JPH0791761A - Heat pump-type air conditioner - Google Patents

Heat pump-type air conditioner

Info

Publication number
JPH0791761A
JPH0791761A JP23198193A JP23198193A JPH0791761A JP H0791761 A JPH0791761 A JP H0791761A JP 23198193 A JP23198193 A JP 23198193A JP 23198193 A JP23198193 A JP 23198193A JP H0791761 A JPH0791761 A JP H0791761A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
air conditioner
indoor
type air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23198193A
Other languages
Japanese (ja)
Inventor
Ichiro Kamimura
一朗 上村
Kazuhiro Shimura
一廣 志村
Naoto Sakamoto
直人 坂本
Koji Inoue
幸治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23198193A priority Critical patent/JPH0791761A/en
Publication of JPH0791761A publication Critical patent/JPH0791761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve heat-exchanging efficiency and operating efficiency of a compressor in a heat pump-type air conditioner using non-azeotropic refrigerant. CONSTITUTION:In a heat pump-type air conditioner using non-azeotropic refrigerant composed of high boiling point refrigerant and low boiling point refrigerant, switching valves 38 for facing the flowing direction of air to be heat-exchanged by indoor/outdoor both heat exchangers 24, 23 to the flowing direction of non- azeotropic refrigerant are provided in the indoor/outdoor both heat exchangers 24, 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高沸点冷媒と低沸点冷
媒とからなる非共沸混合冷媒を用いるヒートポンプ式空
気調和機の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a heat pump type air conditioner using a non-azeotropic mixed refrigerant composed of a high boiling point refrigerant and a low boiling point refrigerant.

【0002】[0002]

【従来の技術】一般に、ヒートポンプ式空気調和機の冷
媒回路は図1に示すように構成されている。すなわち、
冷房時は四方弁1を実線状態に設定することにより圧縮
機2から吐出された冷媒は実線矢印のように流れる。一
方、暖房時は四方弁2を破線状態に設定することにより
圧縮機1から吐出された冷媒は破線矢印のように流れ
る。
2. Description of the Related Art Generally, a refrigerant circuit of a heat pump type air conditioner is constructed as shown in FIG. That is,
During cooling, the four-way valve 1 is set to the solid line state so that the refrigerant discharged from the compressor 2 flows as indicated by the solid line arrow. On the other hand, during heating, the four-way valve 2 is set to the broken line state so that the refrigerant discharged from the compressor 1 flows as indicated by the broken line arrow.

【0003】ここで、3は室内熱交換器、4はこの室内
熱交換器に風を送り込む室内ファン、5は室外熱交換
器、6はこの室外熱交換器に風を送り込む室外ファン、
7は膨張弁、8はアキュムレータである。この室内ファ
ン4並びに室外ファン6は、冷房時も暖房時もその回転
方向は同一であり、風向きは矢印のようにいずれの時
(冷房時、暖房時)も変化しない。
Here, 3 is an indoor heat exchanger, 4 is an indoor fan for sending air to the indoor heat exchanger, 5 is an outdoor heat exchanger, 6 is an outdoor fan for sending air to the outdoor heat exchanger,
Reference numeral 7 is an expansion valve, and 8 is an accumulator. The indoor fan 4 and the outdoor fan 6 have the same rotation direction during cooling and heating, and the wind direction does not change at any time (during cooling and heating) as indicated by the arrow.

【0004】従って、室内熱交換器3についてみれば、
冷房時の冷媒の流れ方向(実線矢印)と室内ファンの運
転による風の流れ方向とは同一である(並流形)。一
方、暖房時の冷媒の流れ方向(破線矢印)と室内ファン
の運転による風の流れ方向とは反対である(向流形)。
このように冷媒の流れ方向と風の流れ方向とは、冷房時
と暖房時とでは異なっている。このことは室外熱交換器
5についても同様であり、このことをまとめると図2の
ようになる。
Therefore, regarding the indoor heat exchanger 3,
The flow direction of the refrigerant during cooling (solid arrow) is the same as the flow direction of the wind generated by the operation of the indoor fan (parallel flow type). On the other hand, the flow direction of the refrigerant during heating (broken line arrow) is opposite to the flow direction of the wind generated by the operation of the indoor fan (countercurrent type).
As described above, the flow direction of the refrigerant and the flow direction of the wind are different during cooling and during heating. This also applies to the outdoor heat exchanger 5, and the summary thereof is as shown in FIG.

【0005】[0005]

【発明が解決しようとする課題】このように、夫々の熱
交換器において、冷媒の流れ方向と風の流れ方向とが、
冷房時と暖房時とで異なったとしても、冷媒が「単一冷
媒」(R−22)の場合には、あまり支障はなかった。
すなわち、単一冷媒は、図3の〜で示すように圧力
一定では温度も一定であるため、熱交換器の入口地点の
温度と出口地点の温度との差は極めて小さいためである
(図3の〜における実線矢印が水平となる)。
Thus, in each heat exchanger, the flow direction of the refrigerant and the flow direction of the wind are
Even if the cooling was different from the heating, there was not much trouble when the refrigerant was "single refrigerant" (R-22).
That is, since the temperature of the single refrigerant is constant when the pressure is constant as shown in (1) to (3) of FIG. 3, the difference between the temperature at the inlet point and the temperature at the outlet point of the heat exchanger is extremely small (FIG. 3). The solid arrow in ~ is horizontal).

【0006】しかしながら、高沸点冷媒と低沸点冷媒と
を混合したいわゆる非共沸混合冷媒」においては図4の
モリエル線図で示すように、非共沸混合冷媒は気液混合
状態では圧力が一定でも温度は変化する。すなわち、図
4に示す飽和液線10と飽和蒸気線11の間にある等温
線12は、飽和液線1から飽和蒸気線2に向かっていく
に従って、右下がりになっている。
However, in a so-called non-azeotropic mixed refrigerant in which a high-boiling-point refrigerant and a low-boiling-point refrigerant are mixed, as shown in the Mollier diagram of FIG. 4, the non-azeotropic mixed refrigerant has a constant pressure in a gas-liquid mixed state. But the temperature changes. That is, the isotherm 12 between the saturated liquid line 10 and the saturated vapor line 11 shown in FIG. 4 is descending to the right as it goes from the saturated liquid line 1 to the saturated vapor line 2.

【0007】従って、圧力一定とすると、蒸発過程の最
初の状態13が温度が最も低く、蒸発過程の最終状態1
4へと温度は約5〜6℃上昇する。一方、凝縮過程の最
初の状態15が温度が高く、凝縮過程の最終状態16が
温度が低下する。このように、熱交換器の入口温度と出
口温度との差が大きくなるため、図3ので示すよう
に「並流形」とすると、この非共沸混合冷媒の温度変化
(実線)と風の温度変化(破線)とが相反する方向とな
り、熱交換効率や圧縮機の運転効率が悪くなることは否
めなかった。
Therefore, if the pressure is constant, the first state 13 of the evaporation process has the lowest temperature and the final state 1 of the evaporation process is 1.
The temperature rises to 4 to about 5-6 ° C. On the other hand, the temperature is high in the first state 15 of the condensation process, and the temperature is lowered in the final state 16 of the condensation process. In this way, since the difference between the inlet temperature and the outlet temperature of the heat exchanger becomes large, the temperature change (solid line) of this non-azeotropic mixture refrigerant and the wind It was undeniable that the heat exchange efficiency and the compressor operating efficiency deteriorated because the temperature change (broken line) was in the opposite direction.

【0008】すなわち、従来の単一冷媒を用いた冷凍サ
イクルの各機器の接続関係を変えないで図1に示した状
態で、冷媒のみを単一冷媒から非共沸混合冷媒に変えた
のでは各種の効率が低下して商品として市場には投入で
きないことが判明した。そこで、本発明の目的は、非共
沸混合冷媒を用いたヒートポンプ式空気調和機において
熱交換効率並びに圧縮機の運転効率の向上を図ることを
目的としたものである。
That is, in the state shown in FIG. 1 without changing the connection relationship of each device of the conventional refrigeration cycle using a single refrigerant, only the refrigerant may be changed from the single refrigerant to the non-azeotropic mixed refrigerant. It became clear that various efficiencies fell and it could not be put on the market as a product. Therefore, an object of the present invention is to improve heat exchange efficiency and compressor operating efficiency in a heat pump type air conditioner using a non-azeotropic mixed refrigerant.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
に、請求項1の発明は、高沸点冷媒と低沸点冷媒とから
なる非共沸混合冷媒を用いるヒートポンプ式空気調和機
において、室内・室外両熱交換器では、これらの両熱交
換器にて熱交換される空気の流れ方向と前記非共沸混合
冷媒の流れ方向とがいずれも向かい合わせにするための
切換弁を設けるようにしたものである。
In order to achieve this object, the invention of claim 1 is a heat pump type air conditioner using a non-azeotropic mixed refrigerant consisting of a high boiling point refrigerant and a low boiling point refrigerant, In both the outdoor heat exchangers, a switching valve is provided to make the flow direction of the air heat-exchanged in these heat exchangers and the flow direction of the non-azeotropic mixed refrigerant face each other. It is a thing.

【0010】請求項2の発明は高沸点冷媒と低沸点冷媒
とからなる非共沸混合冷媒を用いるヒートポンプ式空気
調和機において、前記室内・室外両熱交換器にて流れる
この冷媒の流れ方向と向かい合わせとなる方向に、これ
らの熱交換器にて熱交換される空気を流すための送風機
を設けるようにしたものである。
According to a second aspect of the present invention, in a heat pump type air conditioner using a non-azeotropic mixed refrigerant composed of a high boiling point refrigerant and a low boiling point refrigerant, the flow direction of the refrigerant flowing in the indoor and outdoor heat exchangers is Blowers for flowing the air that is heat-exchanged by these heat exchangers are provided in opposite directions.

【0011】[0011]

【作用】室内(外)熱交換器が凝縮器もしくは蒸発器い
ずれに作用しても、常に非共沸混合冷媒の流れ方向と、
この冷媒と熱交換される空気の流れ方向とは向い合わせ
となる。
[Operation] Whether the indoor (outside) heat exchanger acts on the condenser or the evaporator, the flow direction of the non-azeotropic mixed refrigerant is always
The flow direction of the air that is heat-exchanged with the refrigerant faces each other.

【0012】[0012]

【実施例】図5で示しているヒートポンプ式空気調和機
の冷媒回路は、高沸点冷媒と低沸点冷媒からなる非共沸
混合冷媒を用いる。図5において、20は圧縮機、21
は四方弁で圧縮機20より吐出された冷媒を冷房時は実
線矢印のように、暖房時は破線矢印のように切り換える
ものである。22はアキュムレータである。
EXAMPLE The refrigerant circuit of the heat pump type air conditioner shown in FIG. 5 uses a non-azeotropic mixed refrigerant composed of a high boiling point refrigerant and a low boiling point refrigerant. In FIG. 5, 20 is a compressor, 21
Is a four-way valve that switches the refrigerant discharged from the compressor 20 as indicated by a solid arrow during cooling and as indicated by a broken arrow during heating. 22 is an accumulator.

【0013】23は室外熱交換器で、冷房時は凝縮器と
して作用し、暖房時は蒸発器として作用する。24は室
内熱交換器で、冷房時は蒸発器として作用し、暖房時は
凝縮器として作用する。25は膨張弁である。26,2
7は夫々室内外熱交換器24,23に並設された送風機
であり、これらの熱交換器と熱交換される空気を図5の
矢印のように流す。
An outdoor heat exchanger 23 functions as a condenser during cooling and as an evaporator during heating. An indoor heat exchanger 24 functions as an evaporator during cooling and as a condenser during heating. Reference numeral 25 is an expansion valve. 26, 2
Reference numeral 7 is a blower installed in parallel with the indoor and outdoor heat exchangers 24 and 23, respectively, and air for heat exchange with these heat exchangers is flowed as indicated by arrows in FIG.

【0014】本発明の実施例で特徴的なものの一つは、
図5の冷凍サイクルにおいて、室外(内)熱交換器2
3,24における冷媒の流れ方向は、冷房時も暖房時も
いずれも空気の流れ方向に対して向かい合うよう、すな
わち向流形となるよう配管や切換弁(逆止弁)がこれら
の室外(室内)熱交換器23,24に接続されているこ
とである。
One of the features of the embodiment of the present invention is that
In the refrigeration cycle of FIG. 5, the outdoor (inner) heat exchanger 2
The flow direction of the refrigerant in 3 and 24 is such that the pipe and the switching valve (check valve) face each other with respect to the air flow direction both during cooling and heating, that is, in a counterflow type. ) It is connected to the heat exchangers 23 and 24.

【0015】室外熱交換器23を中心にしてその構成を
述べると次のとおりである。28は四方弁21とこの室
外熱交換器23の一端29とをつなぐ第1の配管で、第
1逆止弁30が設けられている。この第1逆止弁30は
冷媒の流れによって冷房時に閉じられ、暖房時に開放さ
れる。31は膨張弁25とこの室外熱交換器23の他端
32とをつなぐ第2の配管で、第2逆止弁33が設けら
れている。この第2逆止弁33は冷媒の流れによって冷
房時に閉じられ、暖房時に開放される。34は第1バイ
パス管で、一端が第1逆止弁30の出口側に、他端が第
2逆止弁33の出口側に夫々つながれている。35はこ
の第1バイパス管34に設けられた第3逆止弁で、冷房
時のみ開放される。36は第2バイパス管で、一端が第
1逆止弁30の入口側に、他端が第2逆止弁33の入口
側に夫々つながれている。37はこの第2バイパス管に
設けられた第4逆止弁で、冷房時のみ開放される。
The structure of the outdoor heat exchanger 23 will be described below. A first pipe 28 connects the four-way valve 21 and one end 29 of the outdoor heat exchanger 23, and a first check valve 30 is provided. The first check valve 30 is closed by the flow of the refrigerant during cooling and opened during heating. Reference numeral 31 is a second pipe that connects the expansion valve 25 and the other end 32 of the outdoor heat exchanger 23, and a second check valve 33 is provided. The second check valve 33 is closed by the flow of the refrigerant during cooling and opened during heating. Reference numeral 34 is a first bypass pipe, one end of which is connected to the outlet side of the first check valve 30 and the other end of which is connected to the outlet side of the second check valve 33. Reference numeral 35 denotes a third check valve provided in the first bypass pipe 34, which is opened only during cooling. A second bypass pipe 36 has one end connected to the inlet side of the first check valve 30 and the other end connected to the inlet side of the second check valve 33. Reference numeral 37 is a fourth check valve provided in the second bypass pipe, which is opened only during cooling.

【0016】このように4つの逆止弁30,33,3
5,37から切換弁38は構成されており、これによっ
て冷房時は圧縮機20―四方弁21と経た非共沸混合冷
媒は、実線矢印のように図1の左側から右側へ向かって
流れるようになっている。一方、暖房時は、膨張弁25
を経た非共沸混合冷媒も室外熱交換器23内において破
線矢印のように図1の左側から右側へ向かって流れるよ
うになっている。これに対し空気の流れは図1の右側か
ら左側へ向かって流れるようになっている。
Thus, the four check valves 30, 33, 3
The switching valve 38 is composed of 5, 37, so that during cooling, the non-azeotropic mixed refrigerant that has passed through the compressor 20-four-way valve 21 flows from the left side to the right side in FIG. 1 as indicated by the solid arrow. It has become. On the other hand, during heating, the expansion valve 25
The non-azeotropic mixed refrigerant that has passed through also flows in the outdoor heat exchanger 23 from the left side to the right side in FIG. On the other hand, the flow of air flows from the right side to the left side in FIG.

【0017】言い換えれば、上述したように室外熱交換
器23における冷媒の流れ方向は、冷房時も暖房時もい
ずれも空気の流れ方向に対して向かい合うようにしてい
る。このような考えは室内熱交換器24においても同様
である。この室内熱交換器24の一端39には第11逆
止弁40が設けられた第11配管41が、他端42には
第12逆止弁43が設けられた第12配管44が夫々つ
ながれている。更に、第13逆止弁45が設けられた第
11バイパス管46と、第14逆止弁47が設けられた
第12バイパス管48が配置されている。これらの構成
により室内熱交換器24に対して、冷媒は冷房時に実線
矢印で示すように暖房時に破線矢印で示すようにいずれ
も室内熱交換器24内において図1の右側から左側へ向
かって流れるようになっている。これに対し空気の流れ
は図1の左側から右側へ向かって流れるようになってい
る。
In other words, as described above, the flow direction of the refrigerant in the outdoor heat exchanger 23 faces the air flow direction both during cooling and during heating. The same idea applies to the indoor heat exchanger 24. An eleventh pipe 41 provided with an eleventh check valve 40 is connected to one end 39 of the indoor heat exchanger 24, and a twelfth pipe 44 provided with a twelfth check valve 43 is connected to the other end 42. There is. Furthermore, an 11th bypass pipe 46 provided with a 13th check valve 45 and a 12th bypass pipe 48 provided with a 14th check valve 47 are arranged. With these configurations, the refrigerant flows to the indoor heat exchanger 24 from the right side to the left side in FIG. 1 in the indoor heat exchanger 24 as indicated by the solid arrow during cooling and as indicated by the broken arrow during heating. It is like this. On the other hand, the flow of air flows from the left side to the right side in FIG.

【0018】言い換えれば、上述したように室内熱交換
器24における冷媒の流れ方向は、冷房時も暖房時もい
ずれも空気の流れ方向に対して向かい合うようにしてい
る。ここで、上述している非共沸混合冷媒としては、沸
点が約−52℃の「R−32」、沸点が約−48℃の
「R−125」、沸点が約−28℃の「R−134a」
の3種混合のものが考えられる。
In other words, as described above, the flow direction of the refrigerant in the indoor heat exchanger 24 faces the air flow direction both during cooling and during heating. Here, as the above-mentioned non-azeotropic mixed refrigerant, the boiling point is "R-32" having a boiling point of approximately -52 ° C, the boiling point is "R-125" having a boiling point of approximately -48 ° C, and the "R-32" having a boiling point of approximately -28 ° C. -134a "
A mixture of the three types is considered.

【0019】このような冷凍機器の接続状態で圧縮機を
運転させた状態における非共沸混合冷媒をモリエル線図
で示せば、図6の実線のようになる。比較のために室内
外熱交換器における冷媒の流れ方向と風の流れ方向とを
いずれも並流形とした場合のモリエル線図は破線のよう
になる。この図からも圧縮過程の高さLが並流形の高さ
Hと比較して小さくなり、圧縮機の圧縮比を小さく保つ
ことが可能となった。
If the non-azeotropic mixed refrigerant in the state where the compressor is operated in such a connected state of the refrigeration equipment is shown in the Mollier diagram, it becomes as shown by the solid line in FIG. For comparison, the Mollier diagram when the flow direction of the refrigerant and the flow direction of the wind in the indoor-outdoor heat exchanger are both parallel flow type is shown by the broken line. Also from this figure, the height L in the compression process becomes smaller than the height H in the parallel flow type, and it becomes possible to keep the compression ratio of the compressor small.

【0020】図7は請求項2の発明を示したもので、図
5と同一部品には同一符号を付してその説明は省略し
た。図1との相異点は、熱交換器23,24を側路する
バイパス管34,36,46,48並びに逆止弁30,
33,35,37,40,43,45,47を廃止した
点と、ファンの回転方向を冷房時と暖房時とで反対方向
にして風向きを変えるようにした送風機49,50を備
えた点である。
FIG. 7 shows the invention of claim 2, and the same parts as those in FIG. 5 are designated by the same reference numerals and the description thereof is omitted. The difference from FIG. 1 is that the bypass pipes 34, 36, 46, 48 that bypass the heat exchangers 23, 24 and the check valve 30,
33, 35, 37, 40, 43, 45, 47 are abolished, and there is a blower 49, 50 for changing the wind direction by changing the rotation direction of the fan to the opposite direction during cooling and heating. is there.

【0021】この図において、実線矢印は冷房時の冷媒
並びに風の流れを示し破線は暖房時の冷媒並びに風の流
れを示している。冷房・暖房いずれの場合も、且つ室内
外いずれの熱交換器24,23においても、冷媒の流れ
方向と風向きとが「向流形」となっている。この図7の
実施例は図5に示した実施例と比較して配管接続の簡略
化が図れる。
In this figure, the solid line arrows show the flow of the refrigerant and the air during cooling, and the broken lines show the flow of the refrigerant and the air during heating. In both cases of cooling and heating, and in both indoor and outdoor heat exchangers 24 and 23, the flow direction and the wind direction of the refrigerant are “countercurrent type”. The embodiment of FIG. 7 can simplify the pipe connection as compared with the embodiment shown in FIG.

【0022】[0022]

【発明の効果】以上述べたように本発明によれば、室内
(外)熱交換器が凝縮器もしくは蒸発器いずれに作用し
ても、常に非共沸混合冷媒の流れ方向と、この冷媒と熱
交換される空気の流れ方向とが向かい合わせとなるの
で、この冷媒の熱交換率の向上と、冷凍サイクルの運転
効率の向上とを図ることができる。
As described above, according to the present invention, regardless of whether the indoor (outside) heat exchanger acts on the condenser or the evaporator, the flow direction of the non-azeotropic mixed refrigerant and the Since the flow direction of the heat-exchanged air faces each other, it is possible to improve the heat exchange rate of this refrigerant and improve the operation efficiency of the refrigeration cycle.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的なヒートポンプ式空気調和機の冷媒回路
図である。
FIG. 1 is a refrigerant circuit diagram of a general heat pump type air conditioner.

【図2】図1に示した空気調和機における冷媒の流れと
空気の流れを示した説明図である。
FIG. 2 is an explanatory diagram showing a refrigerant flow and an air flow in the air conditioner shown in FIG.

【図3】図1に示した熱交換器における向流形と並流形
との比較図である。
3 is a comparison diagram of a countercurrent type and a cocurrent type in the heat exchanger shown in FIG.

【図4】非共沸冷媒のモリエル線図である。FIG. 4 is a Mollier diagram of a non-azeotropic refrigerant.

【図5】本発明の一実施例を示すヒートポンプ式空気調
和機の冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram of a heat pump type air conditioner showing an embodiment of the present invention.

【図6】図5に示した空気調和機のモリエル線図であ
る。
FIG. 6 is a Mollier diagram of the air conditioner shown in FIG.

【図7】本発明の他の実施例を示す冷媒回路図である。FIG. 7 is a refrigerant circuit diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

20 圧縮機 23 室外熱交換器 24 室内熱交換器 38 切換弁 49,50 送風機 20 compressor 23 outdoor heat exchanger 24 indoor heat exchanger 38 switching valve 49, 50 blower

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 幸治 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koji Inoue 2-18, Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷房時に蒸発器として暖房時に凝縮器と
して夫々作用する室内熱交換器と、冷房時に凝縮器とし
て暖房時に蒸発器として夫々作用する室外熱交換器と、
圧縮機とを備え、高沸点冷媒と低沸点冷媒とからなる非
共沸混合冷媒を用いるヒートポンプ式空気調和機におい
て、前記冷房時並びに暖房時いずれの場合も、前記室内
外両熱交換器にて熱交換される空気の流れ方向と前記非
共沸混合冷媒の流れ方向とを向かい合わせにするために
前記冷媒の流れを制御する切換弁を設けたことを特徴と
するヒートポンプ式空気調和機。
1. An indoor heat exchanger that acts as an evaporator during cooling, and acts as a condenser during heating, and an outdoor heat exchanger that acts as a condenser during cooling and act as an evaporator during heating, respectively.
With a compressor, in a heat pump type air conditioner using a non-azeotropic mixed refrigerant consisting of a high boiling point refrigerant and a low boiling point refrigerant, in both the cooling and heating, in both the indoor and outdoor heat exchanger A heat pump type air conditioner comprising a switching valve for controlling the flow of the refrigerant so that the flow direction of the heat-exchanged air and the flow direction of the non-azeotropic mixed refrigerant are opposed to each other.
【請求項2】 冷房時に蒸発器として暖房時に凝縮器と
して作用する室内熱交換器と、冷房時に凝縮器として暖
房時に蒸発器として作用する室外熱交換器と、圧縮機と
を備え、高沸点冷媒と低沸点冷媒とからなる非共沸混合
冷媒を用いるヒートポンプ式空気調和機において、前記
室内・室外両熱交換器に流れる非共沸混合冷媒の流れ方
向と向かい合う方向に、これらの熱交換器にて熱交換さ
れる空気を流すための送風機を設けたことを特徴とする
ヒートポンプ式空気調和機。
2. A high-boiling-point refrigerant comprising an indoor heat exchanger that functions as an evaporator during cooling and a condenser during heating, an outdoor heat exchanger that functions as a condenser during cooling and as an evaporator during heating, and a compressor. In a heat pump type air conditioner using a non-azeotropic mixed refrigerant consisting of a low boiling point refrigerant and a low boiling point refrigerant, in these heat exchangers, in the direction opposite to the flow direction of the non-azeotropic mixed refrigerant flowing in both the indoor and outdoor heat exchangers. A heat pump type air conditioner, which is provided with a blower for flowing air that is heat-exchanged.
JP23198193A 1993-09-17 1993-09-17 Heat pump-type air conditioner Pending JPH0791761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23198193A JPH0791761A (en) 1993-09-17 1993-09-17 Heat pump-type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23198193A JPH0791761A (en) 1993-09-17 1993-09-17 Heat pump-type air conditioner

Publications (1)

Publication Number Publication Date
JPH0791761A true JPH0791761A (en) 1995-04-04

Family

ID=16932079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23198193A Pending JPH0791761A (en) 1993-09-17 1993-09-17 Heat pump-type air conditioner

Country Status (1)

Country Link
JP (1) JPH0791761A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150774A (en) * 2016-02-26 2017-08-31 Jfeスチール株式会社 Heat source water piping structure for ground thermal energy heat pump system
WO2024047836A1 (en) * 2022-09-01 2024-03-07 Hitachi-Johnson Controls Air Conditioning, Inc. Air-conditioning apparatus and casing structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150774A (en) * 2016-02-26 2017-08-31 Jfeスチール株式会社 Heat source water piping structure for ground thermal energy heat pump system
WO2024047836A1 (en) * 2022-09-01 2024-03-07 Hitachi-Johnson Controls Air Conditioning, Inc. Air-conditioning apparatus and casing structure

Similar Documents

Publication Publication Date Title
JP3540530B2 (en) Air conditioner
US20080250807A1 (en) Air Conditioning System for Communication Equipment and Controlling Method Thereof
JPH06281280A (en) Air conditioner
JPH07208821A (en) Air conditioner
US5964099A (en) Air conditioner coolant circulation route changing apparatus
JPH09196489A (en) Refrigeration cycle for air conditioner
JP2002228187A (en) Outdoor-air treating air-conditioner of air-cooled heat- pump type
JPH0791761A (en) Heat pump-type air conditioner
JPH0798162A (en) Air-conditioner
JP3650358B2 (en) Air conditioner
JP2760500B2 (en) Multi-room air conditioner
JP2001066006A (en) Refrigerant circuit for air conditioner
JP3054539B2 (en) Air conditioner
JPS6150211B2 (en)
JPH10196984A (en) Air conditioner
JP7357137B1 (en) air conditioner
KR20050043089A (en) Heat pump
JPS6117318Y2 (en)
WO2022215204A1 (en) Air conditioner
WO2023013347A1 (en) Refrigeration cycle device
JPH07103622A (en) Air-conditioner
JPH1068560A (en) Refrigeration cycle device
JPH08145490A (en) Heat exchanger for heat pump air conditioner
TWI784343B (en) Dehumidifier
JPH11264629A (en) Cross fin coil type heat exchanger