JPH0794565B2 - Creep-resistant high-strength polyethylene molding and method for producing the same - Google Patents

Creep-resistant high-strength polyethylene molding and method for producing the same

Info

Publication number
JPH0794565B2
JPH0794565B2 JP19485687A JP19485687A JPH0794565B2 JP H0794565 B2 JPH0794565 B2 JP H0794565B2 JP 19485687 A JP19485687 A JP 19485687A JP 19485687 A JP19485687 A JP 19485687A JP H0794565 B2 JPH0794565 B2 JP H0794565B2
Authority
JP
Japan
Prior art keywords
molecular weight
polyethylene
creep
strength
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19485687A
Other languages
Japanese (ja)
Other versions
JPS6438439A (en
Inventor
康雄 大田
博茂 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP19485687A priority Critical patent/JPH0794565B2/en
Priority to IN760/MAS/87A priority patent/IN170335B/en
Priority to EP87202055A priority patent/EP0269151B2/en
Priority to PCT/NL1987/000029 priority patent/WO1988003184A1/en
Priority to DE8787202055T priority patent/DE3772525D1/en
Priority to US07/540,462 priority patent/US5128415A/en
Priority to ES198787202055T priority patent/ES2025633T3/en
Priority to AU81067/87A priority patent/AU603838B2/en
Priority to AT87202055T priority patent/ATE66703T1/en
Priority to BR8707520A priority patent/BR8707520A/en
Priority to MX009008A priority patent/MX168759B/en
Priority to CA000550530A priority patent/CA1329873C/en
Priority to IL84313A priority patent/IL84313A/en
Priority to IE291987A priority patent/IE60694B1/en
Priority to NZ222368A priority patent/NZ222368A/en
Priority to DK359988A priority patent/DK359988D0/en
Priority to FI883113A priority patent/FI883113A0/en
Priority to NO882932A priority patent/NO170293C/en
Priority to KR1019880700755A priority patent/KR890700177A/en
Publication of JPS6438439A publication Critical patent/JPS6438439A/en
Priority to GR91401817T priority patent/GR3003200T3/en
Publication of JPH0794565B2 publication Critical patent/JPH0794565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非常に優れた耐クリープ性を示す高強力ポリエ
チレン成型物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-strength polyethylene molded product having extremely excellent creep resistance.

〔従来の技術〕[Conventional technology]

粘度平均分子量が数十万から数百万に達するようないわ
ゆる超高分子量のポリエチレンを原料に高強力高弾性物
品を成形しようとする試みは近年活発であり、非常に高
い強度と弾性率を有する素材が開発されている(例えば
特開昭56-15408号、特開昭55-107506号など)。超高分
子量ポリエチレン可撓性高分子として一番最初に高強力
化された背景には、その一次構造が極めて単純であるこ
とが挙げられるだろうが、その反面、分子鎖間に水素結
合などを持たず、しかも繰り返し単位が単純で立体的障
害もないため、分子鎖間のスリツプが容易に起こり、ク
リープしやすいとう欠点があつた。かかる欠点は、特に
長時間静的な荷重がかかるような用途への本素材の使用
範囲を限定したものにしていた。
In recent years, attempts have been made to mold high-strength and high-elasticity articles using so-called ultra-high-molecular-weight polyethylene whose viscosity average molecular weight reaches several hundreds of thousands to several millions, and it has extremely high strength and elastic modulus. Materials have been developed (for example, JP-A-56-15408 and JP-A-55-107506). The reason why the ultra-high molecular weight polyethylene flexible polymer was first strengthened is that its primary structure is extremely simple, but on the other hand, hydrogen bonds between molecular chains are Since it does not have it, and the repeating unit is simple and has no steric hindrance, slippage between molecular chains easily occurs and there is a drawback that it is easy to creep. Such drawbacks have limited the range of use of the material, especially for applications where static loading is applied for long periods of time.

従来、耐クリープ性を改良しようとする試みとしては電
子線などを照射して分子鎖間の架橋を導入し、分子鎖の
スリツプを抑えようとする検討があるが、高強度を保持
したまま架橋させることが非常に難かしい。また、特開
昭61-28911号には後延伸または熱処理することで耐クリ
ープ性が改良されたと記載されているが、非常に低速な
延伸と複雑な工程のため経済性、生産性という面で問題
があつた。
Conventionally, as an attempt to improve the creep resistance, there has been a study to introduce a crosslink between molecular chains by irradiating an electron beam or the like to suppress the slip of the molecular chain, but the crosslinking is performed while maintaining high strength. It's very difficult to get it done. Further, JP-A-61-28911 describes that creep resistance is improved by post-stretching or heat-treating, but in view of economical efficiency and productivity due to very slow stretching and complicated process. There was a problem.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上の観点より、本発明は高強度、高弾性であり、しか
もいままでにない非常に優れた耐クリープ性を有する高
強力ポリエチレン繊維を提供することを目的とするもの
である。かかる目的のため本発明者らは鋭意検討した結
果、ポリマーの一次構造として分岐部をある適当量成形
物(例えば繊維)内に形成されている結晶内部に導入す
るときは高強力、高弾性を保持したままで従来にない画
期的な耐クリープ性を有する高強力ポリエチレン成型物
が得られることを見出し本発明を完成するに到つたので
ある。
From the above viewpoints, it is an object of the present invention to provide a high-strength polyethylene fiber having high strength, high elasticity, and extremely excellent creep resistance that has never been obtained. As a result of intensive studies by the present inventors for such a purpose, when a branched portion as a polymer primary structure is introduced into a crystal formed in a certain amount of a molded article (for example, fiber), high strength and high elasticity are obtained. The inventors have completed the present invention by finding that a high-strength polyethylene molded product having an unprecedented epoch-making creep resistance while being retained can be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は引張強度25g/d以上、引張弾性率800g/
d以上のポリエチレン成型物であつて、粘度平均分子量
が50万以上のポリエチレンより構成され、かつ広角X線
で求めた室温20℃、湿度65%における結晶単位胞のa軸
が7.45Å以上であることを特徴とする耐クリープ性の改
良された高強力ポリエチレン成型物を提供するものであ
る。
That is, the present invention has a tensile strength of 25 g / d or more and a tensile elastic modulus of 800 g / d.
A polyethylene molded product of d or more, which is composed of polyethylene having a viscosity average molecular weight of 500,000 or more, and the a-axis of the crystal unit cell at room temperature 20 ° C. and humidity 65% determined by wide-angle X-ray is 7.45Å or more. A high-strength polyethylene molded article having improved creep resistance, which is characterized by the above.

本発明はまたかかる成型物の製造法をも提供するもので
あり、それは超高分子量ポリエチレンを、該超高分子量
ポリエチレンの溶剤に分散させて成型工程に供給し、紡
糸あるいは押出して溶解温度以下に冷却して得られるポ
リマーゲル状物を熱延伸することにより高強力、高弾性
率ポリエチレン成型物を製造する方法において、超高分
子量ポリエチレンが、粘度平均分子量50万以上で主鎖の
炭素原子1000個あたり2個未満の分岐を有する超高分子
量ポリエチレン(A)と粘度平均分子量50万以上で主鎖
の炭素原子1000個あたり4個以上の分岐を有する超高分
子量ポリエチレン(B)とのブレンドであることを特徴
とする耐クリープ高強力ポリエチレン成型物の製造方法
である。
The present invention also provides a method for producing such a molded article, which comprises dispersing ultrahigh molecular weight polyethylene in a solvent of the ultrahigh molecular weight polyethylene and supplying it to the molding step, and spinning or extruding it to a temperature not higher than the melting temperature. A high-strength, high-modulus polyethylene molded article is produced by heat-drawing a polymer gel obtained by cooling, in which ultra-high molecular weight polyethylene has a viscosity average molecular weight of 500,000 or more and 1000 carbon atoms in the main chain. It is a blend of an ultra high molecular weight polyethylene (A) having less than 2 branches per unit and an ultra high molecular weight polyethylene (B) having a viscosity average molecular weight of 500,000 or more and having 4 or more branches per 1000 main chain carbon atoms. A method for producing a creep-resistant high-strength polyethylene molded article, which is characterized in that

本発明による高強力および高弾性と耐クリープ性を兼ね
備えた高強力ポリエチレン成型物は粘度平均分子量が50
万以上の高分子量ポリエチレンからなり、まず第一に25
g/d以上、好ましくは30g/d以上、特に33g/d以上の引張
強力と3×10-7sec-1以下、好ましくは2×10-7sec-1
下、特に1×10-7sec-1以下のクリープ速度と800g/d以
上の引張弾性率を有する。これらの値は高強力成型物
(例えば繊維)として最低具備していなければならない
値である。なおかかる高分子量ポリエチレンは粘度平均
分子量が50万以上でありかつ、主鎖の炭素原子1000個あ
たり2個未満の分岐を有する超高分子量ポリエチレン
(A)と粘度平均分子量が50万以上であり、かつ主鎖の
炭素原子1000個あたり4個以上の分岐を有する超高分子
量ポリエチレン(B)の少なくとも2種類のブレンドポ
リマーからなることが特に好ましい。ここで(A),
(B)各ポリマーの分子量はまず第一に重要であり、い
ずれも粘度平均分子量が50万以上であるを要する。これ
が50万未満であると分子末端が増大し、それが欠陥とし
て作用し、到達強度が低くなるばかりか、耐クリープ性
も著しく悪くなる。また分岐の少ないポリマー(A)と
比較的分岐の多いポリマー(B)をブレンドすることに
より(B)のポリマーの分岐を積極的に結晶中に導入す
ることが可能となる。しかも直線性ポリマー(A)が有
する結晶性の良さにより、高強力化を同時に達成するこ
とが可能になつたと思われる。ここでいう分岐とはメチ
ル基、エチル基、プロピル基、ブチル基等の線状の脂肪
族炭化水素基または分岐にさらに分岐を有するような構
造であつても良いが、分岐があまり長くなると(例えば
炭素原子数が6以上)分岐部は結晶内に取り込まれず、
むしろ非晶として存在しクリープ低減の効果が薄れるば
かりか、高強力化、高弾性化にとつては不都合である。
そこで分岐の種類としてはメチル基、エチル基までくら
いの短鎖分岐が良く、特にメチル基の時(A)と(B)
両ポリマーの混合性、分岐が結晶中に取り込まれる効果
が最も高いことが確かめられている。次に(A)ポリマ
ーの分岐と(B)ポリマーの分岐の量は(A)ポリマー
では主鎖1000炭素あたり2個未満、(B)ポリマーでは
主鎖1000炭素あたり4個以上であることが必要である。
(A)のポリマーの分岐が2個/1000炭素(以下主鎖で
あることを省略)以上となると延伸性および結晶性が低
下し、また(B)ポリマーの分岐が4個/1000炭素未満
になると、耐クリープ性の効果が発現しなくなる。ま
た、(B)ポリマーの分岐の上限としては特に限定はし
ないが、好ましくは1000炭素あたり100個以下、さらに
好ましくは20個以下が良い。ここでいう分岐の量は後で
述べるが高分解能の13C NMRで測定したものである。さ
らに(A)ポリマーと(B)ポリマーのブレンド比につ
いても特に限定するものではなく(A),(B)両ポリ
マーの分岐の種類と量により、適切なブレンド比を選択
すれば良い。例えばメチル基を分岐の主成分として有す
るポリマーを(A)および(B)ポリマーとして使用す
る場合、混合後の分岐の割合として主鎖の1000炭素あた
り分岐が2.5個以上10個以下、好ましくは4個以上7個
以下になるように混合比を選択することにより、高強力
を保持したまま非常に優れた耐クリープ性を有すること
が確かめられている。なお極端な場合ポリマー(A)の
分岐は0であつてもよい。
The high-strength polyethylene molded product having high strength and high elasticity and creep resistance according to the present invention has a viscosity average molecular weight of 50.
Made from over 10,000 high molecular weight polyethylene, 25
g / d or more, preferably 30 g / d or more, particularly 33 g / d or more tensile strength and 3 × 10 -7 sec -1 or less, preferably 2 × 10 -7 sec -1 or less, especially 1 × 10 -7 sec -It has a creep rate of -1 or less and a tensile modulus of 800g / d or more. These values are the minimum values that a high-strength molding (for example, fiber) must have. The high-molecular-weight polyethylene has a viscosity-average molecular weight of 500,000 or more, and an ultra-high-molecular-weight polyethylene (A) having less than 2 branches per 1000 carbon atoms of the main chain and a viscosity-average molecular weight of 500,000 or more, Further, it is particularly preferable that the blended polymer is at least two kinds of ultra-high molecular weight polyethylene (B) having 4 or more branches per 1000 carbon atoms in the main chain. Where (A),
(B) The molecular weight of each polymer is of the utmost importance, and each requires a viscosity average molecular weight of 500,000 or more. If it is less than 500,000, the number of molecular ends increases, which acts as defects, which lowers the ultimate strength and also significantly deteriorates the creep resistance. Further, by blending the polymer (A) having a small number of branches and the polymer (B) having a relatively large number of branches, the branches of the polymer (B) can be positively introduced into the crystal. In addition, it seems that the high polymer strength can be achieved at the same time due to the good crystallinity of the linear polymer (A). The term "branch" as used herein may be a linear aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, or a butyl group, or a structure having a further branch in the branch, but if the branch becomes too long ( For example, the number of carbon atoms is 6 or more.) The branched portion is not incorporated into the crystal,
Rather, it exists as an amorphous substance, and the effect of reducing creep is weakened, and it is also inconvenient for increasing the strength and elasticity.
Therefore, as the type of branching, short chain branching up to a methyl group or an ethyl group is preferable, especially when a methyl group is used (A) and (B).
It has been confirmed that the compatibility of both polymers and the effect that the branches are incorporated into the crystal are the highest. Next, the amount of branching of the polymer (A) and the branching of the polymer (B) must be less than 2 per 1000 carbons of the main chain in the (A) polymer and 4 or more per 1000 carbons of the main chain in the (B) polymer. Is.
If the number of branches of the polymer (A) is 2/1000 carbons (hereinafter, the main chain is omitted) or more, the stretchability and crystallinity are deteriorated, and the number of branches of the polymer (B) is less than 4/1000 carbons. If so, the effect of creep resistance will not be exhibited. The upper limit of branching of the polymer (B) is not particularly limited, but is preferably 100 or less, more preferably 20 or less per 1000 carbons. The amount of branching here is measured by high-resolution 13 C NMR as described later. Further, the blending ratio of the polymer (A) and the polymer (B) is not particularly limited, and an appropriate blending ratio may be selected depending on the kind and amount of the branches of both the polymers (A) and (B). For example, when a polymer having a methyl group as the main component of branching is used as the polymer (A) and (B), the ratio of branching after mixing is 2.5 to 10 branches, preferably 4 to 1000 branches per 1000 carbons of the main chain. It has been confirmed that by selecting the mixing ratio so that the number is not less than 7 and not more than 7, it has very excellent creep resistance while maintaining high strength. In an extreme case, the polymer (A) may have 0 branches.

このような超高分子量ポリエチレンのブレンド物から高
強力物品(繊維、テープ、フイルム等)を成型する手法
としては、例えば特開昭55-107506号に開示されている
ような手法を用いれば効率良く高強力成型物を作成する
ことが可能となるが、特にそれに限定するものではな
い。高強力化の一手法については実施例にその一例を示
す。このようにして得られた成型物の広角X線で求めた
室温20℃、湿度65%での結晶単位胞のa軸が7.45Å以上
であることが好ましい。7.45Å未満であると分岐が結晶
中に取り込まれているとはいえず、耐クリープ性に優れ
た新規の性質が得難くなる。
As a method for molding a high-strength article (fiber, tape, film, etc.) from such a blend of ultra-high molecular weight polyethylene, for example, the method disclosed in JP-A-55-107506 can be used efficiently. It is possible to prepare a high-strength molded product, but the invention is not particularly limited thereto. An example of a method of increasing the strength is shown in the embodiment. The a-axis of the crystal unit cell at room temperature of 20 ° C. and humidity of 65% determined by wide-angle X-ray of the thus obtained molded product is preferably 7.45 Å or more. If it is less than 7.45Å, it cannot be said that the branch is incorporated in the crystal, and it becomes difficult to obtain new properties excellent in creep resistance.

このようにして得られた本発明の高強力ポリエチレン成
型物の耐クリープ性は非常に優れており、クリープ速度
(50℃、9g/d荷重)として3×10-7sec-1以下を示す。
ここでいうクリープ速度とは例えばJournal of Polymer
Science,22,561(1984)に示されているように試料に
荷重を加えて後、時間に対しての伸びの変化率が一定に
なつた時、もしくは少なくとも変化率がもつとも少ない
時、すなわち平坦部クリープ(plateau creep)の変形
速度をいう。
The creep resistance of the high-strength polyethylene molded product of the present invention thus obtained is very excellent, and the creep rate (50 ° C., 9 g / d load) is 3 × 10 −7 sec −1 or less.
The creep speed here is, for example, the Journal of Polymer
As shown in Science, 22 , 561 (1984), when the rate of change of elongation with time becomes constant after applying a load to the sample, or at least when the rate of change is small, that is, flat. Deformation rate of plateau creep.

なおポリマーブレンドによることなく単一ポリマーを用
いて全体の分岐の程度が本発明の好ましい範囲に入る成
型物を製造しても成型性、特に延伸性が劣り、高強力化
が困難となり、さらには結晶性も低下するので好ましく
ない。
Note that even if a molded product is produced using a single polymer without using a polymer blend and the degree of branching falls within the preferred range of the present invention, moldability, particularly stretchability is poor, and high strength becomes difficult, and further Crystallinity is also reduced, which is not preferable.

文中記載の各種特性値の求め方は以下の方法によつた。The following method was used to obtain the various characteristic values described in the text.

粘度平均分子量 ASTM D 2857により135℃のデカリン溶液の粘度の濃度依
存性より固有粘度〔η〕を求めた。この〔η〕を次式に
代入して粘度平均分子量とした。
Viscosity average molecular weight In accordance with ASTM D 2857, the intrinsic viscosity [η] was determined from the concentration dependence of the viscosity of a decalin solution at 135 ° C. This [η] was substituted into the following equation to obtain the viscosity average molecular weight.

▲▼=3.64×104×〔η〕1.39 強伸度の測定法 JIS-1013に準じた。即ち東洋ボールドウイン社製テンシ
ロンを用い、試長200mm引張速度100mm/minの条件でS−
S曲線を測定し、引張強度、引張弾性率を算出した。引
張弾性率は、S−S曲線の原点付近の最大勾配より算出
した。
▲ ▼ = 3.64 × 10 4 × [η] 1.39 Measurement method of strength and elongation According to JIS-1013. That is, Tensilon manufactured by Toyo Baldwin Co., Ltd. was used, and the test length was 200 mm and the pulling speed was 100 mm / min.
The S curve was measured, and the tensile strength and tensile elastic modulus were calculated. The tensile modulus was calculated from the maximum gradient near the origin of the SS curve.

分岐の種類と量 ポリエチレンパウダーまたは、細かく粉砕した成型物を
オルトジクロルベンゼンに10重量%となるように120℃
で溶解した。この溶液を120℃の温度条件、75MHzで13C
NMRのスペクトルを観測した。この時シグナルの同定はM
akromol.Chem.184,569(1983)に記載の方法を参考にし
た。また、分岐度は、分岐点に由来するピークと主鎖の
メチレンピークの強度の比とした。
Type and amount of branching Polyethylene powder or finely pulverized moldings are added to ortho-dichlorobenzene at 120 ° C to make 10% by weight.
It was dissolved in. This solution was heated at 120 ° C and 75 ° C at 13 C.
The NMR spectrum was observed. At this time, the signal identification is M
The method described in akromol. Chem. 184 , 569 (1983) was referred to. The degree of branching was defined as the ratio of the intensity of the peak derived from the branch point to the methylene peak of the main chain.

結晶単位胞のa軸の大きさ 広角X線散乱パターンの測定は、例えば理学電機社製X
線発生装置(RU−3H型)を用いて行なう。測定には管電
圧45KV、管電流70mA、銅対陰極、ニツケルフイルターで
単色化したCuKα(λ=1.5418Å)を使用する。サンプ
ルホルダーに繊維試料を単糸どうしがお互いに平行にな
るように取り付ける。厚みとしては0.5〜1.0mm位が好ま
しい。この平行に配列した繊維の繊維軸方向を子午線方
向として広角X線回折図の赤道回折曲線の(200)面の
回折ピーク位置の散乱角2α(degree)から結晶単位胞
のa軸の大きさは次式で求められる。
The size of the a-axis of the crystal unit cell The wide-angle X-ray scattering pattern can be measured, for example, by X
Use a line generator (RU-3H type). For the measurement, a tube voltage of 45KV, a tube current of 70mA, a copper anticathode, and CuKα (λ = 1.5418Å) monochromated with a nickel filter are used. Attach the fiber sample to the sample holder so that the single yarns are parallel to each other. The thickness is preferably about 0.5 to 1.0 mm. From the scattering angle 2α (degree) of the diffraction peak position of the (200) plane of the equatorial diffraction curve of the wide-angle X-ray diffraction diagram with the fiber axis direction of the fibers arranged in parallel as the meridian direction, the size of the a-axis of the crystal unit cell is It is calculated by the following formula.

(散乱角の補正など詳細は例えば丸善株式会社発行「X
線結晶学」(仁田勇監修)参照)。
(For details such as correction of scattering angle, see "X
See line crystallography "(supervised by Isamu Nita)).

クリープ速度 本明細書でいうクリープ速度とは例えばJournal Polyme
r Science,22,561(1984)に記載されているような試料
に荷重を加えてから時間に対しての歪率の変化が一定に
なつた時、または少なくとも、もつとも変化率の少ない
時、すなわち平坦部クリープ(plateau creep)での変
形速度をいうある時刻t(sec)での試料の長さをl
(t)(cm)とするとクリープ速度は次式で与えられ
る。
Creep speed The creep speed as used herein is, for example, Journal Polyme
r Science, 22 , 561 (1984), when the change in strain rate over time has been constant since a load was applied to the sample, or at least when the rate of change is small, that is, The length of the sample at a certain time t (sec), which is the rate of deformation in plateau creep, is
(T) (cm), the creep speed is given by the following equation.

0:荷重をかけない試料の長さ(cm) a :任意の微少時間(sec) 〔実施例〕 以下実施例で本発明を説明する。 l 0 : Length of sample without load (cm) a: Arbitrary minute time (sec) [Example] The present invention will be described with reference to Examples below.

実施例1 線状ポリエチレンとして粘度平均分子量190万であり高
分解能NMRで測定した結果、主鎖炭素原子1000個あたり
1.2個のメチル基分岐を有するポリエチレン(A)と粘
度平均分子量190万で同じくNMRで測定したメチル基分岐
が主鎖の炭素原子1000個あたり13.0個のポリエチレン
(B)とを重量比10:90の割合でパウダーの状態で混合
した。引き続きこの混合物10重量部に対して90重量部の
デカヒドロナフタレンを混入し、スラリー状の原液とし
た。この原液を230℃の温度を有する二軸の押出機で混
練溶解し、均一透明な溶解物を0.5mm径のオリフイスよ
り押し出した。押し出された溶解物は、空気流で冷却さ
れながら30m/minの引き取り速度で引き取られ、ひきつ
づき、空気加熱炉にて5倍に延伸された。したがつてこ
の中間延伸物の巻き取り速度は150m/minであつた。引き
つづき、50mの長さを有するオーブンで加熱雰囲気下で
延伸最大延伸倍率3.2倍(したがつて合計の延伸倍率は1
6.0倍)に延伸した。この時の延伸巻き取り速度は100m/
minであつた。
Example 1 As a linear polyethylene, the viscosity average molecular weight was 1.9 million, and the result of measurement by high-resolution NMR revealed that per 1000 carbon atoms in the main chain.
The weight ratio of polyethylene (A) having 1.2 methyl group branches to polyethylene (B) having a viscosity average molecular weight of 1.9 million and having 13.0 methyl group branches per 1000 carbon atoms of the main chain also measured by NMR (weight ratio 10:90) Were mixed in the powder state. Subsequently, 90 parts by weight of decahydronaphthalene was mixed with 10 parts by weight of this mixture to prepare a slurry-like stock solution. This stock solution was kneaded and dissolved by a twin-screw extruder having a temperature of 230 ° C., and a uniformly transparent melt was extruded through an orifice having a diameter of 0.5 mm. The extruded melt was taken up at a take-up speed of 30 m / min while being cooled by an air stream, and was continuously drawn 5 times in an air heating furnace. Therefore, the winding speed of this intermediate stretched product was 150 m / min. Continuously, stretched in an oven with a length of 50 m in a heated atmosphere 3.2 times maximum draw ratio (thus the total draw ratio is 1
6.0 times). At this time, the drawing and winding speed is 100 m /
It was min.

実施例2,3,4,5および比較例1,2 実施例1と同様のポリマーを用い、そのブレンド比とし
てポリマー(A)に対して分岐ポリマー(B)の混合重
量比を表1のように変えた他は、実施例1とまつたく同
じ方法、条件により糸状成型物を作成した。ただし、2
段延伸における最大延伸倍率は表1のように各実施例ご
とに、異なつた(最終巻き取り速度は100m/min一定)。
したがつて最終成型物の到達強度にも差が生じた。
Examples 2, 3, 4, 5 and Comparative Examples 1, 2 The same polymer as in Example 1 was used, and the blending weight ratio of the branched polymer (B) to the polymer (A) was as shown in Table 1. A filamentous molded product was prepared by the same method and conditions as in Example 1 except that However, 2
The maximum draw ratio in the step draw was different for each example as shown in Table 1 (final winding speed was constant at 100 m / min).
Therefore, there was a difference in the ultimate strength of the final molded product.

比較例3 ポリマーとして粘度平均分子量190万、高分解能13C NMR
で測定したメチル分岐が主鎖炭素原子1000個あたり5.0
個を有する超高分子量ポリエチレン(C)を用いた他は
実施例とまつたく同じ製法で製糸した。また最大延伸倍
率は表1に示されるごとくであつた。
Comparative Example 3 Polymer having a viscosity average molecular weight of 1.9 million and high resolution 13 C NMR
The number of methyl branches measured by was 5.0 per 1000 main chain carbon atoms.
Spinning was carried out by the same manufacturing method as in the example except that the ultrahigh molecular weight polyethylene (C) having a number of pieces was used. The maximum draw ratio was as shown in Table 1.

表2に実施例および比較例で得られた成型物の到達最大
強度とその時の50℃、9g/dで測定したクリープ速度を示
す。各実施例ともすぐれた高物性とすぐれた耐クリープ
性を示す。特に実施例3の場合比較例1に比べ約1/20の
耐クリープ性を示す。分岐ポリマー100%では比較例2,3
のようにクリープは低くなるが、高強力糸が得られな
い。
Table 2 shows the ultimate strengths of the molded articles obtained in Examples and Comparative Examples and the creep speeds measured at 50 ° C. and 9 g / d. Each of the examples exhibits excellent physical properties and excellent creep resistance. Particularly, in the case of Example 3, the creep resistance is about 1/20 that of Comparative Example 1. Comparative examples 2, 3 with 100% branched polymer
Creep is low as in, but high strength yarn cannot be obtained.

〔発明の効果〕 本発明によれば高強力、高弾性率ポリエチレン成型物の
優れた特性、即ち、軽量で耐光性、耐摩耗性、耐薬品性
等の特性を損うことなく、驚くべき耐クリープ性の改良
された高強力ポリエチレン成型物が提供される。
[Effects of the Invention] According to the present invention, excellent properties of a high-strength, high-modulus polyethylene molded article, that is, lightness, light resistance, abrasion resistance, chemical resistance, etc., are not impaired, and a surprising resistance is obtained. Provided is a high-strength polyethylene molding with improved creep properties.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 7:00 C08L 23:02 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display area B29L 7:00 C08L 23:02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】実質的に超高分子量ポリエチレンからな
り、粘度平均分子量が50万以上、引張強度が25g/d以
上、引張弾性率800g/d以上、クリープ速度(50℃、9g/d
荷重下で測定)が3×10-7sec-1以下であることを特徴
とする耐クリープ高強力ポリエチレン成型物。
1. Substantially consisting of ultra-high molecular weight polyethylene, viscosity average molecular weight of 500,000 or more, tensile strength of 25 g / d or more, tensile elastic modulus of 800 g / d or more, creep rate (50 ° C., 9 g / d.
A creep-resistant high-strength polyethylene molded article characterized in that it is 3 × 10 -7 sec -1 or less when measured under load.
【請求項2】超高分子量ポリエチレンが、粘度平均分子
量50万以上で主鎖の炭素原子1000個あたり2個未満の分
岐を有する超高分子量ポリエチレン(A)と粘度平均分
子量50万以上で主鎖の炭素原子1000個あたり4個以上の
分岐を有する超高分子量ポリエチレン(B)とのブレン
ドである特許請求の範囲第1項記載の耐クリープ高強力
ポリエチレン成型物。
2. An ultrahigh molecular weight polyethylene (A) having a viscosity average molecular weight of 500,000 or more and having less than 2 branches per 1000 carbon atoms of the main chain, and a main chain having a viscosity average molecular weight of 500,000 or more. The creep resistant high-strength polyethylene molded product according to claim 1, which is a blend with the ultra high molecular weight polyethylene (B) having 4 or more branches per 1000 carbon atoms.
【請求項3】ポリエチレン成型物の広角X線で求めた室
温20℃、湿度65%における結晶単位胞のa軸が7.45Å以
上である特許請求の範囲第1項または第2項記載の耐ク
リープ高強力ポリエチレン成型物。
3. The creep resistance according to claim 1 or 2, wherein the a-axis of a crystal unit cell at a room temperature of 20 ° C. and a humidity of 65% as determined by wide-angle X-ray of a molded polyethylene product is 7.45 Å or more. High strength polyethylene molding.
【請求項4】ポリエチレン成型物が繊維、テープまたは
フイルムである特許請求の範囲第1項乃至第3項のいず
れかに記載の耐クリープ高強力ポリエチレン成型物。
4. The creep-resistant high-strength polyethylene molded product according to any one of claims 1 to 3, wherein the polyethylene molded product is a fiber, a tape or a film.
【請求項5】超高分子量ポリエチレンを、該超高分子量
ポリエチレンの溶剤に分散させて成型工程に供給し、紡
糸あるいは押出して溶解温度以下に冷却して得られるポ
リマーゲル状物を熱延伸することにより高強力、高弾性
率ポリエチレン成型物を製造する方法において、超高分
子量ポリエチレンが、粘度平均分子量50万以上で主鎖の
炭素原子1000個あたり2個未満の分岐を有する超高分子
量ポリエチレン(A)と粘度平均分子量50万以上で主鎖
の炭素原子1000個あたり4個以上の分岐を有する超高分
子量ポリエチレン(B)とのブレンドであることを特徴
とする耐クリープ高強力ポリエチレン成型物の製造方
法。
5. A polymer gel material obtained by dispersing ultra-high molecular weight polyethylene in a solvent for the ultra-high molecular weight polyethylene, supplying it to a molding step, spinning or extruding, and cooling it to a melting temperature or lower, and hot-drawing it. In the method for producing a high-strength, high-modulus polyethylene molding, the ultrahigh-molecular-weight polyethylene has a viscosity-average molecular weight of 500,000 or more and has less than 2 branches per 1000 carbon atoms in the main chain (A ) And an ultra high molecular weight polyethylene (B) having a viscosity average molecular weight of 500,000 or more and having 4 or more branches per 1000 carbon atoms in the main chain. Method.
【請求項6】ポリエチレン成型物が繊維、テープまたは
フイルムである特許請求の範囲第5項記載の耐クリープ
高強力ポリエチレン成型物の製造方法。
6. The method for producing a creep-resistant high-strength polyethylene molded article according to claim 5, wherein the polyethylene molded article is a fiber, a tape or a film.
JP19485687A 1986-10-31 1987-08-04 Creep-resistant high-strength polyethylene molding and method for producing the same Expired - Fee Related JPH0794565B2 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
JP19485687A JPH0794565B2 (en) 1987-08-04 1987-08-04 Creep-resistant high-strength polyethylene molding and method for producing the same
IN760/MAS/87A IN170335B (en) 1986-10-31 1987-10-20
EP87202055A EP0269151B2 (en) 1986-10-31 1987-10-27 Process for preparing polyethylene articles of high tensile strength and modulus and low creep and articles thus obtained
PCT/NL1987/000029 WO1988003184A1 (en) 1986-10-31 1987-10-27 Process for preparing polyethylene articles of high tensile strength and modulus and low creep and articles thus obtained
DE8787202055T DE3772525D1 (en) 1986-10-31 1987-10-27 METHOD FOR PRODUCING POLYETHYLENE OBJECTS WITH HIGH TENSILE STRENGTH, HIGH ELASTICITY MODULE AND LOW FLOW BEHAVIOR, AND ITEMS PRODUCED THEREFORE.
US07/540,462 US5128415A (en) 1986-10-31 1987-10-27 Process for preparing polyethylene articles of high tensile strength and modulus and low creep and articles thus obtained
ES198787202055T ES2025633T3 (en) 1986-10-31 1987-10-27 PROCEDURE FOR PREPARING ARTICLES OF POLYETHYLENE OF HIGH STRENGTH TO TRACTION, HIGH MODULE AND LOW FLUENCE AND ARTICLES SO OBTAINED.
AU81067/87A AU603838B2 (en) 1986-10-31 1987-10-27 Preparing polyethylene articles of high tensile strength and modulus and low creep
AT87202055T ATE66703T1 (en) 1986-10-31 1987-10-27 PROCESSES FOR MAKING POLYAETHYLENE ARTICLES HAVING HIGH TENSILE STRENGTH, HIGH ELASTIC MODULE AND LOW YIELD CHARACTERISTICS, AND ARTICLES MANUFACTURED BY THE WAY.
BR8707520A BR8707520A (en) 1986-10-31 1987-10-27 PROCESS FOR THE PREPARATION OF POLYETHYLENE ARTICLES OF HIGH RESISTANCE TO TRACTION AND MODULE AND LOW FLUENCE AND ARTICLES
MX009008A MX168759B (en) 1986-10-31 1987-10-28 PROCESS FOR THE PREPARATION OF ARTICLES OF POLYETHYLENE
CA000550530A CA1329873C (en) 1986-10-31 1987-10-29 Process for preparing polyethylene articles of high tensile strength and modulus and low creep and articles thus obtained
IL84313A IL84313A (en) 1986-10-31 1987-10-29 Polyethylene articles of high tensile strength and modulus and low creep and their preparation
IE291987A IE60694B1 (en) 1986-10-31 1987-10-30 "Process for preparing polyethlene articles of high tensile strength and modulus and low creep and articles thus obtained"
NZ222368A NZ222368A (en) 1986-10-31 1987-10-30 Preparation of polyethylene articles of high tensile strength, high modulus and low creep from polyethylene having 2-20 alkyl side chains per 1000 carbon atoms
DK359988A DK359988D0 (en) 1986-10-31 1988-06-29 PROCEDURE FOR MANUFACTURING POLYETHYLENE STANDARDS WITH HIGH TENSION STRENGTH AND MODULE AND LOW CREWING AND ARTICLES PREPARED BY THIS PROCEDURE
FI883113A FI883113A0 (en) 1986-10-31 1988-06-29 FOERFARANDE FOER FRAMSTAELLNING AV POLYETYLENPRODUKTER SOM HAR HOEG DRAGHAOLLFASTHET OCH ELASTICITETSMODUL OCH LAOG KRYPNING OCH SAO ERHAOLLNA PRODUKTER.
NO882932A NO170293C (en) 1986-10-31 1988-06-30 PROCEDURE FOR MANUFACTURING POLYETHYL ARTICLES WITH HIGH TENSION STRENGTH AND TENSION MODULE, AND WITH LOW SHRPPING, AND ITS OBTAINED ARTICLES
KR1019880700755A KR890700177A (en) 1986-10-31 1988-06-30 Polyethylene product with high impression strength and low modulus and low creep, and its manufacturing method
GR91401817T GR3003200T3 (en) 1986-10-31 1991-11-27 Process for preparing polyethylene articles of high tensile strength and modulus and low creep and articles thus obtained

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19485687A JPH0794565B2 (en) 1987-08-04 1987-08-04 Creep-resistant high-strength polyethylene molding and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6438439A JPS6438439A (en) 1989-02-08
JPH0794565B2 true JPH0794565B2 (en) 1995-10-11

Family

ID=16331424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19485687A Expired - Fee Related JPH0794565B2 (en) 1986-10-31 1987-08-04 Creep-resistant high-strength polyethylene molding and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0794565B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8602745A (en) * 1986-10-31 1988-05-16 Dyneema Vof Low creep, high tensile and modulus polyethylene filaments, etc. - made using branched polyethylene with 2-20 alkyl (pref. methyl or ethyl) side chains per 1000 C atoms.
JPH089804B2 (en) * 1987-12-03 1996-01-31 三井石油化学工業株式会社 Polyolefin fiber with improved initial elongation and method for producing the same
JP2586213B2 (en) * 1990-11-30 1997-02-26 東洋紡績株式会社 High strength polyethylene fiber with creep resistance
US8535777B2 (en) * 2006-04-26 2013-09-17 Dsm Ip Assets B.V. Multilayered material sheet and process for its preparation
KR101522051B1 (en) * 2007-10-05 2015-05-20 디에스엠 아이피 어셋츠 비.브이. Fibers of uhmwpe and a process for producing thereof

Also Published As

Publication number Publication date
JPS6438439A (en) 1989-02-08

Similar Documents

Publication Publication Date Title
EP0269151B1 (en) Process for preparing polyethylene articles of high tensile strength and modulus and low creep and articles thus obtained
EP1181331B1 (en) Reinforced polymers
US20090155614A1 (en) Polypropylene Materials and Method of Preparing Polypropylene Materials
JPH089804B2 (en) Polyolefin fiber with improved initial elongation and method for producing the same
AU642154B2 (en) Molecular orientation articles molded from high-molecular weight polyethylene and processes for preparing same
JPH0794565B2 (en) Creep-resistant high-strength polyethylene molding and method for producing the same
JP3226062B2 (en) High strength polyethylene fiber
US6248835B1 (en) Polypropylene/polystyrene polymer blend, improved fibers produced from the blend and method of manufacturing
JPH05209370A (en) Ultrahigh-molecular weight ethylene-based polymer laminate and its use
JPH089667B2 (en) Process for producing polyethylene products of high tensile strength and modulus and low creep and products thus obtained
JPH086205B2 (en) Molecularly oriented molded product of ultra-high molecular weight ethylene / propylene copolymer
JPH089802B2 (en) Molecularly oriented molded product of ultra high molecular weight ethylene-α-olefin copolymer
JP3453454B2 (en) Polyolefin fiber
JPH0655628A (en) Manufacture of modified ultra-high-molecular-weight polyolefin stretched material
JPH02308839A (en) Polypropylene composition
JPH05104620A (en) Manufacture of polypropylene oriented matter
JPS62250224A (en) Production method for undrawn polyoxymethylene filaments
JPH0782606A (en) Composition for forming polyethylene fiber
JP3082955B2 (en) Flying object resistant material
JPH089803B2 (en) Molecularly oriented molded product of ultra high molecular weight ethylene-α-olefin copolymer
JP2887381B2 (en) Polyphenylene sulfide monofilament
JPH05140816A (en) Production of drawn high-molecular weight polyolefin
JPH03243635A (en) Drawn molded article having pearly luster and production thereof
JP2760911B2 (en) Poly (arylene ether ketone) fiber
Ichikawa et al. Molecular and crystal structure of a polycyanoarylether: poly [oxy-1, 3-(2-cyanophenylene)-oxy-1, 3-phenylene]

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees