JPH0792009B2 - Air-fuel ratio controller for internal combustion engine - Google Patents

Air-fuel ratio controller for internal combustion engine

Info

Publication number
JPH0792009B2
JPH0792009B2 JP12880286A JP12880286A JPH0792009B2 JP H0792009 B2 JPH0792009 B2 JP H0792009B2 JP 12880286 A JP12880286 A JP 12880286A JP 12880286 A JP12880286 A JP 12880286A JP H0792009 B2 JPH0792009 B2 JP H0792009B2
Authority
JP
Japan
Prior art keywords
fuel
air
fuel ratio
control
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12880286A
Other languages
Japanese (ja)
Other versions
JPS63120831A (en
Inventor
嘉宏 加藤
幸廣 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP12880286A priority Critical patent/JPH0792009B2/en
Publication of JPS63120831A publication Critical patent/JPS63120831A/en
Publication of JPH0792009B2 publication Critical patent/JPH0792009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は内燃機関(以後エンジンとも言う)の空燃比
制御装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to an air-fuel ratio control device for an internal combustion engine (hereinafter also referred to as an engine).

(従来技術) 従来のエンジンにおいては例えば第5図に示すようなも
のが知られており、1はエンジン本体、2はイグナイタ
及びクランク角センサ内臓式のディストリビュータ、3
はスタータ、4は燃料タンク、5は燃料ポンプ、6は燃
料ポンプリレー、7はバッテリ、8はスロットルボデ
ー、9はサージタンク、10はスロットルバルブである。
11は燃料制御回路、12はスロットルセンサ、13は吸気圧
センサ、14は冷却水温センサ、15は排気管32に取り付け
た空燃比センサ、16は吸気管29に取り付けた燃料噴射弁
である。
(Prior Art) As a conventional engine, for example, one as shown in FIG. 5 is known, 1 is an engine body, 2 is an igniter and a crank angle sensor built-in type distributor, 3
Is a starter, 4 is a fuel tank, 5 is a fuel pump, 6 is a fuel pump relay, 7 is a battery, 8 is a throttle body, 9 is a surge tank, and 10 is a throttle valve.
Reference numeral 11 is a fuel control circuit, 12 is a throttle sensor, 13 is an intake pressure sensor, 14 is a cooling water temperature sensor, 15 is an air-fuel ratio sensor attached to the exhaust pipe 32, and 16 is a fuel injection valve attached to the intake pipe 29.

又第6図は燃料蒸気排出抑止装置を示し、チャコールキ
ャニスタ20は活性炭21を内臓しており、そのタンク側入
口22及び通気管17を介して燃料タンク4と連通し、又そ
の吸気通路側出口23、通気管18及びパージポート19を介
してスロットルボデー8と連通している。タンク側入口
22には鋼球24とスプリング25とからなるチェック弁が取
り付けられ、又吸気通路側出口23には鋼球26とスプリン
グ27とからなるチェック弁が取り付けられている。28は
大気解放口である。
Further, FIG. 6 shows a fuel vapor discharge suppressing device, in which the charcoal canister 20 contains activated carbon 21 and communicates with the fuel tank 4 through the tank side inlet 22 and the ventilation pipe 17 and the intake passage side outlet thereof. It communicates with the throttle body 8 via a ventilation pipe 23 and a purge port 19. Tank side entrance
A check valve including a steel ball 24 and a spring 25 is attached to the valve 22, and a check valve including a steel ball 26 and a spring 27 is attached to the intake passage side outlet 23. 28 is an air vent.

上記の構成において燃料制御回路11は吸気圧センサ13の
信号とディストリビュータ2に内臓されたクランク角セ
ンサの信号とを基本とし、この基本信号をスロットルセ
ンサ12、水温センサ14、空燃比センサ15等の信号で補正
して燃料噴射量を決定し燃料噴射弁16に開弁信号を送
る。排気ガス浄化装置として三元触媒を使用しているシ
ステムでは混合気の空燃比は通常の場合空燃比センサ15
の信号に基づいて理論空燃比に保持されるが定常運転や
比較的に緩い加減速運転のように出力があまり大きくな
くエンジンが安定した状態で作動している場合には燃費
改善のため最近は空燃比センサ15によるフィードバック
制御を停止しNOx等の排出が問題にならない程度まで空
燃比を薄くするオープンループ制御を採用している。な
お、先行技術資料としてトヨタ技術第32巻第2号119〜1
20頁がある。この場合燃料噴射弁16の開弁時間は燃料制
御回路11が予め記憶した情報と各種センサの信号とに基
づいて所定の空燃比になるよう予測で決められている。
In the above configuration, the fuel control circuit 11 is based on the signal of the intake pressure sensor 13 and the signal of the crank angle sensor built in the distributor 2, and uses this basic signal for the throttle sensor 12, the water temperature sensor 14, the air-fuel ratio sensor 15, etc. The signal is corrected to determine the fuel injection amount, and a valve opening signal is sent to the fuel injection valve 16. In a system that uses a three-way catalyst as an exhaust gas purification device, the air-fuel ratio of the air-fuel mixture is normally the air-fuel ratio sensor 15
Is maintained at the stoichiometric air-fuel ratio based on the signal of, but when the engine is operating in a stable state and the output is not so large as in steady operation or relatively slow acceleration / deceleration operation, recently to improve fuel economy The open-loop control is adopted in which the feedback control by the air-fuel ratio sensor 15 is stopped and the air-fuel ratio is reduced to such an extent that emission of NOx and the like does not matter. As a prior art document, Toyota Engineering Vol. 32, No. 2, 119-1
There are 20 pages. In this case, the valve opening time of the fuel injection valve 16 is predicted and determined to be a predetermined air-fuel ratio based on the information stored in advance by the fuel control circuit 11 and the signals of various sensors.

第6図において雰囲気温度の上昇により燃料タンク4内
で燃料蒸気が発生しタンク4内の圧力が上ると鋼球24が
スプリング25の弾力に抗して下方に押され、燃料蒸気が
チャコールキャニスタ20内に入って活性炭21に吸着され
る。エンジンの作動中、スロットルバルブ10が開いてパ
ージポート19にかぶさると吸気管の負圧により鋼球26が
スプリング27の弾力に抗して上方に引かれ、大気解放口
28からチャコールキャニスタ20内に導入された新気によ
り活性炭21から離脱した燃料蒸気は新気とともにパージ
ポート19からスロットルボデー8を経て吸気管29内に吸
入されていく。
In FIG. 6, when the atmospheric temperature rises and fuel vapor is generated in the fuel tank 4 and the pressure in the tank 4 rises, the steel ball 24 is pushed downward against the elasticity of the spring 25, and the fuel vapor is charged into the charcoal canister 20. It goes inside and is adsorbed by the activated carbon 21. When the throttle valve 10 is opened and the purge port 19 is covered while the engine is operating, the negative pressure of the intake pipe pulls the steel ball 26 upward against the elasticity of the spring 27, and the atmosphere release port.
The fuel vapor separated from the activated carbon 21 by the fresh air introduced into the charcoal canister 20 from 28 is sucked into the intake pipe 29 from the purge port 19 through the throttle body 8 together with the fresh air.

上記のオープンループ制御中では燃料制御回路11は空燃
比センサ15によるフィードバック制御を行なわないで他
の信号を基にして予め決められた方法で燃料噴射量を決
定しており、実際の空燃比が予め決められた値から外れ
ていても燃料制御回路11はこのことを検出することがで
きない。通常チャコールキャニスタ20からパージされる
燃料蒸気の量は燃料噴射弁16から噴射される燃料の量に
比べると微量であるためパージ燃料が空燃比に与える影
響は小さいが高温時に高負荷で長時間運転をした時は燃
料タンク4内の燃料の温度が高くなり、蒸発する燃料量
が増加してパージポート19から吸い出される燃料量も多
くなる。このため空燃比が予め決められた値よりも濃く
なって燃費が悪くなり、排気ガス中のNOx、CO等の有害
成分が増加する等の問題があった。
During the above open loop control, the fuel control circuit 11 determines the fuel injection amount by a predetermined method based on other signals without performing the feedback control by the air-fuel ratio sensor 15, and the actual air-fuel ratio is Even if the value deviates from the predetermined value, the fuel control circuit 11 cannot detect this. Normally, the amount of fuel vapor purged from the charcoal canister 20 is small compared to the amount of fuel injected from the fuel injection valve 16, so the purge fuel has a small effect on the air-fuel ratio, but it operates at high temperature for a long time at high load. When this is done, the temperature of the fuel in the fuel tank 4 rises, the amount of fuel that evaporates increases, and the amount of fuel that is sucked out from the purge port 19 also increases. As a result, the air-fuel ratio becomes richer than a predetermined value, fuel consumption becomes poor, and harmful components such as NOx and CO in the exhaust gas increase.

(発明が解決しようとする問題点) この発明はオープンループ制御中に燃料蒸発量が所定値
を越えて混合気の空燃比が設定値より濃くなるような場
合にオープンループ制御を空燃比センサによるフィード
バック制御に切り変えて燃費の悪化と、排気ガス中の有
害成分の増加とを防止する空燃比制御装置の提供を課題
とする。
(Problems to be Solved by the Invention) In the present invention, when the fuel evaporation amount exceeds a predetermined value during the open loop control and the air-fuel ratio of the air-fuel mixture becomes richer than the set value, the open-loop control is performed by the air-fuel ratio sensor. An object of the present invention is to provide an air-fuel ratio control device that switches to feedback control to prevent deterioration of fuel efficiency and increase of harmful components in exhaust gas.

(問題点を解決するための手段) 上記の課題を解決するためこの発明は燃料供給装置と、
燃料供給装置から内燃機関に供給される燃料の量を制御
する燃料制御回路と、排気系に設けた、前記燃料制御回
路に電気的に接続する空燃比センサとを有し、特定の運
転条件で前記燃料制御回路により空燃比センサの信号の
影響を受けないオープンループ制御が可能な燃料蒸気排
出抑止装置付き内燃機関において、前記燃料制御回路は
燃料タンクからの燃料蒸発量を判定する機構と電気的に
接続し、オープンループ制御中に燃料蒸発量が所定量を
越えたとの前記判定機構からの判定信号が入ったときに
オープンループ制御を空燃比センサの信号によるフィー
ドバック制御に切り変える機能を有する構成となってい
る。
(Means for Solving Problems) In order to solve the above problems, the present invention provides a fuel supply device,
A fuel control circuit that controls the amount of fuel supplied from the fuel supply device to the internal combustion engine, and an air-fuel ratio sensor that is provided in the exhaust system and that is electrically connected to the fuel control circuit, and has a specific operating condition. In an internal combustion engine with a fuel vapor emission suppression device capable of open loop control that is not affected by the signal of the air-fuel ratio sensor by the fuel control circuit, the fuel control circuit has a mechanism for electrically determining the amount of fuel evaporated from the fuel tank and an electrical system. And a function having a function of switching the open loop control to feedback control by the signal of the air-fuel ratio sensor when a judgment signal from the judgment mechanism that the fuel evaporation amount exceeds a predetermined amount is inputted during the open loop control. Has become.

(作用) 燃料タンクからの燃料蒸発量を判定する機構と電気的に
接続する燃料制御回路はオープンループ制御中おいては
排気系に取り付けた空燃比センサからの信号に無関係に
作動するがパージポートから吸い出される燃料蒸気によ
り混合気の空燃比が設定より濃くなるような場合にはオ
ープンループ制御を空燃比センサからの信号によるフィ
ードバック制御に切り変え空燃比を理論空燃比に保持す
る。
(Function) The fuel control circuit, which is electrically connected to the mechanism that determines the amount of fuel evaporated from the fuel tank, operates independently of the signal from the air-fuel ratio sensor attached to the exhaust system during open loop control, but the purge port When the air-fuel ratio of the air-fuel mixture becomes richer than the setting due to the fuel vapor sucked from the open-loop control is switched to the feedback control based on the signal from the air-fuel ratio sensor to maintain the air-fuel ratio at the stoichiometric air-fuel ratio.

(実施例の説明) 以下実施例を示す第1図〜4図によりこの発明を説明す
る。なお、第5図、第6図と同じ構成要素に対しては同
じ番号を付しその説明を省く。第1図において燃料タン
ク4内にタンク温度センサ31が設けられ、燃料制御回路
11に電気的に接続されている。すなわちタンク温度セン
サ31の信号は燃料制御回路11に入力される。その他の構
成は第5、6図と同じである。
(Description of Embodiments) The present invention will be described below with reference to FIGS. The same components as those in FIGS. 5 and 6 are designated by the same reference numerals and the description thereof is omitted. In FIG. 1, a tank temperature sensor 31 is provided in the fuel tank 4, and a fuel control circuit is provided.
Electrically connected to 11. That is, the signal from the tank temperature sensor 31 is input to the fuel control circuit 11. Other configurations are the same as those in FIGS.

燃料制御回路11は第3図に示すようにA/Dコンバータ11
a、入力処理回路11b、CPU11c及び出力処理回路11dを内
臓し、又CPU11cはRAMA11e、ROM11fを内臓する。
The fuel control circuit 11 has an A / D converter 11 as shown in FIG.
a, an input processing circuit 11b, a CPU 11c and an output processing circuit 11d are incorporated, and the CPU 11c also incorporates a RAMA 11e and a ROM 11f.

上記の構成において燃料は燃料タンク4から図示しにな
い燃料ポンプで汲み上げられ、同じく図示しない燃料配
管を通って燃料噴射弁16に導かれ、その一部は吸気管29
内に噴射されて混合気となりさらにエンジンの燃焼室内
で燃焼して動力を発生する。吸気管29内に噴射されなか
った残りの燃料は図示しないリターン通路を経て燃料タ
ンク4に戻る。
In the above structure, the fuel is pumped up from the fuel tank 4 by a fuel pump (not shown) and is guided to the fuel injection valve 16 through a fuel pipe (not shown), a part of which is taken in the intake pipe 29.
The fuel is injected into the mixture to form a mixture, which is further combusted in the combustion chamber of the engine to generate power. The remaining fuel not injected into the intake pipe 29 returns to the fuel tank 4 through a return passage (not shown).

高温時に高負荷で長時間運転するとエンジンで発生する
熱のためエンジンルーム内の温度が高くなり、そのため
燃料タンク4に戻る燃料の温度も高くなる。燃料タンク
4内の燃料の温度が50℃前後になると燃料の蒸発が盛ん
になり、チャコールキャニスタ20を通りスロットルボデ
ー8のパージポート19からスロットルボデー8を経て吸
気管29に流入する燃料蒸気の量が多くなり混合気の空燃
比が濃くなっていく。オープンループ制御中においてタ
ンク温度センサ31は燃料タンク4内の燃料の温度が設定
値以上(このことは吸気管29での混合気の空燃比が設定
より濃い可能性が高いことを意味する)になると信号を
燃料制御回路11に送りこれにより燃料制御回路11はオー
プンループ制御を空燃比センサ15の信号によるフィード
バック制御に切り変えて空燃比を理論空燃比に保持す
る。
When the engine is operated at a high temperature for a long time under a high load, the temperature in the engine room rises due to the heat generated by the engine, so that the temperature of the fuel returning to the fuel tank 4 also rises. When the temperature of the fuel in the fuel tank 4 becomes around 50 ° C., the evaporation of the fuel becomes vigorous, and the amount of the fuel vapor flowing into the intake pipe 29 from the purge port 19 of the throttle body 8 through the charcoal canister 20 and the throttle body 8. And the air-fuel ratio of the air-fuel mixture becomes richer. During the open loop control, the tank temperature sensor 31 determines that the temperature of the fuel in the fuel tank 4 is equal to or higher than the set value (this means that the air-fuel ratio of the air-fuel mixture in the intake pipe 29 is likely to be higher than the set value). Then, a signal is sent to the fuel control circuit 11, whereby the fuel control circuit 11 switches the open loop control to the feedback control based on the signal of the air-fuel ratio sensor 15 and holds the air-fuel ratio at the stoichiometric air-fuel ratio.

第2図はこの実施例の効果を示す。従来オープンループ
制御中に燃料タンク4内の燃料の温度が上ると、NOxの
排出量の少ない値に決めれれていた混合気の空燃比が破
線(イ)のように、NOxの排出量が破線(ロ)のよう
に、又空燃比が理論空燃比を越えてさらに濃くなるとCO
の排出量が破線(ハ)のようにそれぞれ変化する。然し
この実施例ではタンク内の燃料の温度が設定値に達した
時に混合気の空燃比制御をオープンループ制御からフィ
ードバック制御に切り変えるので空燃比、NOx排出量及
びCO排出量はそれぞれ一点鎖線(ニ)、(ホ)、(ヘ)
のように改善され又燃費の悪化も防止される。
FIG. 2 shows the effect of this embodiment. When the temperature of the fuel in the fuel tank 4 rises during the conventional open-loop control, the NOx emission amount is broken as indicated by the broken line (a) in the air-fuel ratio of the air-fuel mixture, which was set to a value with a small NOx emission amount. As shown in (b), when the air-fuel ratio exceeds the stoichiometric air-fuel ratio and becomes even richer, CO
The emission amount of each changes as shown by the broken line (C). However, in this embodiment, when the temperature of the fuel in the tank reaches the set value, the air-fuel ratio control of the air-fuel mixture is switched from the open loop control to the feedback control, so the air-fuel ratio, NOx emission amount and CO emission amount are respectively indicated by the one-dot chain line ( D), (e), (f)
As described above, the fuel economy is prevented from being deteriorated.

燃料タンク4内の燃料の蒸発量はエンジンルーム内の雰
囲気温度からも判定することができる。例えばタンク温
度センサ31の代りに吸気温センサ30を使用して燃料タン
クからの燃料蒸発量を判定することが可能であるし、吸
気管29や燃料通路の温度を検出して判定することができ
る。又これらの温度検出と時間経過とを組み会わせて判
定することも可能である。
The evaporation amount of the fuel in the fuel tank 4 can also be determined from the ambient temperature in the engine room. For example, the intake air temperature sensor 30 may be used instead of the tank temperature sensor 31 to determine the amount of fuel evaporated from the fuel tank, or the temperature of the intake pipe 29 or the fuel passage may be detected to make the determination. . It is also possible to make a determination by combining these temperature detections and the passage of time.

第4図はタンク温度検出と経過時間とを組み会わせた場
合のこの発明の空燃比制御のフローチャートを示す。ス
テップST1において空燃比A/Fをリーンに制御するための
オープンループ制御が行われているか否かを判断し、オ
ープンループ制御が行われていると判断した時はステッ
プST2に移行する。一方ステップST1の判断結果がNOの時
はステップST5に移行する。ステップST2においてタンク
温度センサ31からの出力信号により燃料タンクの温度が
設定値以上であるか否かを判断し、設定値以上であれば
ステップST3に移行する。一方ステップST2の判断により
設定値未満であればステップST8に移行し、ステップST8
で温度と時間の要素を組み合せたホットタイマーをリセ
ットした後他のルーチンに移行する。前記ステップST3
でタンク温度が設定値以上になり、かつ設定値以上の状
態で所定時間経過したか否かを判断し、所定時間オーバ
ーしたと判断した場合はステップST4に移行する。判断
結果がNOの場合は他のルーチンに移行する。ステップST
4ではタンク内の蒸発燃料による空燃比A/Fの変化を防止
するためのフィードバック(以後F/Bと記載する)制御
条件成立を示すフラグをセットし、その後他のルーチン
に移行する。ステップST5では蒸発燃料によるA/F変化を
防止するためのF/B制御が行われているか否かを判断
し、F/B制御中であると判断した場合はステップST6に移
行する。一方ステップST5の判断結果がNOであれば他の
ルーチンに移行する。ステップST6でタンク温度が未だ
設定値以上であるか否かを判断し、設定値以上であると
判断した場合は他のルーチンに移行する。一方ステップ
ST6の判断結果がNOの場合はステップST7に移行する。ス
テップST7ではF/B制御条件成立を示すフラッグをリセッ
トし、その後他のルーチンに移行する。
FIG. 4 shows a flow chart of the air-fuel ratio control of the present invention when the tank temperature detection and the elapsed time are combined. In step ST1, it is determined whether or not the open loop control for lean controlling the air-fuel ratio A / F is being performed. When it is determined that the open loop control is being performed, the process proceeds to step ST2. On the other hand, when the result of the determination in step ST1 is NO, the process proceeds to step ST5. At step ST2, it is judged from the output signal from the tank temperature sensor 31 whether or not the temperature of the fuel tank is at or above the set value, and if it is at or above the set value, the process proceeds to step ST3. On the other hand, if it is less than the set value by the judgment in step ST2, the process proceeds to step ST8, and step ST8
After resetting the hot timer that combines the elements of temperature and time, shift to another routine. Step ST3
Then, it is determined whether the tank temperature is equal to or higher than the set value and a predetermined time has passed while the tank temperature is equal to or higher than the set value. When it is determined that the predetermined time is exceeded, the process proceeds to step ST4. If the determination result is NO, the process moves to another routine. Step ST
At 4, a flag indicating that the feedback (hereinafter referred to as F / B) control condition for preventing the change of the air-fuel ratio A / F due to the evaporated fuel in the tank is satisfied is set, and then the routine proceeds to another routine. In step ST5, it is determined whether or not the F / B control for preventing the A / F change due to the evaporated fuel is being performed. If it is determined that the F / B control is being performed, the process proceeds to step ST6. On the other hand, if the decision result in the step ST5 is NO, the routine shifts to another routine. In step ST6, it is determined whether the tank temperature is still above the set value, and if it is determined that the tank temperature is above the set value, the routine proceeds to another routine. One step
If the determination result in ST6 is NO, the process proceeds to step ST7. In step ST7, the flag indicating that the F / B control condition is satisfied is reset, and then the routine proceeds to another routine.

さらに燃料蒸気の温度信号と空燃比センサの出力信号と
を組み合わせても燃料タンク4内の蒸発燃料によって混
合気が設定空燃比より濃くなったことが検出でき、これ
によってオープンループ制御を空燃比センサ15によるフ
ィードバック制御に切り変えて理論空燃比に保持するこ
とができる。
Furthermore, even if the temperature signal of the fuel vapor and the output signal of the air-fuel ratio sensor are combined, it can be detected that the air-fuel mixture has become richer than the set air-fuel ratio due to the evaporated fuel in the fuel tank 4, whereby the open-loop control is performed by the air-fuel ratio sensor. The stoichiometric air-fuel ratio can be maintained by switching to feedback control by 15.

(発明の効果) この発明の空燃比制御装置は上記のように燃料制御回路
によるオープンループ制御中に燃料蒸発量が所定値を越
えたとの信号により混合気の空燃比が設定より濃くなっ
たと判断してオープンループ制御を空燃比センサの信号
によるフィードバック制御に切り変える機能を有するの
で排気ガス中のNOx及びCOの排出量を低減させて大気の
汚染と燃費の悪化とを防止する効果を有する。
(Effect of the Invention) As described above, the air-fuel ratio control device of the present invention determines that the air-fuel ratio of the air-fuel mixture becomes richer than the set value due to the signal that the fuel evaporation amount exceeds the predetermined value during the open loop control by the fuel control circuit. Since it has the function of switching the open loop control to the feedback control by the signal of the air-fuel ratio sensor, it has an effect of reducing the emission amount of NOx and CO in the exhaust gas and preventing the pollution of the air and the deterioration of the fuel consumption.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の正面図を示し、第2図は
この発明による空燃比、NOx及びCOの排出量と従来のエ
ンジンのそれらとの比較を示す図である。第3図は燃料
制御回路の詳細図を示す。第4図はこの発明の空燃比制
御のフローチャートを示す。第5図は従来のエンジンの
正面図を示す。第6図は燃料蒸気排出抑止装置の正面図
を示す。 1……エンジン本体、4……燃料タンク、15……空燃比
センサ、30……吸気温度センサ、31……タンク温度セン
サ(燃料タンクからの燃料蒸発量を判定する機構)、32
……排気管(排気系)
FIG. 1 is a front view of an embodiment of the present invention, and FIG. 2 is a diagram showing a comparison between the air-fuel ratio, NOx and CO emissions according to the present invention and those of a conventional engine. FIG. 3 shows a detailed view of the fuel control circuit. FIG. 4 shows a flow chart of the air-fuel ratio control of the present invention. FIG. 5 shows a front view of a conventional engine. FIG. 6 shows a front view of the fuel vapor emission suppressing device. 1 ... Engine body, 4 ... Fuel tank, 15 ... Air-fuel ratio sensor, 30 ... Intake air temperature sensor, 31 ... Tank temperature sensor (mechanism for determining fuel evaporation amount from fuel tank), 32
...... Exhaust pipe (exhaust system)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃料供給装置と、燃料供給装置から内燃機
関に供給される燃料の量を制御する燃料制御回路と、排
気系に設けた、前記燃料制御回路に電気的に接続する空
燃比センサとを有し、特定の運転条件で前記燃料制御回
路により空燃比センサの信号の影響を受けないオープン
ループ制御が可能な燃料蒸気排出抑止装置付き内燃機関
において、前記燃料制御回路は燃料タンクからの燃料蒸
発量を判定する機構と電気的に接続し、オープンループ
制御中に燃料蒸発量が所定量を越えたとの前記判定機構
からの判定信号が入ったときにオープンループ制御を空
燃比センサの信号によるフィードバック制御に切り変え
るよう構成されていることを特徴とする空燃比制御装
置。
1. A fuel supply device, a fuel control circuit for controlling the amount of fuel supplied from the fuel supply device to an internal combustion engine, and an air-fuel ratio sensor provided in an exhaust system and electrically connected to the fuel control circuit. In an internal combustion engine with a fuel vapor emission suppression device capable of open loop control not affected by the signal of the air-fuel ratio sensor by the fuel control circuit under specific operating conditions, the fuel control circuit is The signal of the air-fuel ratio sensor is connected to the open-loop control when the judgment signal from the judgment mechanism that the fuel evaporation amount exceeds the predetermined amount is electrically connected with the mechanism for judging the fuel evaporation amount, during the open-loop control. The air-fuel ratio control device is characterized in that it is configured to switch to feedback control by.
JP12880286A 1986-06-03 1986-06-03 Air-fuel ratio controller for internal combustion engine Expired - Lifetime JPH0792009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12880286A JPH0792009B2 (en) 1986-06-03 1986-06-03 Air-fuel ratio controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12880286A JPH0792009B2 (en) 1986-06-03 1986-06-03 Air-fuel ratio controller for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS63120831A JPS63120831A (en) 1988-05-25
JPH0792009B2 true JPH0792009B2 (en) 1995-10-09

Family

ID=14993788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12880286A Expired - Lifetime JPH0792009B2 (en) 1986-06-03 1986-06-03 Air-fuel ratio controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0792009B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435517B2 (en) * 2021-03-26 2024-02-21 トヨタ自動車株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JPS63120831A (en) 1988-05-25

Similar Documents

Publication Publication Date Title
JPS63143374A (en) Evaporated fuel controller for internal combustion engine
JPH04153553A (en) Anomaly detecting device for evaporated fuel processing device
JP2623937B2 (en) Evaporative fuel processing control device for internal combustion engine
US20010003979A1 (en) Vaporized fuel treatment apparatus of internal combustion engine
JP2008045527A (en) Controller for engine
US11156174B2 (en) Controller for vehicle and method for controlling vehicle
JPH0792009B2 (en) Air-fuel ratio controller for internal combustion engine
JPH05180095A (en) Vaporized fuel control device for vehicle
US20040060285A1 (en) Control unit for internal combustion engine
JP3955142B2 (en) Evaporative purge control method for internal combustion engine
JPH08200166A (en) Air-fuel ratio control device
JP3106823B2 (en) Evaporative fuel processor for engine
JP4382717B2 (en) Control device for internal combustion engine
JPH1136921A (en) Control device for internal combustion engine
JP2006046179A (en) Failure diagnosis device for air fuel ratio sensor
JPH0791337A (en) Evaporated fuel transpiration preventing device of internal combustion engine
JPH1054310A (en) Intake control device for internal combustion engine
JP2609677B2 (en) Engine fuel supply
JPH1136998A (en) Evaporated fuel processing device of internal combustion engine
JP2002013437A (en) Controller of cylinder injection internal combustion engine
JPH04353255A (en) Evaporative emission system
JPH0420973Y2 (en)
JPH06185382A (en) Controller of engine
JP2023095237A (en) Control device for internal combustion engine and control method for internal combustion engine
JPH08200127A (en) Air-fuel ratio controller