JPH0791522A - Shaft-integrated gear made of thermoplastic resin - Google Patents

Shaft-integrated gear made of thermoplastic resin

Info

Publication number
JPH0791522A
JPH0791522A JP24078293A JP24078293A JPH0791522A JP H0791522 A JPH0791522 A JP H0791522A JP 24078293 A JP24078293 A JP 24078293A JP 24078293 A JP24078293 A JP 24078293A JP H0791522 A JPH0791522 A JP H0791522A
Authority
JP
Japan
Prior art keywords
shaft
gear
resin
hollow
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24078293A
Other languages
Japanese (ja)
Inventor
Kimihiro Kubo
公弘 久保
Masaaki Kondo
正昭 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP24078293A priority Critical patent/JPH0791522A/en
Publication of JPH0791522A publication Critical patent/JPH0791522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gears, Cams (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain the excellent dimension accuracy, and to improve the productivity by specifying a ratio of the diameter of a root circle of a gear part to the diameter of a shaft part, and providing a hollow part inside of a shaft- integrated gear. CONSTITUTION:In a shaft-integrated gear to be used for a wide range as a mechanical part in each field of precision machine, electricity, electron or the like, a ratio of the diameter of a root circle of a gear part 2 to the diameter of a shaft part 1 is set at 1/1-5/1. This molding has a hollow part, and a hollow ratio is set in a range of 5-70%. Since this gear does not have a joint part and it can be molded by the injection at one time and a burr is hardly generated, it is molded by the hollow injection molding that gas is filled in a resin after injecting the thermoplastic resin into a mold cavity. As thermoplastic resin, polyacetal resin and polyamide resin are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱可塑性樹脂による歯車
に関するものであり、さらに詳しくは寸法精度が良好
で、生産性に優れた熱可塑性樹脂製の軸一体型歯車に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gear made of a thermoplastic resin, and more specifically to a shaft integral gear made of a thermoplastic resin having good dimensional accuracy and excellent productivity.

【0002】[0002]

【従来の技術】歯車は自動車、一般機械、精密機械、電
気・電子等の各分野に機構部品として幅広く用いられて
いる。そして、成形性が良く、軽量で、しかも錆びない
という理由から各種樹脂による歯車も近年ますますその
利用が拡大している。樹脂製の歯車は多くの場合、中心
に軸穴があり、この軸穴に金属等の軸を通して回転、作
動させる。このとき、軸と歯車の回転を一致させるとき
には、 (1)軸穴形状をD形状や多角形等の円以外の形状を用
い、金属等の軸に射出成形等で成形した歯車をはめ込ん
で組立てる。
Gears are widely used as mechanical parts in various fields such as automobiles, general machines, precision machines, and electric / electronic fields. In addition, gears made of various resins have been increasingly used in recent years because they have good formability, are lightweight, and do not rust. In many cases, a resin gear has a shaft hole at the center, and a shaft made of metal or the like is passed through the shaft hole to rotate and operate. At this time, when the rotations of the shaft and the gear are made to coincide with each other, (1) the shaft hole is formed in a shape other than a circle such as a D shape or a polygon, and the gear formed by injection molding or the like is fitted into the shaft made of metal or the like to assemble .

【0003】(2)(1)と同様に組立をするが、軸穴
は円形のままで、ネジ止め等で軸と歯車を固定する。 (3)樹脂の丸棒等の切削により軸一体型の歯車形状を
切り出す。 といった方法を用いるが、このような方法を用いるのは
通常の射出成形により歯車と軸を同時に一体成形すると
軸部が肉厚となりヒケにより歯車部の寸法精度が悪くな
るためである(軸部を細くすれば、ヒケはある程度防止
出来るが、強度が落ちてしまう)。
(2) Assembling is carried out in the same manner as (1), but the shaft hole is still circular and the shaft and the gear are fixed by screwing or the like. (3) A shaft-integrated gear shape is cut out by cutting a resin round bar or the like. The reason why such a method is used is that if the gear and the shaft are integrally molded at the same time by ordinary injection molding, the shaft portion becomes thick and the sink mark deteriorates the dimensional accuracy of the gear portion (the shaft portion is If you make it thinner, you can prevent sink marks to some extent, but the strength will decrease).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記
(1)、(2)では歯車とシャフトの組立て行程を必要
とする。また、(3)では切削を用いるので射出成形と
比較すると製作により多くの時間を要する。このように
従来の方法では生産性に劣るという問題点があった。
However, in the above (1) and (2), the assembly process of the gear and the shaft is required. Further, in (3), since cutting is used, more time is required for manufacturing as compared with injection molding. As described above, the conventional method has a problem of poor productivity.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
に本発明者等が鋭意研究を重ねた結果、歯車部の歯底円
直径と軸部の直径の比がある範囲にあって、しかも内部
に中空部を有する場合に上記の問題点を解決することを
見出し本発明に到達した。すなわち、本発明は、歯車部
2の歯底円7の直径と軸部1との直径の比が1/1〜5
/1であり、かつ内部に中空部を有する熱可塑性樹脂製
の軸一体型歯車である。
As a result of intensive studies conducted by the present inventors in order to solve the above-mentioned problems, as a result, the ratio of the diameter of the root circle of the gear part to the diameter of the shaft part is within a certain range, and The present invention has been achieved by finding that the above problems can be solved when a hollow portion is provided inside. That is, according to the present invention, the ratio of the diameter of the tooth bottom circle 7 of the gear portion 2 to the diameter of the shaft portion 1 is 1/1 to 5.
/ 1, and is a shaft integrated gear made of thermoplastic resin having a hollow portion inside.

【0006】以下、本発明を詳細に説明する。本発明で
は中空部を有する軸一体型歯車を得るが、中空部を生じ
させる成形法であれば如何なる成形法も用いることが出
来る。ただし、ここでの中空部とは巣(ボイド)や発泡
剤による中空部は除かれる。本発明を行う成形法として
は、接合部がなく1回の射出で成形できること、バリの
発生が少ないことから中空射出成形法が好適に用いられ
る。
The present invention will be described in detail below. In the present invention, a shaft-integrated gear having a hollow portion is obtained, but any molding method can be used as long as it is a molding method that produces a hollow portion. However, the hollow portion here excludes a void (void) and a hollow portion formed by a foaming agent. As a molding method for carrying out the present invention, a hollow injection molding method is preferably used because it can be molded by a single injection without a joint portion and few burrs are generated.

【0007】本発明でいう中空射出成形法とは、射出成
形において熱可塑性樹脂を金型キャビティー中に射出
後、ガス体を樹脂中に注入することにより中空成形品を
得る成形法である。本発明の中空射出成形法は、通常の
射出成形機とガス注入装置の組み合わせによって行われ
る。ガス注入装置は、樹脂の射出後に配管を通して樹脂
中にガス体を注入し、設定時間の間、このガス圧を保持
する装置である。これには注入するガス体を予め高圧に
圧縮し、アキュームレーターに蓄え、ガス注入時に配管
を通して高圧ガスを導入する方式や一定量のガス体をポ
ンプにより連続で送り込み、加圧していく方式等が考え
られるが、射出後の樹脂中にガス体を送り込めれば如何
なる方式も可能である。このとき、ガスの注入は注入口
として成形機のシリンダーのノズル、金型のスプルー、
金型のランナーを用いるか、あるいは製品部に直接注入
する等の方法が考えられるが、高圧のガス体を樹脂中に
注入できればいずれの方法でも実施可能である。中空射
出成形法の代表的な方法は特公昭57−14968号公
報に開示されている。
The hollow injection molding method referred to in the present invention is a molding method for obtaining a hollow molded article by injecting a thermoplastic resin into a mold cavity and then injecting a gas into the resin in injection molding. The hollow injection molding method of the present invention is carried out by a combination of an ordinary injection molding machine and a gas injection device. The gas injection device is a device that injects a gas body into the resin through a pipe after the resin is injected and maintains this gas pressure for a set time. For this, the gas body to be injected is compressed to a high pressure in advance and stored in an accumulator, a method of introducing high pressure gas through a pipe at the time of gas injection, a method of continuously feeding a certain amount of gas body with a pump, and pressurizing it. Though conceivable, any method is possible as long as a gas body is sent into the resin after injection. At this time, the gas injection is performed by using the nozzle of the cylinder of the molding machine, the sprue of the mold,
A method of using a die runner or directly injecting into the product part is conceivable, but any method can be used as long as a high-pressure gas body can be injected into the resin. A representative method of the hollow injection molding method is disclosed in Japanese Patent Publication No. 57-14968.

【0008】本発明に用いられる熱可塑性樹脂としては
ポリエチレン、ポリプロピレン、ポリスチレン、ABS
樹脂、ポリ塩化ビニル、ポリアミド、ポリアセタール、
ポリカーボネート、変性ポリフェニレンエーテル、ポリ
エチレンテレフテレート、ポリブチレンテレフタレー
ト、ポリフェニレンスルフィド、ポリイミド、ポリアミ
ドイミド、ポリエーテルイミド、ポリアリレート、ポリ
サルフォン、ポリエーテルサルホン、ポリエーテルエー
テルケトン、液晶ポリマー、ポリテトラフルオロエチレ
ン、熱可塑性エラストマー等が挙げられるが、通常の射
出成形が可能であれば、いかなる熱可塑性樹脂も用いる
ことができる。特に、ポリアセタール樹脂、及びポリア
ミド樹脂は耐熱性が高く、機械的物性にも優れ、さらに
は摺動特性にも優れるため歯車用の樹脂として多く用い
られており、本発明においても好適に用いられる。
The thermoplastic resin used in the present invention includes polyethylene, polypropylene, polystyrene and ABS.
Resin, polyvinyl chloride, polyamide, polyacetal,
Polycarbonate, modified polyphenylene ether, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyimide, polyamideimide, polyetherimide, polyarylate, polysulfone, polyethersulfone, polyetheretherketone, liquid crystal polymer, polytetrafluoroethylene, Examples include thermoplastic elastomers, but any thermoplastic resin can be used as long as ordinary injection molding is possible. In particular, the polyacetal resin and the polyamide resin have high heat resistance, are excellent in mechanical properties, and are also excellent in sliding properties, and are therefore often used as resins for gears, and are preferably used in the present invention.

【0009】本発明では内部に中空部を有するので、耐
熱性、機械的強度等をアップする目的で、必要に応じて
無機または有機の充填材を熱可塑性樹脂に配合すること
が出来る。好適な充填材としては、ガラス繊維、炭素繊
維、金属繊維、アラミド繊維、チタン酸カリウム、アス
ベスト、炭化ケイ素、セラミック、窒化ケイ素、硫酸バ
リウム、硫酸カルシウム、カオリン、クレー、パイロフ
ィライト、ベントナイト、セリサイト、ゼオライト、マ
イカ、雲母、ネフェリンシナイト、タルク、アタルパル
ジャイト、ウオラストナイト、PMF、フェライト、ケ
イ酸カルシウム、炭酸カルシウム、炭酸マグネシウム、
ドロマイト、酸化亜鉛、酸化チタン、酸化マグネシウ
ム、酸化鉄、二硫化モリブデン、黒鉛、石こう、ガラス
ビーズ、ガラスパウダー、ガラスバルーン、石英、石英
ガラスなどの強化充填材を挙げることができ、これらは
中空であってもよい。また、これらの強化充填材は2種
以上を併用することが可能であり、必要によりシラン
系、チタン系などのカップリング剤で予備処理して使用
することができる。
Since the present invention has a hollow portion inside, an inorganic or organic filler can be blended with the thermoplastic resin, if necessary, for the purpose of improving heat resistance, mechanical strength and the like. Suitable fillers include glass fibers, carbon fibers, metal fibers, aramid fibers, potassium titanate, asbestos, silicon carbide, ceramics, silicon nitride, barium sulfate, calcium sulfate, kaolin, clay, pyrophyllite, bentonite, and seri. Site, zeolite, mica, mica, nepheline sinite, talc, attarpulgite, wollastonite, PMF, ferrite, calcium silicate, calcium carbonate, magnesium carbonate,
Reinforcing fillers such as dolomite, zinc oxide, titanium oxide, magnesium oxide, iron oxide, molybdenum disulfide, graphite, gypsum, glass beads, glass powder, glass balloons, quartz, quartz glass can be mentioned, and these are hollow. It may be. Further, these reinforcing fillers can be used in combination of two or more kinds, and if necessary, they can be used after being pretreated with a coupling agent such as a silane-based or titanium-based coupling agent.

【0010】本発明で用いるガス体としては窒素やヘリ
ウム、ネオン、アルゴンなどの不活性ガス、水蒸気など
が挙げられるが、樹脂に対して不活性であればいかなる
ガス体も用いることができる。また、これらのガス体を
用いるときは通常不純物が含まれるが、あまり不純物成
分が多いと成形時に樹脂の分解やヤケを生じる場合があ
るので好ましくない。経済性を考慮すると工業的には窒
素ガスがより好適に使用される。
Examples of the gas body used in the present invention include nitrogen, helium, neon, an inert gas such as argon, steam and the like, but any gas body can be used as long as it is inert to the resin. Further, when these gas bodies are used, impurities are usually contained, but if the amount of impurities is too large, the resin may be decomposed or burned during molding, which is not preferable. Nitrogen gas is more preferably used industrially in consideration of economy.

【0011】本発明における「軸部」とは製品が回転、
作動するときに他部品(軸受け部品)によって回転が安
定するように支えられる部分である。図1に軸部1を図
示した。軸部1の直径を細くすれば、この部分での樹脂
の収縮に伴い生じるヒケをある程度防止できるので、軸
の直径が5mm以上の場合に本発明は特に有効である。
The "shaft" in the present invention means that the product rotates,
It is a part that is supported by other parts (bearing parts) so as to stabilize the rotation during operation. The shaft portion 1 is shown in FIG. By making the diameter of the shaft portion 1 thin, it is possible to prevent sink marks caused by the shrinkage of the resin at this portion to some extent. Therefore, the present invention is particularly effective when the shaft diameter is 5 mm or more.

【0012】本発明では、歯車部2の歯底円7の直径と
軸部1との直径の比が、1/1〜5/1であることが必
要である。この比の値が5を越えると、歯車部2の寸法
精度が悪くなるので好ましくないし、また1未満では実
用的でない。好ましくは、歯車部2の歯底円7の直径と
軸部1との直径の比は1/1〜4/1である。本発明の
成形品は中空部を有することが必要であるが、好適な中
空率は5〜70%であり、さらに好ましくは10〜60
%である。これは中空率が高いとヘジテーションマーク
などにより表面外観が悪くなったり、低いと本発明の目
的である寸法精度を損ねるためである。なお、中空率と
は次式で定義される。
In the present invention, it is necessary that the ratio of the diameter of the root circle 7 of the gear part 2 to the diameter of the shaft part 1 is 1/1 to 5/1. When the value of this ratio exceeds 5, the dimensional accuracy of the gear portion 2 is deteriorated, which is not preferable, and when it is less than 1, it is not practical. Preferably, the ratio of the diameter of the root circle 7 of the gear part 2 to the diameter of the shaft part 1 is 1/1 to 4/1. The molded product of the present invention is required to have a hollow portion, but the preferred hollow ratio is 5 to 70%, more preferably 10 to 60.
%. This is because when the hollow rate is high, the surface appearance is deteriorated due to hesitation marks or the like, and when the hollow rate is low, the dimensional accuracy, which is the object of the present invention, is impaired. The hollow ratio is defined by the following equation.

【0013】中空率(%)={(V×ρ−M)/(V×
ρ)}×100 ただし、上式においてVは中空部を同じ樹脂で埋めたと
きの体積、ρは用いた樹脂の比重、Mは中空成形品の質
量である。本発明では中空率をアップする目的で、金型
内に補助キャビティー(補助室あるいは捨てキャビティ
ーとも称する)を設けると効果的である。この補助キャ
ビティーはガス体注入時に製品キャビティー中の樹脂を
逃がすためのキャビティーであり、特開平3−1218
20号公報にその詳細が開示されている。
Hollow ratio (%) = {(V × ρ-M) / (V ×
ρ)} × 100 where V is the volume when the hollow part is filled with the same resin, ρ is the specific gravity of the resin used, and M is the mass of the hollow molded product. In the present invention, it is effective to provide an auxiliary cavity (also referred to as an auxiliary chamber or a discarding cavity) in the mold in order to increase the hollow ratio. This auxiliary cavity is a cavity for allowing the resin in the product cavity to escape when injecting a gas body.
The details are disclosed in JP-A-20.

【0014】本発明は軸と歯車の一体化が可能となる
が、更にローラー部、プーリー部も同時に一体化すると
更に部品の高機能化が出来るので有用である。
The present invention makes it possible to integrate the shaft and the gear, but it is useful to further integrate the roller part and the pulley part at the same time, because the parts can be made more functional.

【0015】[0015]

【実施例】以下に実施例を挙げて本発明を更に詳細に説
明するが、これは本発明を限定するものではない。
The present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the present invention.

【0016】[0016]

【実施例1〜11】以下に示す歯車諸元、形状の平歯歯
車を各種、作製し、時津市例1〜11とした。製品態様
の断面図の例を図1〜4に示す。 モジュール : 1.0 歯 数 : 11〜42 歯底円7の直径 : 8.5〜39.5mm 歯先円8の直径 : 13〜44mm 歯 幅 : 20mm 標準圧力角 : 20゜ 軸部1の直径 : 8mm 軸部1の長さ : 歯車の両側にそれぞれ20mm 熱可塑性樹脂としてはポリアセタール樹脂、ポリアミド
樹脂を用いて、金型温度はいずれも80℃、シリンダー
の設定温度は、それぞれ200℃、290℃で中空射出
成形を行った。また、樹脂の計量値を変えて各実施例の
中空率を得た。
Examples 1 to 11 Various spur gears having the following gear specifications and shapes were produced, and were used as Togitsu City Examples 1 to 11. Examples of cross-sectional views of product aspects are shown in FIGS. Module: 1.0 Number of teeth: 11 to 42 Diameter of root circle 7: 8.5 to 39.5 mm Diameter of tip circle 8: 13 to 44 mm Tooth width: 20 mm Standard pressure angle: 20 ° Diameter of shaft portion 1 : 8 mm Length of shaft part 1: 20 mm on both sides of the gear, using polyacetal resin and polyamide resin as the thermoplastic resin, the mold temperature is 80 ° C., the preset temperature of the cylinder is 200 ° C., 290 ° C. Hollow injection molding was performed. Moreover, the hollow value of each Example was obtained by changing the measured value of the resin.

【0017】樹脂中に注入するガス体には窒素ガスを用
い、ガス注入口は成形機のシリンダーのノズル部に設け
た。このときシリンダーへのガスの侵入(金型と反対方
向への侵入)を防止する目的でガス注入口のスクリュー
側(ホッパー側)にシャットオフ弁を設けた。ガス注入
装置に窒素ガスを導入し、100kg/cm2 に昇圧し
てアキュームレーターにたくわえ、樹脂射出後に配管を
通して樹脂中に注入した。ガス体は、ノズルからスプル
ー、ランナー、ゲートを通って製品キャビティー中に導
入された。ゲートは図1、4に示すように製品の片側の
軸に1点で設けた。このときの条件はガス圧入遅延時間
(樹脂の射出後ガスを注入するまでの時間)を1.0
秒、ガス圧入時間(ガス注入を行う時間)を5秒、圧力
保持時間(ガス注入を止めガス系を閉じた状態に保持す
る時間とガス圧入時間をたした時間)を50秒とした。
型開きは圧力保持時間終了から5秒後に行い、成形品を
取り出した。
Nitrogen gas was used as the gas body to be injected into the resin, and the gas injection port was provided in the nozzle portion of the cylinder of the molding machine. At this time, a shut-off valve was provided on the screw side (hopper side) of the gas injection port for the purpose of preventing gas from entering the cylinder (in the direction opposite to the mold). Nitrogen gas was introduced into the gas injection device, the pressure was raised to 100 kg / cm 2 and stored in an accumulator, and after the resin was injected, it was injected into the resin through a pipe. The gas body was introduced from the nozzle through the sprue, runner, and gate into the product cavity. The gate was provided at one point on the shaft on one side of the product as shown in FIGS. The condition at this time is that the gas injection delay time (the time until the gas is injected after the resin is injected) is 1.0.
Seconds, gas injection time (gas injection time) was 5 seconds, and pressure holding time (time to stop gas injection and keep the gas system closed and the time of gas injection) was 50 seconds.
Mold opening was performed 5 seconds after the pressure holding time was completed, and the molded product was taken out.

【0018】また、本実施例では中空率が35%以上の
となる場合は、何れもゲートと反対側に補助キャビティ
ーを用いた。上記方法により何れも中空構造をもつ成形
品が得られた。中空部の態様の例を図1〜4に示した。
得られた歯車の精度測定にはJIS歯車精度規格(JI
S B 1702)の歯形誤差、歯すじ方向誤差を用い
た。いずれの誤差も理想的なインボリュート歯車からの
寸法のずれであり、誤差の値が小さいほど正確に作動す
る歯車と言える。得られた結果を表1および表2に示し
た。
Further, in this embodiment, when the hollow ratio was 35% or more, the auxiliary cavity was used on the side opposite to the gate. Molded articles having hollow structures were obtained by the above methods. Examples of the form of the hollow portion are shown in FIGS.
JIS gear accuracy standard (JI
The tooth profile error and the tooth trace direction error of S B 1702) were used. Any error is a deviation in dimension from an ideal involute gear, and it can be said that the smaller the error value, the more accurately the gear operates. The obtained results are shown in Tables 1 and 2.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【比較例1〜5、7〜8】実施例1〜11で用いた金型
を用い、ガス体の注入は行わず、樹脂射出、樹脂保圧、
冷却といった通常の射出成形を行った。(通常の成形法
なので補助キャビティーは用いなかった。) シリンダー設定温度、金型温度等は実施例と同じで、樹
脂保圧は800kg/cm2 、保圧時間は51秒、冷却
時間は5秒とし、実施例とサイクル時間が同じになるよ
うに設定した。
[Comparative Examples 1 to 5 and 7 to 8] Using the molds used in Examples 1 to 11, without injecting a gas body, resin injection, resin pressure holding,
Normal injection molding such as cooling was performed. (Since it is a normal molding method, an auxiliary cavity was not used.) Cylinder set temperature, mold temperature, etc. were the same as in the example, the resin holding pressure was 800 kg / cm 2 , the holding pressure time was 51 seconds, and the cooling time was 5 seconds. Seconds were set so that the cycle time was the same as that in the example.

【0022】得られた結果を表1および表2に示した。The results obtained are shown in Tables 1 and 2.

【0023】[0023]

【比較例6】以下に示す歯車諸元、形状の平歯歯車を作
製したが、他の条件等については実施例1〜9と同様な
方法を用いた。製品態様の断面図を図5に示す。 モジュール : 1.0 歯 数 : 50 歯底円7の直径 : 47.5mm 歯先円8の直径 : 52mm 歯 幅 : 20mm 標準圧力角 : 20゜ 軸部1の直径 : 8mm 軸部1の長さ : 歯車の両側にそれぞれ20mm 得られた結果を表2に示した。
[Comparative Example 6] A spur gear having the following gear specifications and shapes was produced, but the same method as in Examples 1 to 9 was used for other conditions. A cross-sectional view of the product mode is shown in FIG. Module: 1.0 Number of teeth: 50 Diameter of root circle 7: 47.5 mm Diameter of tip circle 8: 52 mm Tooth width: 20 mm Standard pressure angle: 20 ° Diameter of shaft 1: 8 mm Length of shaft 1 Table 2 shows the results obtained by 20 mm on both sides of the gear.

【0024】[0024]

【発明の効果】表1および表2に示すように本発明によ
る軸一体型歯車は誤差が少なく、良好な寸法精度をも
ち、歯車として優れた形状を持つことが分かる。また、
中空射出成形法を用いるので短時間に成形品が得られ、
生産性に優れる歯車であるといえる。比較例1〜8では
歯車部の誤差が大きい。
As shown in Tables 1 and 2, it can be seen that the shaft-integrated gear according to the present invention has few errors, has good dimensional accuracy, and has an excellent shape as a gear. Also,
Since the hollow injection molding method is used, molded products can be obtained in a short time,
It can be said that the gear has excellent productivity. In Comparative Examples 1 to 8, the gear part has a large error.

【0025】本発明による軸一体型歯車は寸法精度が良
好であり、かつ生産性に優れるので、機構部品として自
動車、一般機械、精密機械、電気・電子等の各分野に有
用であり、産業上非常に有用である。特にファクシミ
リ、コピー機等の歯車部品に有用である。
Since the shaft-integrated gear according to the present invention has good dimensional accuracy and excellent productivity, it is useful as a mechanical component in various fields such as automobiles, general machinery, precision machinery, electric / electronics, etc. Very useful. It is particularly useful for gear parts such as facsimiles and copiers.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例5の歯車の断面図で、軸中心を通る断面
を示す。
FIG. 1 is a cross-sectional view of a gear according to a fifth exemplary embodiment, showing a cross section passing through a shaft center.

【図2】実施例5の歯車の断面図で、図1のAB面での
断面を示す。インボリュート歯形は1部省略している。
FIG. 2 is a cross-sectional view of a gear according to a fifth exemplary embodiment, showing a cross section taken along plane AB of FIG. Part of the involute tooth profile is omitted.

【図3】実施例5の歯車の断面図で、図1のCD面での
断面を示す。
FIG. 3 is a cross-sectional view of a gear according to a fifth exemplary embodiment, showing a cross section taken along the CD plane of FIG.

【図4】実施例9の歯車の断面図で、軸中心を通る断面
を示す。
FIG. 4 is a cross-sectional view of a gear according to a ninth exemplary embodiment, showing a cross section passing through a shaft center.

【図5】比較例6の歯車の断面図で、軸中心を通る断面
を示す。
FIG. 5 is a cross-sectional view of the gear of Comparative Example 6, showing a cross section passing through the center of the shaft.

【符号の説明】[Explanation of symbols]

1 軸部 2 歯車部 3 歯底 4 歯先 5 中空部(斜線部) 6 ゲート 7 歯底円 8 歯先円 1 Shaft part 2 Gear part 3 Tooth root 4 Tooth tip 5 Hollow part (hatched part) 6 Gate 7 Tooth root circle 8 Tooth tip circle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 歯車部2の歯底円7の直径と軸部1との
直径の比が1/1〜5/1であり、かつ内部に中空部を
有する熱可塑性樹脂製の軸一体型歯車。
1. A shaft-integrated type made of a thermoplastic resin, in which a ratio of a diameter of a root circle 7 of a gear part 2 to a diameter of a shaft part 1 is 1/1 to 5/1 and which has a hollow portion inside. gear.
JP24078293A 1993-09-28 1993-09-28 Shaft-integrated gear made of thermoplastic resin Pending JPH0791522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24078293A JPH0791522A (en) 1993-09-28 1993-09-28 Shaft-integrated gear made of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24078293A JPH0791522A (en) 1993-09-28 1993-09-28 Shaft-integrated gear made of thermoplastic resin

Publications (1)

Publication Number Publication Date
JPH0791522A true JPH0791522A (en) 1995-04-04

Family

ID=17064626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24078293A Pending JPH0791522A (en) 1993-09-28 1993-09-28 Shaft-integrated gear made of thermoplastic resin

Country Status (1)

Country Link
JP (1) JPH0791522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028157A (en) * 2001-07-17 2003-01-29 Nippon Thompson Co Ltd Limited linear motion guide unit provided with displacement of cage preventing mechanism
JP2009133473A (en) * 2007-11-07 2009-06-18 Ntn Corp Constant velocity universal joint
JP2015160439A (en) * 2014-02-26 2015-09-07 株式会社タチエス Sheet lifter for vehicle sheet and sheet lifter molding method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296521A (en) * 1991-03-27 1992-10-20 Matsushita Electric Ind Co Ltd Resin-molded gear
JPH04299113A (en) * 1991-03-28 1992-10-22 Matsushita Electric Ind Co Ltd Mold for resin gear and molded gear

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296521A (en) * 1991-03-27 1992-10-20 Matsushita Electric Ind Co Ltd Resin-molded gear
JPH04299113A (en) * 1991-03-28 1992-10-22 Matsushita Electric Ind Co Ltd Mold for resin gear and molded gear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028157A (en) * 2001-07-17 2003-01-29 Nippon Thompson Co Ltd Limited linear motion guide unit provided with displacement of cage preventing mechanism
JP2009133473A (en) * 2007-11-07 2009-06-18 Ntn Corp Constant velocity universal joint
JP2015160439A (en) * 2014-02-26 2015-09-07 株式会社タチエス Sheet lifter for vehicle sheet and sheet lifter molding method

Similar Documents

Publication Publication Date Title
JP3981808B2 (en) Injection mold and method for producing injection molded product using the same
KR100230634B1 (en) Blow injection molding method of integral shaft type body of rotation, and blow molded product
JP3015971B2 (en) Resin-made shaft-integrated hollow mechanism component and injection molding method for manufacturing the same
JPH0791522A (en) Shaft-integrated gear made of thermoplastic resin
JP2989471B2 (en) Mechanical parts made of thermoplastic resin by hollow injection molding
JPH08108484A (en) Thermoplastic resin screw
JP2714338B2 (en) Gas assist molding of gears made of thermoplastic resin
JP3087010B2 (en) Cylindrical molded product made of thermoplastic resin
JPH0771564A (en) Multistage gear made of resin and manufacture thereof
JP3054911B2 (en) Manufacturing method of hollow molded product with integrated metal insert
JP3580623B2 (en) Flapper made of thermoplastic resin
JP3032436B2 (en) Method of manufacturing resin roller by hollow injection molding method
JP2796238B2 (en) Gas-assisted molding of a stirring rod made of polyacetal resin
JP3108314B2 (en) Thermoplastic resin gear, hollow injection molding method thereof and mold
JP3108318B2 (en) Shaft-integrated gear made of thermoplastic resin, molding die and hollow injection molding method
JP2000199560A (en) Gear integrated rotary body, and mold therefor and molding method thereby
JP2003001662A (en) Mold for molding gear and injection molding method using the same
JP3076737B2 (en) Hollow injection molding of thermoplastic resin
JPH07100961A (en) Shaft-integrated resin roller
JPH1113766A (en) Bearing component made of thermoplastic resin
JPH06272748A (en) Highly rigid gear made of thermoplastic resin
JP3004872B2 (en) Bearing parts made of thermoplastic resin
JP2002248649A (en) Method for injection-molding insert-containing resin gear
JP3076736B2 (en) Hollow injection molding of thermoplastic resin gears
JPH10166382A (en) Polyacetal resin molded product

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980922