fiber as the core are not destroyed by the pressing, and if the granules are destroyed, the density cannot be reduced and the granular There is a problem that the fiber aggregate has a structure in which the fiber aggregates are continuously connected to each other, resulting in a molded body having no strength between the fiber aggregate particles, and the edge portion is often damaged due to insufficient strength as shown in FIG.

また、特開昭61−163173号公報にある様な成形助剤とし
て固体ワックスを使い加熱混練成形により耐熱性無機質
繊維成形体を得る方法は、混練に必要な粘性をワックス
にて補償させることが困難であり充分に繊維の分散して
いない構造を有した成形体しか得られないこと、さら
に、脱ロウ費用が高く成形体が高価となる等の問題があ
った。
Further, in the method of obtaining a heat-resistant inorganic fiber molded article by heat kneading and molding using solid wax as a molding aid as in JP-A-61-163173, the viscosity necessary for kneading can be compensated by the wax. There are problems that it is difficult to obtain a molded product having a structure in which fibers are not sufficiently dispersed, and that the dewaxing cost is high and the molded product is expensive.

さらに、特開昭59−184763号公報提案の如く超高温用セ
ラミックファイバーと粘土との混練物を吹付けにより型
付けして成形体を得る方法は、繊維が短くなりすぎ成形
体の密度を下げることができないこと、また、プレス成
形等の手段と比べて成形体の生密度が低くなり焼成後の
成形体強度を充分に向上できないこと等の問題があっ
た。
Further, a method of obtaining a molded product by molding a kneaded product of ceramic fibers for ultrahigh temperature and clay by spraying as proposed in JP-A-59-184763 is to reduce the density of the molded product because the fiber becomes too short. However, there is a problem in that the green density of the molded body is lower than that of means such as press molding, and the strength of the molded body after firing cannot be sufficiently improved.

一方、特開昭58−190855号公報で提案の如く、セラミッ
ク原料を混合したポリウレタン発泡体を焼成してポリウ
レタンを除去させて多孔質セラミック成形品を得る方法
によって成形した成形体は、基本的には繊維質材料を含
有していないし、微細な気孔を有する成形体が得られな
いから、繊維質材料を含むものに比較して、強度が劣る
という問題があった。
On the other hand, as proposed in JP-A-58-190855, a molded body formed by a method of firing a polyurethane foam mixed with a ceramic raw material to remove polyurethane to obtain a porous ceramic molded article is basically Since it does not contain a fibrous material and a molded product having fine pores cannot be obtained, there is a problem that the strength is inferior as compared with a product containing a fibrous material.

以上の様に従来の耐熱性無機質繊維成形体の製造方法は
種々の問題点が存在し、この問題に起因した構造上の欠
陥が現われていた。
As described above, the conventional method for producing a heat-resistant inorganic fiber molded body has various problems, and structural defects caused by this problem have appeared.

本発明は、これらの問題点を解決し、今までになかった
新しい耐熱性無機質繊維成形体の製造方法を提供し、耐
火性粉末と無機結合剤との混合組成物中に耐熱性無機質
繊維を均一に分散せしめた構造を有する成形体を提供す
ることにより、高強度で軽量、かつ量産化の容易な種々
形状の耐熱性無機質繊維成形体を提供し、前記機能部品
焼成用治具の省エネルギーおよび作業性の改善に寄与
し、前記触媒担体の品質向上とコストダウンに寄与する
ことを目的とする。
The present invention solves these problems, provides a method for producing a new heat-resistant inorganic fiber molded body that has never existed before, and a heat-resistant inorganic fiber in a mixed composition of a refractory powder and an inorganic binder, By providing a molded product having a structure in which it is uniformly dispersed, it provides a high-strength, lightweight, heat-resistant inorganic fiber molded product of various shapes that is easy to mass-produce, and saves energy of the jig for firing the functional component. It is intended to contribute to the improvement of workability, quality of the catalyst carrier and cost reduction.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、次の(a)〜(d)の工程から成
ることを特徴とするかさ密度0.6〜2.0g/cm3である耐熱
性無機質繊維成形体の製造方法に関するものであり、上
記目的を達成するために次のような手段を採用するもの
である。
That is, the present invention relates to a method for producing a heat-resistant inorganic fiber molded body having a bulk density of 0.6 to 2.0 g / cm 3, which is characterized by comprising the following steps (a) to (d): The following means are adopted to achieve the purpose.

(a)耐熱性無機質繊維20〜50重量%と耐火性粉末40〜
80重量%と無機結合剤5〜30重量%とから成る配合組成
物100重量部に対して、30〜150重量部の水と、必要に応
じて有機成形助剤を固形分で0.5〜10重量部とを添加し
て常温で混練する工程、 (b)前記混練物を脱気する工程、 (c)前記脱気物を多孔性の成形用型に入れ、常温にて
プレス成形体となす工程、 (d)前記プレス成形体を乾燥後800〜1600℃の温度範
囲で焼成する工程。
(A) 20 to 50% by weight of heat-resistant inorganic fiber and 40 to 40% of refractory powder
0.5 to 10 parts by weight of water and 30 to 150 parts by weight of water and, if necessary, an organic molding aid as a solid content, relative to 100 parts by weight of a compounded composition consisting of 80% by weight and an inorganic binder of 5 to 30% by weight Part and kneading at room temperature; (b) degassing the kneaded product; (c) placing the degassed product in a porous molding die to form a press-molded product at room temperature. (D) A step of firing the press-formed product after drying in a temperature range of 800 to 1600 ° C.

〔作用〕[Action]

耐熱性無機質繊維を主体とした成形体は、軽量で耐熱衝
撃性に優れているという理由から、工業炉の部品として
種々の形状に加工して使用されている。しかし、そのほ
とんどは、大量の水に前記繊維を分散させたスラリーを
真空吸引成形する方法によって製造されていた。この方
法によれば繊維が吸引方向に対して垂直に積層するため
強度の弱い部分ができること、深鉢のような異形物は加
工が困難であったり原料収率が低くなる等の問題から量
産化には不向きであった。
BACKGROUND ART A molded product mainly composed of a heat-resistant inorganic fiber is processed into various shapes and used as a part of an industrial furnace because it is lightweight and has excellent thermal shock resistance. However, most of them were produced by vacuum suction molding a slurry in which the fibers were dispersed in a large amount of water. According to this method, the fibers are laminated perpendicularly to the suction direction, so there are areas where the strength is weak, and irregular shapes such as deep bowls are difficult to process and the raw material yield is low, so mass production is carried out. Was not suitable for.

本発明は、耐熱性無機質繊維を主体とする成形体を、量
産に最も適したプレス法で成形する手段を新しく開発し
たことにより初めて開示されるものであり、基本的には
次の4つの項目から成るものである。
The present invention is disclosed for the first time by newly developing means for molding a molded body mainly composed of heat-resistant inorganic fiber by a pressing method most suitable for mass production, and basically, the following four items are disclosed. It consists of

第一は、耐熱性無機質繊維を耐火性粉末と無機結合剤と
の混合組成物中に分散させることである、繊維状物を粉
体状物に混合させるには、繊維状物を短く切断するか、
繊維状物の作る空間を乾燥あるいは焼成時に揮散する物
質で充填しておくかいずれかの手段が必要であるが、前
者は成形体の密度が上ってしまって本発明の目的に合わ
ないので後者の手段が必要条件になる。ここで、充填物
は水が最も安価で好ましい。ただし、繊維状物を充分に
解繊させるには高粘性の物質を繊維間に存在させ、その
せん断力を利用するのが有効であり、耐火性粉末や無機
結合剤でこの粘性が補償されない場合には、有機成形助
剤を添加して粘性を発揮させる。従って、混成物そのも
のは多量の水分を含んだ柔軟性のある原料となり、通常
スプレードライヤーで成形されるプレス用原料すなわち
顆粒状原料とは全く異ったものとなる。その結果、圧力
をあまり加えずに均一な成形体を得ることができるよう
になる。具体的には、耐熱性無機質繊維20〜50重量%と
耐火性粉末40〜80重量%と無機結合剤5〜30重量%とか
ら成る配合組成物100重量部に対して、30〜150重量部の
水と、必要に応じて有機成形助剤を固形分で0.5〜10重
量部とを添加して混練するのが良い。前記耐熱性無機質
繊維は、アルミノシリケート繊維、結晶質アルミナ繊
維、結晶質ムライト繊維、シリカ繊維、ジルコニア繊維
とから選ばれるいずれか1種又は2種以上であることが
好適で、配合組成は20〜50重量%とするのが良い。20重
量%未満は成形体密度が高くなり過ぎ、50重量%を越え
ると強度が小さくなって好ましくない。前記耐火性粉末
は、アルミナ質、アルミナ・シリカ質、ジルコニア質、
マグネシア質、チタニア質、クロミア質とから選ばれる
いずれか1種又は2種以上であることが好ましく、具体
的には、アルミナ、ムライト、カオリナイト、木節粘
土、蛙目粘土、シリマナイト、ステアタイト、フォルス
テライト、タルク、ジルコニア、マグネシア、スピネ
ル、チタニア、クロミア等が好ましく、配合組成は40〜
80重量%とするのが良い。40重量%未満だと強度が不充
分であり、80重量%を越えると密度が高くなって好まし
くない。前記無機結合剤は、シリカ・ソーダ系、ホウ酸
カルシウム系、シリカ系のフリット、アルミナゾル、シ
リカゾルから選ばれるのが好ましく、たとえば、長石、
マイカ粉末、ホウ酸、ガラス粉、硅石、アルミナゾル、
シリカゾル等が好適で、配合組成は5〜30重量%とする
のが良い。5重量%未満では成形体強度が低い値とな
り、30重量%を越えると焼結が進んで重くなり過ぎ好ま
しくない。上記配合組成物100重量部に対して、30〜150
重量部の水と、必要に応じて有機成形助剤を固形分で0.
5〜10重量部とを添加して成形用原料ができる。水が30
重量部未満では繊維が充分解繊されず毛玉状の繊維が残
り、150重量部を越えると混練物がやわらかくなって成
形後の保形性がなくなり好ましくない。また、前記有機
成形助剤は、メチルセルロース、カルボキシメチルセル
ロース、および、酢酸ビニル、ポリアクリル樹脂、水分
散型ワックスエマルジョンの中から選ばれるいずれか1
種又は2種以上であることが良い。この成形助剤の配合
量が0.5重量部未満では、成形体の乾燥強度が得られ
ず、10重量部を越えるとコスト高となって好適ではな
い。上記配合組成物は、市販の混練機で混練されるが、
繊維を短く切断せずに分散させるには、食品用によく使
用されている万能ミキサで混練するのが最適である。ボ
ールミルやニーダーでは繊維が折れてしまって成形体密
度が上ってしまい有効ではない。
The first is to disperse the heat-resistant inorganic fiber in the mixed composition of the refractory powder and the inorganic binder. To mix the fibrous material with the powdered material, cut the fibrous material into short pieces. Or
It is necessary to either fill the space for making the fibrous material with a substance that volatilizes during drying or firing, but the former does not meet the purpose of the present invention because the density of the molded body increases. The latter means is a requirement. Here, the filling material is preferably water because it is the cheapest. However, in order to sufficiently disintegrate the fibrous material, it is effective to allow a highly viscous substance to exist between the fibers and utilize the shearing force, and when this viscosity cannot be compensated by the refractory powder or the inorganic binder. In order to exert the viscosity, an organic molding aid is added to. Therefore, the composite itself becomes a flexible raw material containing a large amount of water, which is completely different from the raw material for pressing, which is usually formed by a spray dryer, that is, the granular raw material. As a result, it becomes possible to obtain a uniform molded body without applying much pressure. Specifically, 30 to 150 parts by weight is added to 100 parts by weight of a compounded composition comprising 20 to 50% by weight of heat resistant inorganic fibers, 40 to 80% by weight of refractory powder, and 5 to 30% by weight of an inorganic binder. It is advisable to add the above water and, if necessary, 0.5 to 10 parts by weight of an organic molding aid in solid content and knead. The heat resistant inorganic fiber is preferably any one kind or two or more kinds selected from aluminosilicate fiber, crystalline alumina fiber, crystalline mullite fiber, silica fiber and zirconia fiber, and the compounding composition is 20 to 50% by weight is good. If it is less than 20% by weight, the density of the molded body becomes too high, and if it exceeds 50% by weight, the strength becomes small, which is not preferable. The refractory powder, alumina, alumina-silica, zirconia,
One or more selected from magnesia, titania, and chromia is preferable, and specifically, alumina, mullite, kaolinite, kibushi clay, frog eye clay, sillimanite, steatite. , Forsterite, talc, zirconia, magnesia, spinel, titania, chromia, etc. are preferred, and the composition is 40-
80% by weight is good. If it is less than 40% by weight, the strength is insufficient, and if it exceeds 80% by weight, the density becomes high, which is not preferable. The inorganic binder is preferably selected from silica / soda-based, calcium borate-based, silica-based frit, alumina sol, and silica sol, for example, feldspar,
Mica powder, boric acid, glass powder, silica stone, alumina sol,
Silica sol and the like are preferable, and the composition is preferably 5 to 30% by weight. If it is less than 5% by weight, the strength of the molded body will be low, and if it exceeds 30% by weight, sintering will proceed and become too heavy, which is not preferable. 30 to 150 with respect to 100 parts by weight of the above-mentioned composition.
0 parts by weight of water and, if necessary, an organic molding aid as a solid content.
A raw material for molding can be made by adding 5 to 10 parts by weight. 30 water
If it is less than 1 part by weight, the fibers are not fully decomposed and fibrous fibers remain, and if it exceeds 150 parts by weight, the kneaded product becomes soft and the shape retention after molding is lost, which is not preferable. The organic molding aid is any one selected from methyl cellulose, carboxymethyl cellulose, vinyl acetate, polyacrylic resin, and water-dispersed wax emulsion.
It is preferable that there are two or more species. If the compounding amount of this molding aid is less than 0.5 parts by weight, the dry strength of the molded product cannot be obtained, and if it exceeds 10 parts by weight, the cost becomes high, which is not preferable. The above blended composition is kneaded with a commercially available kneader,
In order to disperse the fibers without cutting them into short ones, it is best to knead them with a universal mixer often used for foods. A ball mill or a kneader is not effective because the fiber is broken and the density of the compact increases.

第二は、前記混練機を脱気することである。特に繊維を
含有する原料のため脱気していないと繊維間のつながり
のない部分にクラックが生じやすくなり、成形体の品質
の低下につながって好ましくない。脱気はバッチ式の真
空容器の中で可能であるが、生産性の点から真空排気形
を設けたスクリューの中で良く脱気される。
The second is to deaerate the kneader. In particular, since it is a raw material containing fibers, unless it is degassed, cracks are likely to occur in portions where the fibers are not connected, which leads to deterioration of the quality of the molded body, which is not preferable. Degassing is possible in a batch type vacuum container, but from the viewpoint of productivity, it is well degassed in a screw provided with a vacuum exhaust type.

第三は、前記脱器物を多孔性の成形用型に入れて常温に
てプレスすることである。前記脱気物は水分を多量に含
むので粘着性が高く、一般の金型では全く離型が出来な
い。金型表面を凹凸にすることで少し離型はできるよう
になるが耐久性がなく使用できない。水分の多い原料の
成形はろくろ成形や泥しょう鋳込み等が汎用されている
が、比重の大きく異なる材料を含んだ原料の成形や、円
形とならない物の成形は使用できない。しかし、泥しょ
う鋳込に用いられる石膏型は水分の多い原料の成形には
良く適した材料である。ただし、石膏型は吸水−乾燥を
繰返すと良く割れたりして耐久性が非常に小さかった。
本発明者等は、離型が良く行なわれ、耐久性の高い成形
用型について研究したところ、連続気孔を持つ材質が本
発明の混練原料には最も適していることを新規に知見し
た。具体的には、繊維質材料の絡みで連続気孔を成形さ
せ、有機樹脂や無機質粉末を充填させ成形用型に必要な
強度と弾性を発揮させるものである。上記多孔性の成形
用型による成形は、混練脱気原料が適度な粘性を有して
いるため良く伸び常温でプレスすることができコストダ
ウンに大きく寄与できるものである。
Thirdly, the demolded product is placed in a porous molding die and pressed at room temperature. Since the degassed product contains a large amount of water, it is highly sticky and cannot be released from the mold with a general mold. By making the mold surface uneven, it becomes possible to release the mold a little, but it is not durable and cannot be used. For forming raw materials with high water content, potter's wheel molding and mud casting are widely used. However, forming raw materials containing materials with greatly different specific gravities and molding non-circular products cannot be used. However, the gypsum mold used for mud casting is a material that is well suited for molding raw materials with high water content. However, the gypsum mold had a very small durability because it cracked well when water absorption-drying was repeated.
The present inventors have conducted a study on a mold having good mold release and high durability, and have newly found that a material having continuous pores is most suitable for the kneading raw material of the present invention. Specifically, the continuous pores are formed by the entanglement of the fibrous material, and the organic resin and the inorganic powder are filled therein to exert the strength and elasticity required for the molding die. In the molding using the porous molding die, since the kneaded and degassed raw material has an appropriate viscosity, it can be well stretched and pressed at room temperature, which greatly contributes to cost reduction.

第四は、前記プレス成形体を乾燥後800〜1600℃の温度
範囲で焼成することである。焼成の目的は、有機樹脂の
焼却と成形体強度の向上である。すなわち、前記耐熱性
無機質繊維と耐火性粉末および無機結合剤とを充分に焼
結せしめ高強度の構造物を得ることができる。しかし、
前記プレス成形体は、従来の抄造法の様に無機結合剤を
凝集することなく使用できるので、バインダー効果が均
一に発揮され150〜300kgf/cm2の格段に優れた強度を得
ることができる。
Fourthly, the press-molded body is dried and then fired in a temperature range of 800 to 1600 ° C. The purpose of firing is to incinerate the organic resin and improve the strength of the molded body. That is, the heat-resistant inorganic fiber, the fire-resistant powder and the inorganic binder can be sufficiently sintered to obtain a high-strength structure. But,
Since the press-molded product can be used without agglomeration of the inorganic binder as in the conventional papermaking method, the binder effect is uniformly exhibited and a remarkably excellent strength of 150 to 300 kgf / cm 2 can be obtained.

以上のようにして成形された本発明の耐熱性無機質繊維
成形体は0.6〜2.0g/cm3のかさ密度であることが好まし
い。0.6g/cm3未満では成形体強度が充分に得られず、ま
た2.0g/cm3を越えると重くなり過ぎ、蓄熱量が多くなっ
たり耐熱衝撃性に劣るようになり好ましくない。
The heat-resistant inorganic fiber molded body of the present invention molded as described above preferably has a bulk density of 0.6 to 2.0 g / cm 3 . If it is less than 0.6 g / cm 3 , the strength of the molded product cannot be sufficiently obtained, and if it exceeds 2.0 g / cm 3 , it becomes too heavy, and the heat storage amount increases and the thermal shock resistance becomes poor, which is not preferable.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

〔実施例〕〔Example〕

実施例1 水中で分級することにより非繊維状物の含有量を3wt%
に制御したAl2O350wt%、SiO250wt%のアルミノシリケ
ート繊維600gと平均粒径4.5μmのアルミナ粉末1100gお
よび木節粘土300gと焼成ケイソウ土150gとを配合して万
能ミキサの中に入れ、水950gと有機成形助剤(ワック
ス、ポリアクリルアミン酢酸塩)300gとを添加してから
5分間混練し、続いて真空土練機にて脱気後、多孔性の
型に入れ20kgf/cm2の圧力でプレスして200×200×80Hmm
(内寸180×180×60Hmm)の深鉢状の成形品を製造し
た。乾燥後1450℃で6時間焼成して1.1g/cm3の密度の耐
熱性無機質繊維成形体を得た。
Example 1 The content of non-fibrous material was 3 wt% by classification in water.
Al 2 O 3 50wt%, SiO 2 50wt% controlled aluminosilicate fiber 600g, alumina powder 1100g with average particle size 4.5μm, Kibushi clay 300g and calcined diatomaceous earth 150g are mixed and put in a universal mixer. , 950 g of water and 300 g of organic molding aid (wax, polyacrylamine acetate) are kneaded for 5 minutes, then degassed with a vacuum clay kneader and put in a porous mold to 20 kgf / cm 200 × 200 × 80Hmm by pressing with 2 pressure
A deep bowl-shaped molded product (inner dimension 180 × 180 × 60 Hmm) was manufactured. After drying, it was baked at 1450 ° C. for 6 hours to obtain a heat-resistant inorganic fiber molded body having a density of 1.1 g / cm 3 .

実施例2 結晶質アルミナ繊維300gと平均粒径4.5μmのアルミナ
粉末300gおよびモンモリロナイト100gとを配合して万能
ミキサの中に入れ、固形分5wt%の酢酸ビニル樹脂水分
散型エマルジョン1000gを添加してから7分間混練し、
続いて真空脱気後、多孔性の石膏型に入れ15kgf/cm2
圧力でプレスして実施例1と同様の成形品を製造した。
乾燥後1600℃で3時間焼成視て強度200kgf/cm2、密度1.
0g/cm3の成形体を得た。
Example 2 300 g of crystalline alumina fiber, 300 g of alumina powder having an average particle size of 4.5 μm and 100 g of montmorillonite were mixed and put in a universal mixer, and 1000 g of a vinyl acetate resin water-dispersed emulsion having a solid content of 5 wt% was added. Knead for 7 minutes,
Subsequently, after vacuum deaeration, the product was put into a porous gypsum mold and pressed at a pressure of 15 kgf / cm 2 to manufacture a molded product similar to that of Example 1.
After being dried and baked at 1600 ℃ for 3 hours, the strength is 200kgf / cm 2 and the density is 1.
A molded body of 0 g / cm 3 was obtained.

〔発明の効果〕〔The invention's effect〕

以上の様に本発明によれば高強度で軽量な耐熱性無機質
繊維成形体を容易に量産でき、異形状の成形体が安価に
製造できる。
As described above, according to the present invention, a high-strength, lightweight heat-resistant inorganic fiber molded body can be easily mass-produced, and a molded body having an irregular shape can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の耐熱性無機質繊維成形体の断面図、第2
図は顆粒状原料で成形した耐熱性無機質繊維成形体の断
面図であり、これら両図中の矢印はいずれも強度の弱い
部分を表わすものである。
FIG. 1 is a sectional view of a conventional heat-resistant inorganic fiber molding,
The figure is a cross-sectional view of a heat-resistant inorganic fiber molded body formed from a granular raw material, and the arrows in both of these figures represent weak portions.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】次の(a)〜(d)工程から成ることを特
徴とするかさ密度0.6〜2.0g/cm3である耐熱性無機質繊
維成形体の製造方法。 (a)耐熱性無機質繊維20〜50重量%と耐火性粉末40〜
80重量%と無機結合剤5〜30重量%とから成る配合組成
物100重量部に対して、30〜150重量部の水と、必要に応
じて有機成形助剤を固形分で0.5〜10重量部とを添加し
て常温で混練する工程、 (b)前記混練物を脱気する工程、 (c)前記脱気物を多孔性の成形用型に入れ、常温にて
プレスし成形体となす工程、 (d)前記プレス成形体を乾燥後800〜1600℃の温度範
囲で焼成する工程。
1. A method for producing a heat-resistant inorganic fiber molding having a bulk density of 0.6 to 2.0 g / cm 3 , which comprises the following steps (a) to (d): (A) 20 to 50% by weight of heat-resistant inorganic fiber and 40 to 40% of refractory powder
0.5 to 10 parts by weight of water and 30 to 150 parts by weight of water and, if necessary, an organic molding aid as a solid content, relative to 100 parts by weight of a compounded composition consisting of 80% by weight and an inorganic binder of 5 to 30% by weight Part and kneading at room temperature, (b) degassing the kneaded product, (c) placing the degassed product in a porous molding die and pressing at room temperature to form a molded product. Step (d) A step of firing the press-molded article after drying in a temperature range of 800 to 1600 ° C.
【請求項2】前記混練が、万能ミキサを用いて行なわれ
ることを特徴とする特許請求の範囲第1項記載の製造方
法。
2. The manufacturing method according to claim 1, wherein the kneading is performed using a universal mixer.
【請求項3】前記耐熱性無機質繊維は、アルミノシリケ
ート繊維、結晶質アルミナ繊維、結晶質ムライト繊維、
シリカ繊維、ジルコニア繊維とから選ばれるいずれか1
種又は2種以上であることを特徴とする特許請求の範囲
第1項および第2項記載の製造方法。
3. The heat resistant inorganic fibers are aluminosilicate fibers, crystalline alumina fibers, crystalline mullite fibers,
Any one selected from silica fiber and zirconia fiber
The manufacturing method according to claim 1 or 2, wherein the manufacturing method is one kind or two or more kinds.
【請求項4】前記耐火性粉末は、アルミナ質、アルミナ
・シリカ質、ジルコニア質、マグネシア質、チタニア
質、クロミア質とから選ばれるいずれか1種又は2種以
上であることを特徴とする特許請求の範囲第1項〜第3
項記載の製造方法。
4. The refractory powder is one or more selected from alumina, alumina / silica, zirconia, magnesia, titania, and chromia. Claims 1st to 3rd
The manufacturing method according to the item.
【請求項5】前記無機結合剤は、粘土、ガラスフリッ
ト、ケイ酸ソーダ、ホウ酸カルシウム、硅石、アルミナ
ゾル、シリカゾルとから選ばれるいずれか1種又は2種
以上であることを特徴とする特許請求の範囲第1項〜第
4項記載の製造方法。
5. The inorganic binder is one or more selected from clay, glass frit, sodium silicate, calcium borate, silica stone, alumina sol, and silica sol. The manufacturing method according to any one of claims 1 to 4.
【請求項6】前記有機成形助剤は、メチルセルロース、
カルボキシメチルセルロース、および酢酸ビニル、ポリ
アクリル樹脂、水分散型ワックスエマルジョンの中から
選ばれるいずれか1種又は2種以上であることを特徴と
する特許請求の範囲第1項〜第5項記載の製造方法。
6. The organic molding aid is methyl cellulose,
6. Carboxymethyl cellulose, vinyl acetate, polyacrylic resin, and any one kind or two or more kinds selected from water-dispersed wax emulsions, wherein the production according to any one of claims 1 to 5. Method.
JP61258778A 1986-10-30 1986-10-30 Method for producing heat-resistant inorganic fiber molded body Expired - Lifetime JPH0796468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61258778A JPH0796468B2 (en) 1986-10-30 1986-10-30 Method for producing heat-resistant inorganic fiber molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61258778A JPH0796468B2 (en) 1986-10-30 1986-10-30 Method for producing heat-resistant inorganic fiber molded body

Publications (2)

Publication Number Publication Date
JPS63112478A JPS63112478A (en) 1988-05-17
JPH0796468B2 true JPH0796468B2 (en) 1995-10-18

Family

ID=17324949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61258778A Expired - Lifetime JPH0796468B2 (en) 1986-10-30 1986-10-30 Method for producing heat-resistant inorganic fiber molded body

Country Status (1)

Country Link
JP (1) JPH0796468B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257217A (en) * 1975-11-05 1977-05-11 Noboru Nagase Method of relaeasing ceramic products
JPS5988378A (en) * 1982-11-10 1984-05-22 東芝セラミツクス株式会社 Lightweight refractories and manufacture
JPS59152281A (en) * 1983-02-18 1984-08-30 東芝モノフラツクス株式会社 High temperature heat insulative structure

Also Published As

Publication number Publication date
JPS63112478A (en) 1988-05-17

Similar Documents

Publication Publication Date Title
JPS638275A (en) Refractory fibrous product and manufacture
EP1940532A1 (en) Filter device for molten metal filtration and method for producing such filters
CN111574227B (en) Forming method of composite sagger
JP3000151B2 (en) Refractory support and method for producing the same
JPH08283073A (en) Kiln tool
JPS6410469B2 (en)
JPH0796468B2 (en) Method for producing heat-resistant inorganic fiber molded body
JPH0796469B2 (en) Heat resistant inorganic fiber molding
US3389001A (en) Glass bonded ceramic ware pressing mold and method of making same
JPH0369545A (en) Manufacturing white ware ceramic product
JP2506503B2 (en) Multilayer ceramic porous body
JPS63113294A (en) Heat-resistant inorganic fibrous ceramic baked jig
CN110818396B (en) High-temperature-resistant material and preparation method thereof
JP3142360B2 (en) SiC refractory raw material, method of preparing the same, and SiC refractory obtained using the refractory raw material
JPH0645510B2 (en) Inorganic oxide artificial fiber honeycomb structure and method for manufacturing the same
JPH01278481A (en) Lightweight heat-resistant molded article and production thereof
JP2614809B2 (en) Manufacturing method of heat-resistant low specific gravity fibrous molding
JPS63242979A (en) High heat resistance lightweight burnt tool
JPH08165171A (en) Silicon carbide molded form and sintered compact therefrom
JPS63190777A (en) High heat resistance lightweight burnt tool
JPS629181A (en) Light-weight heat-resistant tray for baking ceramics and manufacture thereof
JP2500221B2 (en) Method for producing paving stone material made of mineral material
JPH061673A (en) Production of porous ceramic
JPH0154305B2 (en)
JPH04325473A (en) Production of high strength porous alumina sintered body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term