JPH079404B2 - Device and method for detecting inner wall of plumbing fixture - Google Patents

Device and method for detecting inner wall of plumbing fixture

Info

Publication number
JPH079404B2
JPH079404B2 JP1020420A JP2042089A JPH079404B2 JP H079404 B2 JPH079404 B2 JP H079404B2 JP 1020420 A JP1020420 A JP 1020420A JP 2042089 A JP2042089 A JP 2042089A JP H079404 B2 JPH079404 B2 JP H079404B2
Authority
JP
Japan
Prior art keywords
hollow cylinder
reflection signal
transmission medium
hollow
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1020420A
Other languages
Japanese (ja)
Other versions
JPH02201145A (en
Inventor
一輝 成尾
Original Assignee
動力炉・核燃料開発事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 動力炉・核燃料開発事業団 filed Critical 動力炉・核燃料開発事業団
Priority to JP1020420A priority Critical patent/JPH079404B2/en
Priority to CA002007976A priority patent/CA2007976C/en
Publication of JPH02201145A publication Critical patent/JPH02201145A/en
Publication of JPH079404B2 publication Critical patent/JPH079404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

この発明は、開口端が着脱自在なシールプラグにより封
栓され、高圧流体を収容している配管器具の内壁を探傷
するための装置及び方法に関し、特に運転中の原子炉配
管器具の内壁を探傷するための装置及び方法に関するも
のである。
The present invention relates to an apparatus and a method for detecting the inner wall of a pipe fitting containing a high-pressure fluid, the open end of which is sealed by a removable seal plug, and particularly to the inner wall of a reactor piping fitting during operation. Apparatus and method for doing so.

【従来の技術】[Prior art]

運転中の圧力管型原子炉、軽水炉、高速炉等の圧力管、
蒸気ドラム、圧力容器、配管等には高圧流体が収容され
ている。 従来、これ等の配管器具の健全性を確認するため、供用
期間中、原子炉の運転を停止して、超音波探傷法により
その内壁を探傷検査することが行なわれていた。
Pressure pipes for operating pressure tube reactors, light water reactors, fast reactors, etc.
High-pressure fluid is contained in the steam drum, the pressure vessel, the piping, and the like. Conventionally, in order to confirm the soundness of these pipe fittings, the operation of the nuclear reactor was stopped during the service period, and the inner wall of the reactor was inspected by ultrasonic flaw detection.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

原子炉運転中に高圧流体を収容しているこれ等の配管器
具は、保全管理上、検査間隔を短かくして繰返し探傷検
査を行なうことが望ましいが、そうすると検査の度毎に
原子炉の運転を停止するため、原子力発電等の稼動効率
が低下するという問題が生じる。 然るに原子炉運転中に高圧流体を収容している配管器具
の内部、特に高温(約280℃)、高圧(約70kg/cm2)の
冷却水が流れている圧力管型原子炉の高放射線量(中性
子束約1014n/cm2・sec、ガンマー線約109R/H)の圧力管
の内部に超音波探触子等の検査具を挿入してその内壁の
探傷検査を行なおうとすると、短時間のうちに検査具が
損傷するという問題が生じる。 従って、この発明は、高圧流体を収容している配管器具
であって、高圧流体を収容したまま探傷検査可能な開口
端が着脱自在なシールプラグにより封栓された配管器
具、特に既に説明した高温、高圧、高放射線量の冷却水
が流れているという過酷な条件下にある運転中の圧力管
型原子炉の圧力管の内壁を探傷することができる探傷装
置及び探傷方法を提供することを目的とする。
For maintenance and management, it is desirable to perform repeated flaw detection inspections with a short inspection interval for these plumbing instruments that contain high-pressure fluid during reactor operation, but then the reactor operation will be stopped after each inspection. Therefore, there arises a problem that the operating efficiency of nuclear power generation and the like decreases. Therefore, the high radiation dose of the pressure tube reactor inside the piping equipment that contains high-pressure fluid during operation of the reactor, especially high-temperature (about 280 ° C), high-pressure (about 70 kg / cm 2 ) cooling water is flowing. An inspection tool such as an ultrasonic probe is inserted into the pressure tube with a neutron flux of about 10 14 n / cm 2 · sec and a gamma ray of about 10 9 R / H to perform flaw detection on the inner wall. Then, there arises a problem that the inspection tool is damaged in a short time. Therefore, the present invention is a piping device containing a high-pressure fluid, in which the open end capable of flaw detection while containing the high-pressure fluid is sealed by a detachable seal plug, in particular the high temperature described above. An object of the present invention is to provide a flaw detection device and a flaw detection method capable of flaw detection on the inner wall of the pressure tube of a pressure tube reactor under operation under severe conditions in which high-pressure, high radiation dose cooling water is flowing. And

【課題を解決するための手段】[Means for Solving the Problems]

この発明においては、密閉可能な中空容器と、前記配管
器具の開口端とこの中空容器とを取外し自在に密に接続
する接続具と、前記中空容器内部に配設され、前記接続
具を貫通して前記シールプラグを着脱するシールプラグ
着脱手段と、先端が密閉され、該先端近くの側面にそれ
自体と共に前記高圧流体に耐え得る材質から成る窓を有
し、内部に後端から入射した輻射ビームを前記窓から外
側に照射する経路を成す照射ビーム伝送媒体及び該照射
ビームの反射信号を伝送して後端から出力する反射信号
伝送媒体を含む前記中空容器内部に配設された中空筒
と、この中空筒を前記接続具を貫通して前記配管器具内
部に出し入れ可能に挿入する中空筒挿入手段と、前記中
空筒の後端に気密に接続され、この後端の所定位置に輻
射ビームを入射する輻射ビーム照射源及び伝送された前
記反射信号を検出する反射信号検出手段とを具備する探
傷装置を使用して、開口端が着脱自在なシールプラグに
より封栓され、高圧流体を収容している配管器具の開口
端と該装置の中空容器とを接続具で密に接続する工程を
有し、この工程に前後して該中空容器に非反応性の液体
を注入し、次いでシールプラグ着脱手段により前記開口
端からシールプラグを取外した後に中空筒挿入手段によ
り前記接続具を貫通して前記配管器具の内部に中空筒を
挿入し、然る後、輻射ビーム照射源により前記配管器具
の内壁に輻射ビームを照射してこのビームの反射信号を
反射信号伝送媒体により伝送し、反射信号検出手段によ
り検出してこの検出信号の変化から前記配管器具の内壁
を探傷することにより上記目的を達成したものである。 例えば上記配管器具が、既に説明した冷却水が流れてい
る運転中の圧力管型原子炉の圧力管である場合には、窓
及び中空筒並びに照射ビーム伝送媒体及び反射信号伝送
媒体が約280℃以上の高温、約70kg/cm2G以上の高圧及
び中性子束約1014n/cm2・sec、ガンマー線約109R/H以上
の高放射線量に耐え得る材質から成る前記装置が使用さ
れる。更に圧力管の開放端とこの探傷装置の中空容器と
を接続具で密に接続する工程に前後して、この中空容器
に冷却水と非反応性の液体が注入されるが、冷水、即ち
常温の水を注入することが好ましい。 照射ビーム伝送媒体としては、中空筒内の所定位置に配
置される反射鏡、光ファイバー等が使用できる。 反射信号伝送媒体は、伝送される反射信号の性質に応じ
て異なり、例えば輻射ビームの表面反射信号を目視によ
り検出する場合にはレーザカメラが使用され、表面反射
信号、輻射ビームの反射信号から配管器具の内壁による
例えば吸収や発光を検出するいずれの場合も多くは中空
筒の窓に近接してその内部に配置される反射鏡から成
る。 また、反射信号検出手段も検出される検出信号の性質に
応じて、種々のセンサ及びこれに接続されるカラーCR
T、オシロスコープ等、様々な表示器や記録計が使用さ
れ、またセンサとこれ等表示器や記録計との間に検出信
号からノイズを演算除去するなどのためマイクロコンピ
ュータユニットを接続しても良い。 例えば、照射ビーム伝送媒体及び反射信号伝送媒体が互
いに中空筒内の異なる位置に配置された反射鏡であり、
輻射ビーム照射源に加熱パルスレーザ発振器を含み、更
に連続光レーザ発振器を含む検出用ビーム照射源を輻射
ビーム照射源に近接した中空筒内後端に気密に接続した
探傷装置を使用して、中空筒の後端から軸方向に伝播す
る加熱パルスレーザビーム及び連続光レーザビームをそ
れぞれ第1の反射鏡及び第2の反射鏡で反射して窓を通
して配管器具の内壁にそれぞれ照射し、該内壁の加熱パ
ルスレーザ照射位置が急激に加熱されて生じる超音波が
傷位置で反射することにより生じる振動を連続光レーザ
ビームの反射強度変化として第2の反射鏡で反射して伝
送することもできる。
In the present invention, a sealable hollow container, a connecting tool for detachably and densely connecting the open end of the piping device and the hollow container, and disposed inside the hollow container, penetrating the connecting tool. Seal plug attaching / detaching means for attaching / detaching the seal plug, a tip end is closed, and a window made of a material capable of withstanding the high pressure fluid is provided on the side surface near the tip end, and the radiation beam is incident inside from the rear end. A hollow cylinder disposed inside the hollow container, which includes an irradiation beam transmission medium that forms a path for irradiating from the window to the outside and a reflection signal transmission medium that transmits a reflection signal of the irradiation beam and outputs the reflection signal from the rear end, Hollow cylinder insertion means for inserting the hollow cylinder through the connector to insert it into and out of the pipe fitting, and the rear end of the hollow cylinder is hermetically connected, and a radiation beam is incident on a predetermined position of the rear end. Do A pipe containing a high-pressure fluid, the open end of which is sealed by a detachable seal plug, using a flaw detector equipped with a radiation beam irradiation source and a reflection signal detecting means for detecting the transmitted reflection signal. There is a step of intimately connecting the open end of the instrument and the hollow container of the device with a connecting tool, and before or after this step, a non-reactive liquid is injected into the hollow container, and then the seal plug attaching / detaching means is used to After removing the seal plug from the open end, the hollow tube is inserted by the hollow tube insertion means to insert the hollow tube into the inside of the plumbing fixture, and then the radiation beam is applied to the inner wall of the plumbing fixture by the radiation beam irradiation source. The above-mentioned object is achieved by irradiating the beam and transmitting the reflected signal of this beam by the reflected signal transmission medium, detecting it by the reflected signal detecting means, and detecting the inner wall of the piping instrument from the change of this detected signal. Those were. For example, when the above-mentioned plumbing equipment is the pressure tube of the operating pressure tube type reactor in which the cooling water is already described, the window and the hollow tube, the irradiation beam transmission medium and the reflection signal transmission medium are about 280 ° C. The device is made of a material that can withstand the above high temperature, high pressure of about 70 kg / cm 2 G or higher, neutron flux of about 10 14 n / cm 2 · sec, and high radiation dose of about 10 9 R / H or more of gamma rays. It Further, before or after the step of tightly connecting the open end of the pressure pipe and the hollow container of the flaw detection device with a connecting tool, cooling water and a non-reactive liquid are injected into the hollow container. It is preferable to inject the above water. As the irradiation beam transmission medium, a reflecting mirror, an optical fiber or the like arranged at a predetermined position in the hollow cylinder can be used. The reflected signal transmission medium differs depending on the property of the transmitted reflected signal.For example, when visually detecting the surface reflected signal of the radiation beam, a laser camera is used. In any case, for example to detect absorption or luminescence by the inner wall of the instrument, it often consists of a reflector placed inside the hollow tube in close proximity to it. In addition, the reflection signal detection means also detects various sensors and color CRs connected to them according to the nature of the detected signals.
Various displays and recorders such as T and oscilloscopes are used, and a microcomputer unit may be connected between the sensor and these displays and recorders to remove noise from the detection signal. . For example, the irradiation beam transmission medium and the reflection signal transmission medium are reflecting mirrors arranged at different positions in the hollow cylinder,
The radiation beam irradiation source includes a heating pulse laser oscillator, and further, a detection beam irradiation source including a continuous-wave laser oscillator is used in a hollow cylinder close to the radiation beam irradiation source by using a flaw detection device airtightly connected to the rear end, The heating pulse laser beam and the continuous light laser beam propagating in the axial direction from the rear end of the cylinder are reflected by the first reflecting mirror and the second reflecting mirror, respectively, and are irradiated to the inner wall of the pipe fitting through the window, Vibration generated by the ultrasonic waves generated by the rapid heating of the heating pulsed laser irradiation position at the scratch position may be reflected by the second reflecting mirror and transmitted as a change in the reflection intensity of the continuous laser beam.

【作用】[Action]

この発明によれば、密閉可能な中空容器と、前記配管器
具の開口端とこの中空容器とを取外し自在に密に接続す
る接続具と、前記中空容器内部に配設され、前記接続具
を貫通して前記シールプラグを着脱するシールプラグ着
脱手段とを探傷装置に具備し、開口端が着脱自在なシー
ルプラグにより封栓され、高圧流体を収容している配管
器具の開口端とこの中空容器とを接続具で密に接続する
工程に前後して該中空容器に非反応性の液体を注入し、
次いでシールプラグ着脱手段により前記開口端からシー
ルプラグを取外すのでシールプラグを取外す時の配管器
具に収容されている高圧流体の開口端からの流出が中空
容器に満たされた非反応性の液体により遮断される。 また、先端が密閉され、該先端近くの側面にそれ自体と
共に前記高圧流体に耐え得る材質から成る窓を有し、内
部に後端から入射した輻射ビームを前記窓から外側に照
射する経路を成す照射ビーム伝送媒体及び該照射ビーム
の反射信号を伝送して後端から出力する反射信号伝送媒
体を含む前記中空容器内部に配設された中空筒と、この
中空筒を前記接続具を貫通して前記配管器具内部に出し
入れ可能に挿入する中空筒挿入手段と、前記中空筒の後
端に気密に接続され、この後端の所定位置に輻射ビーム
を入射する輻射ビーム照射源及び前記反射信号を検出す
る反射信号検出手段とを具備し、輻射ビーム照射源及び
反射信号検出手段が中空容器内部に配設された中空筒と
気密に接続されているので、中空容器に非反応性の液体
を満たした後にも中空筒内部及び輻射ビーム照射源及び
反射信号検出手段に非反応性の液体が侵入することはな
い。更に上記工程で配管器具内の高圧流体の開口端から
の流出が中空容器に満たされた非反応性の液体により遮
断されているので輻射ビーム照射源及び反射信号検出手
段が配管器具内の影響を受けることもない。 また、中空筒の先端が密閉され、中空筒及びその側面に
設けられた窓が高圧流体に耐え得る材質により構成され
ているので、中空筒挿入手段により接続具を貫通して高
圧流体を収容している配管器具の内部に中空筒を挿入し
ても中空筒内部の照射ビーム伝送媒体及び反射信号伝送
媒体は中空筒及びその側面に設けられた窓によって高圧
流体から隔離されている。但し、高圧流体が高温である
場合には、この熱が中空筒内部の照射ビーム伝送媒体及
び反射信号伝送媒体に伝達されて昇温するので、照射ビ
ーム伝送媒体及び反射信号伝送媒体は中空筒及びその側
面に設けられた窓と共に更に耐熱性とされる。 この様にして配管器具の内部に中空筒を挿入した後に輻
射ビーム照射源により輻射ビームを中空筒内部に後端か
ら入射すると、輻射ビームが照射ビーム伝送媒体を通っ
て中空筒側面の窓から配管器具の内壁に照射される。す
ると配管器具の内部に反射信号が発生し、この反射信号
を反射信号伝送媒体を通して伝送し、反射信号検出手段
により検出してこの検出信号の変化から配管器具の内壁
が探傷される。
According to this invention, a hermetically sealed hollow container, a connecting tool for detachably and tightly connecting the open end of the piping device and the hollow container, and a hollow container disposed inside the hollow container and penetrating the connecting tool. The flaw detection device is equipped with a seal plug attaching / detaching means for attaching / detaching the seal plug, the opening end of which is sealed by a detachable seal plug, and the opening end of a pipe instrument containing a high-pressure fluid and the hollow container. Injecting a non-reactive liquid into the hollow container before and after the step of tightly connecting the
Next, since the seal plug is removed from the opening end by the seal plug attaching / detaching means, the outflow from the opening end of the high-pressure fluid contained in the piping device when the seal plug is removed is blocked by the non-reactive liquid filled in the hollow container. To be done. Further, the front end is closed, and a window made of a material capable of withstanding the high-pressure fluid is formed on the side surface near the front end, and a path for irradiating the radiation beam incident from the rear end to the outside from the window is formed inside. A hollow cylinder disposed inside the hollow container that includes an irradiation beam transmission medium and a reflection signal transmission medium that transmits a reflection signal of the irradiation beam and outputs the reflection signal from the rear end, and the hollow cylinder that penetrates the connector. Hollow cylinder insertion means that inserts into and removes from the inside of the piping device, and a radiation beam irradiation source that is hermetically connected to the rear end of the hollow cylinder and that makes a radiation beam incident at a predetermined position on the rear end and the reflected signal. Since the radiation beam irradiation source and the reflection signal detection means are airtightly connected to the hollow cylinder disposed inside the hollow container, the hollow container is filled with a non-reactive liquid. Afterwards Superficial internal and non-reactive liquid to the radiation beam source and a reflected signal detecting means does not intrude. Furthermore, in the above process, the outflow from the open end of the high-pressure fluid in the piping device is blocked by the non-reactive liquid filled in the hollow container, so the radiation beam irradiation source and the reflection signal detection means are effective in the piping device. I do not receive it. Further, since the end of the hollow cylinder is hermetically sealed and the hollow cylinder and the window provided on the side surface thereof are made of a material capable of withstanding the high pressure fluid, the hollow cylinder insertion means penetrates the connector to accommodate the high pressure fluid. Even if the hollow tube is inserted into the existing piping device, the irradiation beam transmission medium and the reflected signal transmission medium inside the hollow tube are separated from the high-pressure fluid by the window provided on the hollow tube and its side surface. However, when the high-pressure fluid has a high temperature, this heat is transferred to the irradiation beam transmission medium and the reflection signal transmission medium inside the hollow cylinder to raise the temperature, so that the irradiation beam transmission medium and the reflection signal transmission medium are It is made more heat resistant together with the window provided on its side surface. In this way, after inserting the hollow cylinder into the piping equipment, when the radiation beam is made incident on the inside of the hollow cylinder from the rear end by the radiation beam irradiation source, the radiation beam passes through the irradiation beam transmission medium and is piped from the window on the side surface of the hollow cylinder. The inner wall of the instrument is irradiated. Then, a reflection signal is generated inside the piping instrument, the reflection signal is transmitted through the reflection signal transmission medium, is detected by the reflection signal detecting means, and the inner wall of the piping instrument is detected from the change of the detection signal.

【実施例】【Example】

以下に実施例を示し、更にこの発明を具体的に説明す
る。 炉心において圧力管が224本縦に配列されている圧力管
型原子炉のそれぞれの圧力管1は、高放射線量(中性子
束約1014n/cm2・sec、ガンマー線約109R/H)環境下にあ
り、通常、原子炉運転中、第2図に示すように、内部に
燃料2及び放射線遮蔽プラグ3が収納され、底部開口端
が着脱自在なシールプラグ4により密閉され、側部に接
続された配管5から高温(約280℃)、高圧(約70kg/cm
2G)の冷却水が流入し、燃料1を冷却して頂部に接続
された配管6から流出している。 この様な圧力管1の内壁を探傷する場合には、まず、燃
料交換機を用いて、圧力管1から燃料2及び放射線遮蔽
プラグ3を抜き出し、再びシールプラグ4で底部開口端
を密閉して圧力管1を第3図に示す状態にする。 この第3図に示す底部開口端がシールプラグ4により密
閉され、前記冷却水が流れている圧力管1を探傷するた
めの装置を第1図に示す。 この装置は、装置本体7と装置本体7をそれぞれの圧力
管1の直下に移動するための台車8により構成されてい
る。 この装置本体7は中空部が冷水(常温の水)により水密
に保たれた中空容器9を具備し、この中空容器9の頂部
に上向きに進退自在に接続され、圧力管1の開口底端部
の外周面に密に嵌着し得る例えばチタン合金や耐熱ゴム
材料等でできた内周面を有し、水圧、空気圧、油圧等を
利用した図示していない進退移動手段により圧力管1の
開口底端部に着脱し得る接続具10が配設されている。 また、中空容器9の内部の片側には、水圧、空気圧、油
圧等を利用した図示していない進退移動手段により水平
方向及び上下方向に進退して、その頂部を中空容器9の
内から接続具10を貫通してシールプラグ4と当接し、例
えばこの頂部とシールプラグ4の底部に螺合する雌雄の
ネジピッチが形成され、回転手段等によりシールプラグ
4と着脱可能なシールプラグ着脱機11が配設されてい
る。 他方、中空容器9の内部のもう一方の片側には、接続具
10の直下に水平に配置された昇降台をチェーン方式、ネ
ジ方式、シリンダー方式等により昇降自在に支持する昇
降機12が配設されている。また、この昇降台上には加熱
パルスレーザ発振器を含む加熱パルスビーム照射源13及
び連続光レーザ発振器を含む検出用ビーム照射源14、並
びに検出用ビームセンサ15が固定され、更にこれ等の上
方に先端が密閉され、先端部近くの側面にそれ自体と共
に高放射線量(中性子束約1014n/cm2・sec、ガンマー線
約109R/H)の圧力管1中を流れる高温(約280℃)、高
圧(約70kg/cm2G)の冷却水に耐え得る材質から成る窓
16を有する中空筒17がその密閉された先端を上向きにし
て垂直に、且つ、上方の接続具を貫通可能な配置位置に
固定されており、この場合の加熱パルスビーム照射源13
の加熱パルスレーザ発振器には、例えば、半導体レー
ザ、イットリウム−アルミニウム−ガーネットレーザ、
炭酸ガスレーザ、ガラスレーザ等のレーザ発振器が使用
され、検出用ビーム照射源14の連続光レーザ発振器に
は、例えばヘリウム−ネオンレーザ、アルゴンレーザ、
クリプトンレーザ等のレーザ発振器が使用される。 更に中空筒17の内部には高温(約280℃)に耐え得る材
質から成る反射鏡18,19が配設され、中空筒17の後端か
ら加熱パルスビーム照射源13からの加熱パルスビームを
入射すると共にこの加熱パルスビームに近接する検出用
ビーム照射源14から検出用ビームを入射して反射鏡19で
反射し、窓16を通して中空筒17の外側に照射し、且つ、
検出用ビームの反射ビームが窓16を通って反射鏡19で反
射し、中空筒17の後端に位置する検出用ビームセンサ15
に照射される様になっており、この場合の窓16には、例
えば石英ガラスが使用され、筒17には金属材料、反射鏡
18,19にはそれぞれ例えば金属膜により反射面を形成し
た石英ガラスや表面研摩した金属材料が使用される。 また、中空筒17の中空部には空気、窒素等の乾燥気体が
封入され、中空筒17の後端部の外周面に密着し、加熱パ
ルスビーム照射源13、検出用ビーム照射源14及び検出用
ビームセンサ15を覆う防水性の囲いにより気密に保た
れ、検出用ビームセンサ15は中空容器9の外部のオシロ
スコープ20に電気的に接続され、検出用ビームセンサ15
で検出された検出信号がオシロスコープ20の画面で検出
し得るようになっている。 以上の構成の探傷装置を用いて、第3図に示す底部開口
端がシールプラグ4により密閉され、冷却水が流れてい
る圧力管1の探傷は次の様になされる。 まず、台車8により装置本体7を移動し、第3図に示す
圧力管1の底部開口端の直下に接続具10を位置合せし、
この接続具10により圧力管1の底部開口端と中空容器9
とを密に接続した後、第4図に示すようにシールプラグ
着脱機11を操作して圧力管1からシールプラグ4を取外
し、シールプラグ4を中空容器9の内部に収納する。中
空容器9の内部は冷水で液密となっており、接続具10の
付近に圧力管1の内部の高温冷却水が中空容器9に流入
するのを防ぐための部材は設けていないが、高温冷却水
と冷水が接触しても、冷水が下方に存在する条件下では
自然対流による高温冷却水と冷水の混合は生じないの
で、シールプラグ4を取外す際に中空容器9の内部への
圧力管1内部の冷却水の流れ込みはほとんど無く、か
つ、中空容器9に満たされた冷水の熱伝達率が非常に小
さいので高温(約280℃)冷却水からの熱伝達が効果的
に遮蔽され、シールプラグ4取外し前後の中空容器9の
内部はほとんど変らない状態となっている。 次いで昇降機12を操作して中空筒17を上昇移動し、接続
具10を貫通して第5図に示すように中空筒を冷却水の流
れる圧力管1の内部に挿入し、然る後、加熱パルスビー
ム照射源13、検出用ビーム照射源14及び検出用ビームセ
ンサ15を作動させる。 すると第6図のに示す様に加熱パルスビーム照射源13
の加熱パルスレーザビームが中空筒17の後端から内部に
入射して反射鏡18で反射し、窓16を通って冷却水の流れ
ている圧力管1の内壁に照射される。この加熱パルスレ
ーザビームにより照射された圧力管1の内壁部分は急激
に発熱して熱膨張し、この内壁部分に超音波が発生して
圧力管1の表面及び内部に伝播する。圧力管1の表面及
び内部に傷があると、この傷の所で超音波が反射し、圧
力管1を僅かに振動させることとなる。この圧力管1の
反射振動は超音波発生源、即ち、圧力管1内壁の加熱パ
ルスレーザビーム照射部分に傷が近接している程顕著に
起る。この圧力管1の反射振動は、第6図の、即ち、
圧力管1内の加熱パルスレーザビーム照射部に近接した
位置に入射する検出用ビーム照射源14からの連続光レー
ザビームにより、反射振動の大きさに応じた強度の反射
光ビームに変換され、この反射光ビームが窓16を通って
反射鏡19で反射して中空筒17の後端にある検出用ビーム
センサ15に照射される。この反射光ビームは検出用ビー
ムセンサ15により光電変換され、検出用ビームセンサ15
に接続されたオシロスコープ20の画面で検出される。圧
力管1に傷がある場合には、圧力管1の加熱パルスレー
ザビームの照射による振動から例えばマイクロ秒程度の
時間差で後続する反射振動に対応する検出ピークがオシ
ロスコープの画面に検出されることとなる。 この様にして探傷検査が終了した後は逆の手順で圧力管
1に燃料2及び放射線遮断プラグを収納して再びシール
プラグ4で封栓した第2図の圧力管に復旧する。 以上にこの発明の探傷装置及び探傷方法の一例を示した
が、上記実施例の探傷装置において中空筒17に回転手段
を付設し、中空筒17を円周方向に回転することにより圧
力管1の内壁を一周する位置における探傷が行なえる様
にしてもよいことは勿論のこと、探傷を行なう配管器具
の種類に応じて、例えば軽水炉の圧力容器等、一つのプ
ラントに一つしかないような原子炉配管器具の場合に
は、台車を設けずに固定式とすることができるなど、こ
の発明の探傷装置及び探傷方法は様々な変形が可能であ
る。
Hereinafter, the present invention will be specifically described with reference to examples. Each pressure tube 1 of the pressure tube type reactor in which 224 pressure tubes are vertically arranged in the core has a high radiation dose (neutron flux of about 10 14 n / cm 2 · sec, gamma ray of about 10 9 R / H). ) Under the environment, normally during operation of the reactor, as shown in FIG. 2, the fuel 2 and the radiation shielding plug 3 are housed inside, and the bottom opening end is sealed by the removable seal plug 4, High temperature (about 280 ℃), high pressure (about 70kg / cm) from the pipe 5 connected to
2 G) cooling water flows in, cools the fuel 1 and flows out from the pipe 6 connected to the top. When detecting the inner wall of the pressure pipe 1 as described above, first, the fuel 2 and the radiation shielding plug 3 are extracted from the pressure pipe 1 by using a fuel exchanger, and the bottom opening end of the bottom portion is closed again with the seal plug 4 to apply pressure. The tube 1 is brought into the state shown in FIG. FIG. 1 shows an apparatus for detecting flaws in the pressure pipe 1 in which the bottom opening end shown in FIG. 3 is sealed by a seal plug 4 and the cooling water is flowing. This device is composed of a device main body 7 and a carriage 8 for moving the device main body 7 directly under each pressure pipe 1. The apparatus main body 7 includes a hollow container 9 whose hollow portion is kept watertight by cold water (normal temperature water). The hollow container 9 is connected to the top of the hollow container 9 so as to be movable upward and backward, and the bottom end of the opening of the pressure pipe 1 is connected. Has an inner peripheral surface made of, for example, a titanium alloy or a heat-resistant rubber material, which can be tightly fitted to the outer peripheral surface of A detachable connector 10 is provided at the bottom end. Further, on one side inside the hollow container 9, a forward / backward movement means (not shown) utilizing water pressure, air pressure, hydraulic pressure or the like is used to move back and forth in the horizontal direction and the vertical direction, and the top of the hollow container 9 is connected from the inside of the connector. A male / female screw pitch is formed which penetrates 10 and comes into contact with the seal plug 4, and is screwed to the top and the bottom of the seal plug 4, and a seal plug attaching / detaching machine 11 which can be attached / detached to / from the seal plug 4 by rotating means is arranged. It is set up. On the other hand, on the other side inside the hollow container 9, a connecting tool
An elevator 12 is provided directly below 10 to support a vertically arranged elevator platform by a chain system, a screw system, a cylinder system, and the like so as to be vertically movable. Further, a heating pulse beam irradiation source 13 including a heating pulse laser oscillator, a detection beam irradiation source 14 including a continuous light laser oscillator, and a detection beam sensor 15 are fixed on the lift table, and further above these. tip is sealed, high radiation dose with itself on the side surface near the tip (neutron flux of about 10 14 n / cm 2 · sec , about 10 9 R / H gamma) hot flowing pressure tube 1 medium (about 280 ℃), a window made of a material that can withstand high pressure (about 70 kg / cm 2 G) cooling water
A hollow cylinder 17 having 16 is fixed vertically with its sealed tip facing upward, and is fixed at a position where it can penetrate an upper connector, and in this case, a heating pulse beam irradiation source 13
Heating pulse laser oscillator, for example, a semiconductor laser, yttrium-aluminum-garnet laser,
A carbon dioxide laser, a laser oscillator such as a glass laser is used, and the continuous light laser oscillator of the detection beam irradiation source 14 includes, for example, a helium-neon laser, an argon laser,
A laser oscillator such as a krypton laser is used. Further, inside the hollow cylinder 17, reflecting mirrors 18 and 19 made of a material capable of withstanding high temperature (about 280 ° C.) are arranged, and the heating pulse beam from the heating pulse beam irradiation source 13 is incident from the rear end of the hollow cylinder 17. At the same time as this heating pulse beam, the detection beam is incident from the detection beam irradiation source 14 and reflected by the reflection mirror 19, and is irradiated to the outside of the hollow cylinder 17 through the window 16, and
The reflected beam of the detection beam passes through the window 16 and is reflected by the reflecting mirror 19, and the detection beam sensor 15 is located at the rear end of the hollow cylinder 17.
The window 16 in this case is made of, for example, quartz glass, and the cylinder 17 is made of a metal material or a reflecting mirror.
Quartz glass having a reflecting surface formed of a metal film or a surface-polished metal material is used for each of 18 and 19. Further, a dry gas such as air or nitrogen is sealed in the hollow portion of the hollow cylinder 17, and adheres closely to the outer peripheral surface of the rear end portion of the hollow cylinder 17, the heating pulse beam irradiation source 13, the detection beam irradiation source 14 and the detection. The detection beam sensor 15 is kept airtight by a waterproof enclosure that covers the detection beam sensor 15, and the detection beam sensor 15 is electrically connected to an oscilloscope 20 outside the hollow container 9 to detect the detection beam sensor 15.
The detection signal detected in (3) can be detected on the screen of the oscilloscope 20. Using the flaw detector having the above-described structure, flaw detection of the pressure pipe 1 in which the bottom opening end shown in FIG. 3 is sealed by the seal plug 4 and cooling water is flowing is performed as follows. First, the main body 7 of the apparatus is moved by the carriage 8, and the connector 10 is positioned just below the bottom opening end of the pressure pipe 1 shown in FIG.
With this connecting tool 10, the bottom open end of the pressure pipe 1 and the hollow container 9
After closely connecting and, the seal plug attaching / detaching machine 11 is operated to remove the seal plug 4 from the pressure pipe 1 as shown in FIG. 4, and the seal plug 4 is housed in the hollow container 9. The inside of the hollow container 9 is liquid-tight with cold water, and there is no member near the connector 10 for preventing the high-temperature cooling water inside the pressure pipe 1 from flowing into the hollow container 9. Even if the cooling water and the cooling water come into contact with each other, the mixing of the high temperature cooling water and the cooling water due to natural convection does not occur under the condition that the cooling water is present below. Therefore, when the seal plug 4 is removed, the pressure pipe to the inside of the hollow container 9 is removed. 1. There is almost no inflow of cooling water inside 1, and since the heat transfer coefficient of the cold water filled in the hollow container 9 is very small, the heat transfer from the high temperature (about 280 ° C) cooling water is effectively shielded, and the seal is provided. The inside of the hollow container 9 before and after the removal of the plug 4 is in a state of being almost unchanged. Next, the elevator 12 is operated to move the hollow cylinder 17 upwardly, penetrate the connector 10 and insert the hollow cylinder into the pressure pipe 1 through which the cooling water flows, as shown in FIG. The pulse beam irradiation source 13, the detection beam irradiation source 14 and the detection beam sensor 15 are operated. Then, as shown in FIG. 6, the heating pulse beam irradiation source 13
The heating pulse laser beam enters the inside of the hollow cylinder 17 from the rear end thereof, is reflected by the reflecting mirror 18, and is radiated to the inner wall of the pressure pipe 1 where the cooling water flows through the window 16. The inner wall portion of the pressure tube 1 irradiated with this heating pulse laser beam rapidly generates heat and thermally expands, and ultrasonic waves are generated in this inner wall portion and propagate to the surface and the inside of the pressure tube 1. If there are scratches on the surface and inside of the pressure tube 1, ultrasonic waves are reflected at the scratches, causing the pressure tube 1 to slightly vibrate. The reflected vibration of the pressure tube 1 is more remarkable as the flaw is closer to the ultrasonic wave generation source, that is, the heating pulse laser beam irradiation portion of the inner wall of the pressure tube 1. The reflected vibration of the pressure pipe 1 is shown in FIG.
The continuous light laser beam from the detection beam irradiation source 14 incident on the position close to the heating pulse laser beam irradiation part in the pressure tube 1 is converted into a reflected light beam having an intensity corresponding to the magnitude of the reflection vibration. The reflected light beam passes through the window 16 and is reflected by the reflecting mirror 19 to be applied to the detection beam sensor 15 at the rear end of the hollow cylinder 17. This reflected light beam is photoelectrically converted by the detection beam sensor 15, and the detection beam sensor 15
Is detected on the screen of the oscilloscope 20 connected to. When the pressure tube 1 has a flaw, a detection peak corresponding to the subsequent reflected vibration is detected on the screen of the oscilloscope with a time difference of, for example, about microseconds from the vibration caused by the irradiation of the heating pulse laser beam of the pressure tube 1. Become. After the flaw inspection is completed in this manner, the fuel 2 and the radiation blocking plug are housed in the pressure tube 1 in the reverse order, and the pressure tube of FIG. An example of the flaw detection apparatus and flaw detection method of the present invention has been described above. In the flaw detection apparatus of the above-described embodiment, the hollow cylinder 17 is provided with a rotating means, and the hollow cylinder 17 is rotated in the circumferential direction so that the pressure pipe 1 is rotated. Of course, it may be possible to perform flaw detection at a position that goes around the inner wall, but depending on the type of piping equipment that performs flaw detection, for example, there is only one atom in one plant, such as a pressure vessel of a light water reactor. In the case of the furnace pipe fitting, the flaw detection device and the flaw detection method of the present invention can be variously modified, such as a fixed type without a carriage.

【発明の効果】【The invention's effect】

以上、この発明によれば、配管器具の探傷のため、その
開口端からシールプラグを取外す際、あるいは取外され
た後にも配管器具内の高圧流体の流出が中空容器内に満
たされた非反応性の液体により防止されるので、配管器
具内に高圧流体を収容したまま配管器具の内壁を探傷す
ることができる。従って、原子炉の運転を停止すること
なく原子炉配管器具の内壁を探傷することができ、原子
炉の安全性を損うことなく原子力発電等の稼動効率の向
上につながる原子炉の長期間連続運転が可能となるばか
りか、原子炉を運転しながら短期間隔の探傷検査を行な
うことにより原子炉配管器具の初期段階の軽微な異常も
発見でき、このため早期異常対策が可能となり、この発
明の方法及び装置はより一層の原子炉の安全性の向上に
役立つものである。 加えて、この発明の探傷装置は、配管器具に収容されて
いる高圧流体中に挿入される検査具部分が高圧流体及び
高圧流体から伝導してくる熱等に対して堅牢な材質から
成り、その他の検査器具部分がこの高圧流体から常に隔
離され、中空容器内は非反応性の液体で満たされている
ので高圧流体から伝導してくる熱等が遮蔽され、特に、
この非反応性の液体に冷水を使用した場合には、水の熱
伝達率は非常に小さく、高圧流体が高温であってもより
一層効果的に高圧流体から伝導してくる熱が遮蔽され、
通常の室内等で使用される探傷装置と同様長期間安定し
て使用することができる。
As described above, according to the present invention, due to the flaw detection of the piping device, the outflow of the high-pressure fluid in the piping device is filled with the non-reaction when the seal plug is removed from the opening end or even after the removal. Since it is prevented by the volatile liquid, it is possible to detect the inner wall of the piping device while the high-pressure fluid is contained in the piping device. Therefore, it is possible to detect the inner wall of the reactor piping equipment without stopping the operation of the reactor, and to improve the operation efficiency of nuclear power generation etc. without impairing the safety of the reactor. Not only it becomes possible to operate, but also by performing flaw detection inspection at short intervals while operating the reactor, it is possible to detect minor abnormalities in the initial stage of the reactor piping equipment, and therefore it becomes possible to take early abnormality countermeasures. The method and apparatus are useful for further improving the safety of the reactor. In addition, the flaw detection device of the present invention is made of a material that is robust against the heat or the like conducted from the high-pressure fluid and the high-pressure fluid in the inspection tool portion that is inserted into the high-pressure fluid that is housed in the piping device. The inspection instrument part of is always isolated from this high-pressure fluid, and since the hollow container is filled with a non-reactive liquid, the heat conducted from the high-pressure fluid is shielded, in particular,
When cold water is used for this non-reactive liquid, the heat transfer coefficient of water is very small, and even if the high pressure fluid is at high temperature, the heat conducted from the high pressure fluid is shielded more effectively,
It can be used stably for a long period of time like a flaw detector used in a normal room.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の探傷装置の一例を示す概略説明
図、 第2図は、運転中の圧力管型原子炉の圧力管を示す概略
断面図、 第3図は、探傷検査前の圧力管型原子炉の圧力管を示す
概略断面図、 第4図及び第5図は、第1図の探傷装置を用いた第3図
の圧力管の探傷方法を説明するための図面、 第6図は、第5図の一部拡大図である。 1……圧力管、4……シールプラグ、7……装置本体、
9……中空容器、10……接続具、11……シールプラグ着
脱機、12……昇降機、13……加熱パルスビーム照射源、
14……検出用ビーム照射源、15……検出用ビームセン
サ、16……窓、17……中空筒、18,19……反射鏡、20…
…オシロスコープ。
FIG. 1 is a schematic explanatory view showing an example of the flaw detection apparatus of the present invention, FIG. 2 is a schematic cross-sectional view showing a pressure pipe of a pressure tube type reactor in operation, and FIG. 3 is a pressure before flaw detection inspection. FIG. 4 is a schematic cross-sectional view showing a pressure pipe of a tubular reactor, FIGS. 4 and 5 are drawings for explaining a flaw detection method for the pressure pipe of FIG. 3 using the flaw detection device of FIG. 1, and FIG. [Fig. 6] is a partially enlarged view of Fig. 5. 1 ... Pressure tube, 4 ... Seal plug, 7 ... Device body,
9 ... Hollow container, 10 ... Connection tool, 11 ... Seal plug attaching / detaching machine, 12 ... Elevator, 13 ... Heating pulse beam irradiation source,
14 ... Detection beam irradiation source, 15 ... Detection beam sensor, 16 ... Window, 17 ... Hollow cylinder, 18, 19 ... Reflector, 20 ...
…oscilloscope.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】開口端が着脱自在なシールプラグにより封
栓され、高圧流体を収容している配管器具の内壁を探傷
するための探傷装置であって、密閉可能な中空容器と、
前記配管器具の開口端とこの中空容器とを取外し自在に
密に接続する接続具と、前記中空容器内部に配設され、
前記接続具を貫通して前記シールプラグを着脱するシー
ルプラグ着脱手段と、先端が密閉され、該先端近くの側
面にそれ自体と共に前記高圧流体に耐え得る材質から成
る窓を有し、内部に後端から入射した輻射ビームを前記
窓から外側に照射する経路を成す照射ビーム伝送媒体及
び該照射ビームの反射信号を伝送して後端から出力する
反射信号伝送媒体を含む前記中空容器内部に配設された
中空筒と、この中空筒を前記接続具を貫通して前記配管
器具内部に出し入れ可能に挿入する中空筒挿入手段と、
前記中空筒の後端に気密に接続され、この後端の所定位
置に輻射ビームを入射する輻射ビーム照射源及び伝送さ
れた前記反射信号を検出する反射信号検出手段とを具備
することを特徴とする探傷装置。
1. A flaw detection device, the open end of which is sealed by a detachable seal plug, for detecting the inner wall of a pipe instrument containing a high-pressure fluid, the hollow container being capable of being sealed,
A connecting tool for detachably and tightly connecting the open end of the piping device and the hollow container, and being disposed inside the hollow container,
A seal plug attaching / detaching means for attaching / detaching the seal plug by penetrating the connector, a window having a tip closed and a side wall near the tip made of a material capable of withstanding the high pressure fluid together with the window, and having a window inside thereof. Arranged inside the hollow container including an irradiation beam transmission medium that forms a path for irradiating a radiation beam incident from the end to the outside from the window and a reflection signal transmission medium that transmits a reflection signal of the irradiation beam and outputs the reflection signal from the rear end. A hollow cylinder, and a hollow cylinder insertion means for inserting the hollow cylinder so as to be inserted into and removed from the piping device through the connector.
A radiation beam irradiation source that is airtightly connected to the rear end of the hollow cylinder, injects a radiation beam into a predetermined position of the rear end, and a reflection signal detection unit that detects the transmitted reflection signal. Flaw detector.
【請求項2】請求項1記載の装置を使用し、開口端が着
脱自在なシールプラグにより封栓され、高圧流体を収容
している配管器具の開口端と該装置の中空容器とを接続
具で密に接続する工程を有し、この工程に前後して該中
空容器に非反応性の液体を注入し、次いでシールプラグ
着脱手段により前記開口端からシールプラグを取外した
後に中空筒挿入手段により前記接続具を貫通して前記配
管器具の内部に中空筒を挿入し、然る後、輻射ビーム照
射源により前記配管器具の内壁に輻射ビームを照射して
このビームの反射信号を反射信号伝送媒体により伝送
し、反射信号検出手段により検出してこの検出信号の変
化から前記配管器具の内壁を探傷することを特徴とする
探傷方法。
2. The device according to claim 1, wherein the open end is sealed by a detachable seal plug, and the open end of a piping instrument containing a high-pressure fluid is connected to the hollow container of the device. Before and after this step, a non-reactive liquid is injected into the hollow container, and then the seal plug is removed from the open end by the seal plug attaching / detaching means, and then the hollow cylinder inserting means is used. A hollow cylinder is inserted into the pipe fitting through the connector, and thereafter, a radiation beam is applied to the inner wall of the pipe fitting by a radiation beam irradiation source, and a reflection signal of the beam is reflected by a reflection signal transmission medium. The flaw detection method is characterized in that the inner wall of the plumbing instrument is detected from the change of the detection signal detected by the reflection signal detecting means.
【請求項3】窓及び中空筒が耐熱、耐圧、耐放射線量性
の材質から成り、照射ビーム伝送媒体及び反射信号伝送
媒体が耐熱性の材質から成る請求項1記載の装置を使用
して、中空容器に注入する非反応性の液体が冷水である
請求項2の方法により冷却水が流れている運転中の圧力
管型原子炉の圧力管の内壁を探傷する方法。
3. The apparatus according to claim 1, wherein the window and the hollow cylinder are made of a heat-resistant, pressure-resistant and radiation-resistant material, and the irradiation beam transmission medium and the reflected signal transmission medium are made of a heat-resistant material. The method for detecting an inner wall of a pressure tube of a pressure tube reactor during operation according to the method of claim 2, wherein the non-reactive liquid injected into the hollow container is cold water.
【請求項4】照射ビーム伝送媒体及び反射信号伝送媒体
が互いに中空筒内の異なる位置に配置された反射鏡であ
り、輻射ビーム照射源に加熱パルスレーザ発振器を含
み、更に連続光レーザ発振器を含む検出用ビーム照射源
を輻射ビーム照射源に近接した中空筒内後端に気密に接
続した請求項1記載の装置を使用して、中空筒の後端か
ら軸方向に伝播する加熱パルスレーザビーム及び連続光
レーザビームをそれぞれ第1の反射鏡及び第2の反射鏡
で反射して窓を通して配管器具の内壁にそれぞれ照射
し、該内壁の加熱パルスレーザ照射位置が急激に加熱さ
れて生じる超音波が傷位置で反射することにより生じる
振動を連続光レーザビームの反射強度変化として第2の
反射鏡で反射して伝送する請求項2又は3記載の方法。
4. An irradiation beam transmission medium and a reflection signal transmission medium are reflecting mirrors arranged at different positions in a hollow cylinder, and the radiation beam irradiation source includes a heating pulse laser oscillator and further includes a continuous light laser oscillator. The heating pulse laser beam propagating in the axial direction from the rear end of the hollow cylinder by using the apparatus according to claim 1, wherein the detection beam irradiation source is airtightly connected to the rear end in the hollow cylinder close to the radiation beam irradiation source. Continuous light laser beams are reflected by the first reflecting mirror and the second reflecting mirror, respectively, and are radiated to the inner wall of the piping device through the window, respectively, and ultrasonic waves generated by rapidly heating the heating pulse laser irradiation position of the inner wall are generated. 4. The method according to claim 2, wherein the vibration caused by the reflection at the scratch position is reflected by the second reflecting mirror and transmitted as a change in the reflection intensity of the continuous laser beam.
JP1020420A 1989-01-30 1989-01-30 Device and method for detecting inner wall of plumbing fixture Expired - Fee Related JPH079404B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1020420A JPH079404B2 (en) 1989-01-30 1989-01-30 Device and method for detecting inner wall of plumbing fixture
CA002007976A CA2007976C (en) 1989-01-30 1990-01-17 Method and apparatus for detecting flaws on internal walls of fluid tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1020420A JPH079404B2 (en) 1989-01-30 1989-01-30 Device and method for detecting inner wall of plumbing fixture

Publications (2)

Publication Number Publication Date
JPH02201145A JPH02201145A (en) 1990-08-09
JPH079404B2 true JPH079404B2 (en) 1995-02-01

Family

ID=12026542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1020420A Expired - Fee Related JPH079404B2 (en) 1989-01-30 1989-01-30 Device and method for detecting inner wall of plumbing fixture

Country Status (2)

Country Link
JP (1) JPH079404B2 (en)
CA (1) CA2007976C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2567936C (en) 2006-11-14 2016-01-05 Atomic Energy Of Canada Limited Device and method for surface replication
WO2009119501A1 (en) * 2008-03-24 2009-10-01 株式会社Ihi検査計測 Furnace-observing method and apparatus
CN106226328B (en) * 2016-08-30 2022-09-09 中国石油天然气集团有限公司 Laser ring imaging detection instrument and detection method for interior of pipe body

Also Published As

Publication number Publication date
JPH02201145A (en) 1990-08-09
CA2007976C (en) 1998-04-28
CA2007976A1 (en) 1990-07-30

Similar Documents

Publication Publication Date Title
EP1742049B1 (en) Laser-based maintenance apparatus
US5457997A (en) Laser ultrasonic detection method and apparatus therefor
US3945245A (en) Method and equipment for detecting deflective nuclear fuel rods
US11984231B2 (en) Nuclear reactor plant for housing nuclear reactor modules
US4983352A (en) Closure system for a spent fuel storage cask
US20140251960A1 (en) Method of laser welding a nuclear fuel rod
JPH079404B2 (en) Device and method for detecting inner wall of plumbing fixture
JPH0223818B2 (en)
JPS5931030B2 (en) Nuclear reactor fuel element damage inspection device
JP2007017418A (en) Laser maintenance device
CN110718310A (en) Replacement method of thermoelectric couple column of reactor core of pressure vessel of nuclear power station
JPH0414743B2 (en)
US3971482A (en) Anti-leak closure valve
TW552174B (en) Welding underwater in a chamber with a flux-type backing
JP2003240891A (en) Storing vessel for nuclear fuel and temperature measurement method thereof
KR102209702B1 (en) Leakage detection apparatus for nuclear facilities and connecting pipe assembly including the same
KR102225562B1 (en) A testing device for nuclear fuel cladding using ultra-sonic wave
JPS6318718B2 (en)
KR820001591Y1 (en) Device for detecting level of molten metal in watercooled mold
Wessels Inservice inspection of the reactor block of sodium-cooled fast breeder reactors
Guidez et al. Advanced In-Service Inspection Approaches Applied to the Phe´ nix Fast Breeder Reactor
KR830002596B1 (en) Acoustic and Ultrasonic Testing for Fuel Assembly
McClung REMOTE INSPECTION OF WELDED JOINTS.
JPH03125998A (en) Nuclear reactor neutron flux measurement device
KR820000833B1 (en) Crack detection ceil for checking the leak prootness of fuel element units

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees