JPH0790119A - Resin composition for material to reduce reflection of sound wave in water, and material to reduce reflection of sound wave in water - Google Patents

Resin composition for material to reduce reflection of sound wave in water, and material to reduce reflection of sound wave in water

Info

Publication number
JPH0790119A
JPH0790119A JP23367593A JP23367593A JPH0790119A JP H0790119 A JPH0790119 A JP H0790119A JP 23367593 A JP23367593 A JP 23367593A JP 23367593 A JP23367593 A JP 23367593A JP H0790119 A JPH0790119 A JP H0790119A
Authority
JP
Japan
Prior art keywords
reflection reducing
underwater acoustic
acoustic wave
reducing material
wave reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23367593A
Other languages
Japanese (ja)
Other versions
JPH0794608B2 (en
Inventor
Takayoshi Hyodo
孝義 兵藤
Norimichi Murakami
訓通 村上
Shigeru Akashi
茂 赤司
Kiminori Araki
公範 荒木
Hiroshi Horii
浩 堀井
Naoki Takagaki
直樹 高垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Yokohama Rubber Co Ltd
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency, Yokohama Rubber Co Ltd filed Critical Japan Steel Works Ltd
Priority to JP23367593A priority Critical patent/JPH0794608B2/en
Publication of JPH0790119A publication Critical patent/JPH0790119A/en
Publication of JPH0794608B2 publication Critical patent/JPH0794608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fluid-Damping Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the title material which has a sound transmission constant sufficiently changeable and a void content accurately adiustable, exhibits an effective reduction effect in sound reflection, and effectively prevents water from permeating into voids. CONSTITUTION:The title compsn. is obtd. by dispersing microballoons 3 having flexible walls in a flexible viscoelastic reactive resin 2, and the title material is obtd. by curing the compsn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は水中音波反射低減材用
樹脂組成物及び水中構造物や水中航走体の水深の浅い低
水圧下において使用される水中音波反射低減材に係わ
り、更に詳しくは空隙率の調整が容易な水中音波反射低
減材用樹脂組成物及び水中音波反射低減材に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin composition for underwater acoustic wave reflection reducing material and an underwater acoustic wave reflection reducing material used under low water pressure with a shallow water depth of underwater structures and underwater vehicles. The present invention relates to a resin composition for an underwater acoustic wave reflection reducing material and an underwater acoustic wave reflection reducing material in which the porosity can be easily adjusted.

【0002】[0002]

【従来の技術】水中音響機器近傍の音響反射音低減や、
水中の構造物及び水中航走体の被探知防止のために水中
音波反射低減材が装着使用されている。図7に示すよう
に、この水中音波反射低減材10を水中の鋼板11に装
着して音波を伝搬させた際、水中音波反射低減材10の
音波の反射低減効果ER(dB)は次の(1)式で示され
る。
2. Description of the Related Art Reduction of reflected sound near an underwater acoustic device,
An underwater acoustic wave reflection reducing material is attached and used to prevent detection of underwater structures and underwater vehicles. As shown in FIG. 7, when the underwater acoustic wave reflection reducing material 10 is mounted on a steel plate 11 in water to propagate a sound wave, the underwater acoustic wave reflection reducing material 10 has a sound wave reflection reducing effect ER (dB) as follows. It is shown by the formula (1).

【0003】 ER=─20log|(zi ─zw )/(zi +zw )|……(1) ここで、zi は水と水中音波反射低減材10の界面の音
響インピーダンス密度、zw は水の音響インピーダンス
密度である。水と水中音波反射低減材10の界面の音響
インピーダンス密度zi は次の(2)式で示される。 ここで、z0 は水中音波反射低減材10の固有音響イン
ピーダンス、zL は鋼板11の固有音響インピーダン
ス、γは水中音波反射低減材10の伝搬定数、xは水中
音波反射低減材10の厚さである。
ER = −20log | (z i −z w ) / (z i + z w ) | (1) where z i is the acoustic impedance density at the interface between the water and the underwater acoustic reflection reducing material 10, and z w is the acoustic impedance density of water. The acoustic impedance density z i at the interface between the water and the underwater acoustic reflection reducing material 10 is expressed by the following equation (2). Here, z 0 is the intrinsic acoustic impedance of the underwater acoustic wave reflection reducing material 10, z L is the intrinsic acoustic impedance of the steel plate 11, γ is the propagation constant of the underwater acoustic wave reflection reducing material 10, and x is the thickness of the underwater acoustic wave reflection reducing material 10. Is.

【0004】水中音波反射低減材10の伝搬定数γは次
の(3) 式で示される。 γ=α+jk=(η/2+j)・ω/c ……(3) ここで、αは減衰係数、kは波長定数、ωは角周波数、
ηは水中音波反射低減材10の弾性的損失係数、cは伝
搬速度である。水中音波反射低減材10の固有音響イン
ピーダンスz0 は次の(4) 式で示される。
The propagation constant γ of the underwater acoustic wave reflection reducing material 10 is expressed by the following equation (3). γ = α + jk = (η / 2 + j) · ω / c (3) where α is the attenuation coefficient, k is the wavelength constant, ω is the angular frequency,
η is an elastic loss coefficient of the underwater acoustic wave reflection reducing material 10, and c is a propagation velocity. The specific acoustic impedance z 0 of the underwater acoustic wave reflection reducing material 10 is expressed by the following equation (4).

【0005】 z0 =ρc ……(4) ここで、ρは水中音波反射低減材10の密度である。以
上のことから、許容される厚さにおいて、水中音波反射
低減材10の伝搬速度cと弾性的損失係数ηにより定ま
る水中音波反射低減材10の伝搬定数γ、及び水中音波
反射低減材10の密度ρを適当に調整することにより、
水中音波反射低減材10を鋼板11に装着使用したとき
の必要な反射低減効果が得られることが分かる。
Z 0 = ρc (4) Here, ρ is the density of the underwater acoustic wave reflection reducing material 10. From the above, in the allowable thickness, the propagation constant γ of the underwater acoustic wave reflection reducing material 10 determined by the propagation velocity c of the underwater acoustic wave reflection reducing material 10 and the elastic loss coefficient η, and the density of the underwater acoustic wave reflection reducing material 10. By adjusting ρ appropriately,
It can be seen that the required reflection reduction effect can be obtained when the underwater acoustic wave reflection reducing material 10 is attached to the steel plate 11 for use.

【0006】ところで従来の薄型(水の波長の1/8以
下)の水中音波反射低減材は、例えば、軟質のゴム等の
粘弾性材料にアルミナ等の充填剤を混合し、その充填剤
の表面に付着した気泡を利用して粘弾性材料中に気泡を
含有させた構成となっている。気泡を粘弾性材料中に含
ませることにより水中音波反射低減材の音響伝搬定数γ
を変化させて、水中の構造物及び水中航走体に装備する
ことにより水中音波反射低減効果を得ている。
[0006] By the way, the conventional thin (1/8 or less of the wavelength of water) underwater acoustic wave reflection reducing material is obtained by mixing a viscoelastic material such as soft rubber with a filler such as alumina and the surface of the filler. The viscoelastic material is made to contain bubbles by utilizing the bubbles attached to the. The acoustic propagation constant γ of the underwater acoustic reflection reducing material by including bubbles in the viscoelastic material
By changing the value and installing it in underwater structures and underwater vehicles, the underwater acoustic wave reflection reduction effect is obtained.

【0007】また、粘弾性材料中にガラスバルーン等の
硬質バルーンを充填して構成された水中音波反射低減材
が知られている。硬質バルーン内に有する気泡を粘弾性
材料中に含ませることにより、上述同様に水中音波反射
低減材の音響伝搬定数γを変化させている。
Further, an underwater acoustic wave reflection reducing material constituted by filling a hard balloon such as a glass balloon in a viscoelastic material is known. By including the bubbles contained in the hard balloon in the viscoelastic material, the acoustic propagation constant γ of the underwater acoustic wave reflection reducing material is changed in the same manner as described above.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上述した
前者の水中音波反射低減材は、必要な空隙量を粘弾性材
料中に含有させるためには、充填剤の形状や大きさを均
一にすると共に、この充填剤と粘弾性材料との混合及び
硬化時の加工条件により気泡の付着量を調整するので、
精度良く空隙量を調整することが困難である。さらに粘
弾性材料が水中で吸水する場合には、気泡にも水が浸透
し粘弾性材料中の空隙量が減少すると言う問題があっ
た。
However, in the former underwater acoustic wave reflection reducing material described above, in order to make the viscoelastic material contain a necessary amount of voids, the shape and size of the filler are made uniform, and Since the amount of bubbles adhered is adjusted according to the processing conditions at the time of mixing and curing the filler and the viscoelastic material,
It is difficult to accurately adjust the amount of voids. Further, when the viscoelastic material absorbs water, there is a problem that water also penetrates into the bubbles and the amount of voids in the viscoelastic material decreases.

【0009】また後者の水中音波反射低減材にあって
は、粘弾性材料が水中で吸水しても、気泡に水が浸透し
難い反面、硬質のバルーンを充填した粘弾性材料では音
圧による粘弾性材料の変形が生じないため、十分に水中
音波反射低減材の音響伝搬定数を変化させることができ
ず、有効な反射低減効果を得ることができないと言う問
題があった。
Further, in the latter underwater acoustic wave reflection reducing material, even if the viscoelastic material absorbs water in water, it is difficult for water to permeate into the air bubbles. On the other hand, the viscoelastic material filled with a hard balloon is viscous due to sound pressure. Since the elastic material is not deformed, there is a problem that the acoustic propagation constant of the underwater acoustic wave reflection reducing material cannot be changed sufficiently and an effective reflection reducing effect cannot be obtained.

【0010】この発明はかかる従来の課題に着目して案
出されたもので、音響伝搬定数を十分に変化させること
が可能で、かつ精度良く空隙量を調整することができ、
有効な反射低減効果を得ることができると共に、気泡に
水が浸透するのを有効に防止した水中音波反射低減材用
樹脂組成物及び水中音波反射低減材を提供することを目
的とするものである。
The present invention was devised by focusing on such a conventional problem, and it is possible to sufficiently change the acoustic propagation constant and to adjust the void amount with high accuracy.
It is an object of the present invention to provide a resin composition for an underwater acoustic wave reflection reducing material and an underwater acoustic wave reflection reducing material that can effectively prevent the permeation of water into bubbles while obtaining an effective reflection reducing effect. .

【0011】[0011]

【課題を解決するための手段】上記目的を達成するこの
発明の水中音波反射低減材用樹脂組成物は、軟質の粘弾
性反応性樹脂に軟質の壁を有するマイクロバルーンを分
散させてなることを要旨とするものである。またこの発
明の水中音波反射低減材は、前記樹脂組成物を硬化させ
てなることを要旨とするものである。
The resin composition for underwater acoustic wave reflection reducing material of the present invention which achieves the above object comprises a soft viscoelastic reactive resin in which microballoons having a soft wall are dispersed. It is a summary. Further, the underwater acoustic wave reflection reducing material of the present invention is characterized in that it is obtained by curing the resin composition.

【0012】[0012]

【作用】この発明は上記のように構成され、軟質の粘弾
性反応性樹脂中に軟質の壁を有するマイクロバルーンを
有しているため、音圧により水中音波反射低減材に変形
が生じ、水中音波反射低減材の音響伝搬定数を十分に変
化させることができる。また、マイクロバルーンの含有
量の調整により水中音波反射低減材の体積空隙率を調整
するため、その体積空隙率を所望の値に精度良く調整す
ることができる。またさらに、マイクロバルーンの軟質
の壁により空隙部への水の浸透を有効に防止できる。
Since the present invention is constructed as described above and has the microballoon having the soft wall in the soft viscoelastic reactive resin, the underwater acoustic wave reflection reducing material is deformed by the sound pressure, and The sound propagation constant of the sound wave reflection reducing material can be changed sufficiently. Further, since the volume porosity of the underwater acoustic wave reflection reducing material is adjusted by adjusting the content of the microballoons, the volume porosity can be accurately adjusted to a desired value. Furthermore, the soft walls of the microballoons can effectively prevent water from penetrating into the voids.

【0013】[0013]

【実施例】以下、この発明の実施例を説明する。図1は
この発明の水中音波反射低減材の1例を示す一部断面拡
大正面図であり、水中音波反射低減材1は軟質の粘弾性
反応性樹脂2に軟質の壁を有するマイクロバルーン3を
均質に分散させた水中音波反射低減材用樹脂組成物を硬
化させて構成されている。
Embodiments of the present invention will be described below. FIG. 1 is a partially sectional enlarged front view showing an example of the underwater acoustic wave reflection reducing material of the present invention. The underwater acoustic wave reflection reducing material 1 comprises a soft viscoelastic reactive resin 2 and a microballoon 3 having a soft wall. It is formed by curing a resin composition for underwater acoustic reflection reducing material that is homogeneously dispersed.

【0014】前記反応性樹脂2は、例えばウレタン樹脂
やウレア樹脂等が適して用いられる。そしてこの反応性
樹脂2のJIS硬さ(Hs)は30〜85が好ましい。
JIS硬さ(Hs)85を超えると、反応性樹脂2に空
隙が含有されても音圧による反応性樹脂2の変形が生じ
ないため、水中音波反射低減材1の音響伝搬定数を十分
に変化させることができない。JIS硬さ(Hs)30
未満であると、十分な強度を得ることができない。
As the reactive resin 2, for example, urethane resin, urea resin, etc. are suitably used. And the JIS hardness (Hs) of this reactive resin 2 is preferably 30 to 85.
If the JIS hardness (Hs) exceeds 85, the reactive resin 2 does not deform due to sound pressure even if voids are contained in the reactive resin 2. Therefore, the acoustic propagation constant of the underwater acoustic wave reflection reducing material 1 is sufficiently changed. I can't let you do it. JIS hardness (Hs) 30
If it is less than this, sufficient strength cannot be obtained.

【0015】前記マイクロバルーン3は反応性樹脂2中
に略均一に分散して配置され、球状の軟質壁を有し、中
が空洞となっている。このマイクロバルーン3は例え
ば、塩化ビニリデン系またはアクリロニトリル系共重合
体等の有機化合物から構成されている。マイクロバルー
ン3の径は10〜1000μm、さらに好ましくは50
〜200μmであることがよい。10μm未満では音波
反射低減効果がなく、1000μmを越えるとマイクロ
バルーン3の製造が困難である。
The micro-balloons 3 are arranged in the reactive resin 2 substantially uniformly dispersed therein, have a spherical soft wall, and have a hollow inside. The microballoon 3 is made of, for example, an organic compound such as vinylidene chloride-based or acrylonitrile-based copolymer. The diameter of the microballoon 3 is 10 to 1000 μm, more preferably 50.
˜200 μm is preferable. If it is less than 10 μm, there is no effect of reducing sound wave reflection, and if it exceeds 1000 μm, it is difficult to manufacture the microballoon 3.

【0016】また前記水中音波反射低減材1の体積空隙
率は3〜60%であることが好ましい。3%未満または
60%を超える体積空隙率では、水中音波反射低減材1
の音響伝搬定数を十分に変化させることができない。前
記水中音波反射低減材1は、構造体表面に水中音波反射
低減材用樹脂組成物の硬化物をねじ止めまたは接着する
方法、あるいは、未硬化の水中音波反射低減材用樹脂組
成物を被着体表面に塗布後、硬化させ接着する方法によ
り構造体に装着することができる。
The volume porosity of the underwater acoustic wave reflection reducing material 1 is preferably 3 to 60%. When the volume porosity is less than 3% or more than 60%, the underwater acoustic wave reflection reducing material 1
Cannot sufficiently change the acoustic propagation constant of. The underwater acoustic wave reflection reducing material 1 is formed by a method of screwing or adhering a cured product of the underwater acoustic wave reflection reducing material resin composition to the surface of the structure, or by applying an uncured resin composition for underwater acoustic wave reflection reducing material. After being applied to the body surface, it can be attached to the structure by a method of curing and adhering.

【0017】上述したこの発明の水中音波反射低減材1
は、軟質の粘弾性反応性樹脂2中に軟質の壁を有するマ
イクロバルーン3を有しているため、音圧により水中音
波反射低減材1に変形が生じ、水中音波反射低減材1の
音響伝搬定数を十分に変化させることができる。また、
マイクロバルーン3の含有量の調整により水中音波反射
低減材1の体積空隙率を調整するため、その体積空隙率
を所望の値に精度良く調整することができる。またさら
に、反応性樹脂2が水中で吸水する場合であっても、マ
イクロバルーン3の軟質の壁により空隙部への水の浸透
が阻止され、空隙量の減少を防止することができる。
The underwater acoustic wave reflection reducing material 1 of the present invention described above.
Has a microballoon 3 having a soft wall in a soft viscoelastic reactive resin 2, the underwater acoustic wave reflection reducing material 1 is deformed by sound pressure, and the acoustic propagation of the underwater acoustic wave reflection reducing material 1 is caused. The constant can be changed sufficiently. Also,
Since the volume porosity of the underwater acoustic wave reflection reducing material 1 is adjusted by adjusting the content of the microballoons 3, the volume porosity can be accurately adjusted to a desired value. Furthermore, even when the reactive resin 2 absorbs water in water, the soft wall of the microballoons 3 prevents water from permeating into the voids, thus preventing the amount of voids from decreasing.

【0018】次に、上述した構成よりなる水中音波反射
低減材の体積空隙率を変化させて行った伝搬速度及び反
射低減効果の測定試験について説明する。伝搬速度の測定 反応性樹脂2にJIS硬さ(Hs)が80のウレタン樹
脂を使用し、マイクロバルーン3にアクリロニトリル系
共重合体からなる内径が50〜200μmのマイクロバ
ルーン(商品名:F80ED 松本油脂製 )を使用して、上述
の水中音波反射低減材1を作製した。マイクロバルーン
3の含有量は体積空隙率が、それぞれ10%、20%、
30%となるように調整してウレタン樹脂に配合し、マ
イクロバルーン3が略均一に分散した状態で硬化させ、
厚さ6mm縦横がそれぞれ150mmの水中音波反射低減材
1を3種類得た。
Next, the measurement test of the propagation velocity and the reflection reducing effect performed by changing the volume porosity of the underwater acoustic wave reflection reducing material having the above structure will be described. Measurement of propagation velocity Urethane resin having JIS hardness (Hs) of 80 is used as the reactive resin 2, and microballoons having an inner diameter of 50 to 200 μm made of an acrylonitrile copolymer are used as the microballoons 3 (trade name: F80ED Matsumoto Yushi Co., Ltd. The above-mentioned underwater acoustic wave reflection reducing material 1 was produced by using The contents of the microballoons 3 have a volume porosity of 10%, 20%,
Adjusted to 30% and blended with urethane resin, and cured in a state where the microballoons 3 are dispersed substantially uniformly,
Three kinds of underwater acoustic wave reflection reducing materials 1 each having a thickness of 6 mm and a length and width of 150 mm were obtained.

【0019】この3種類の水中音波反射低減材1を、図
2に示すように水深1mの水中に配置し、水中音波反射
低減材1の中心軸yーy上に送波器Aと受波器Bが対向
するように配置した。また、送波器Aと水中音波反射低
減材1の距離は1m、受波器Bと水中音波反射低減材1
の距離は0.2mとした。測定は、送受波器間に水中音
波反射低減材1がある場合とない場合の送波器Aから送
波した音波を受波器Bで受波した波形を、デジタルオシ
ロスコープCで観察し、それぞれの波形の時間差Δtを
測定した。水中音波反射低減材1の伝搬速度cを次の
(5) 式により求めた。
As shown in FIG. 2, these three types of underwater acoustic wave reflection reducing materials 1 are placed in water with a depth of 1 m, and a transmitter A and a wave receiver are placed on the central axis yy of the underwater acoustic wave reflection reducing material 1. Vessel B was placed so as to face each other. Further, the distance between the wave transmitter A and the underwater acoustic wave reflection reducing material 1 is 1 m, and the wave receiver B and the underwater acoustic wave reflection reducing material 1 are
Was 0.2 m. The measurement was performed by observing with the digital oscilloscope C the waveforms of the sound waves transmitted from the wave transmitter A received by the wave receiver B with and without the underwater acoustic wave reflection reducing material 1 between the wave transmitters and receivers. The time difference Δt of the waveform was measured. The propagation velocity c of the underwater acoustic wave reflection reducing material 1 is
It was calculated by the equation (5).

【0020】 c=1/(Δt/x+1/cw ) ……(5) ここで、xは水中音波反射低減材1の厚さ、cw は水の
伝搬速度である。その結果を図5に示す。但し、横軸は
周波数(kHz)、縦軸は伝搬速度(m/s)である。反射低減効果の測定 上記と同様の構成からなる3種類の水中音波反射低減材
1を、図3に示すように厚さ16mm、縦横がそれぞれ1
50mmの鋼板4にプラスチックねじ5で取り付け、供試
体6とした。この供試体6を、図4に示すように水深1
mの水中に配置し、供試体6の中心軸zーz上に受波器
Dと送波器Eの順で配置した。また、受波器Dと水中音
波反射低減材1の距離は1m、受波器Dと送波器Eの距
離は0.5mとした。測定は送波器Eから送波した音波
の供試体6の反射波を受波器Dで受波し、受波信号の送
受波感度積ATT1(dB)を測定した。また、供試体
6の代わりに鋼板4だけの反射波の送受波感度積ATT
2(dB)も測定した。水中音波反射低減材1の反射低
減効果ER(dB)は次の(6) 式により求めた。
C = 1 / (Δt / x + 1 / c w ) ... (5) where x is the thickness of the underwater acoustic wave reflection reducing material 1, and c w is the propagation velocity of water. The result is shown in FIG. However, the horizontal axis represents frequency (kHz) and the vertical axis represents propagation velocity (m / s). Measurement of Reflection Reduction Effect Three types of underwater acoustic wave reflection reducing materials 1 having the same configuration as described above were used, as shown in FIG.
It was attached to a 50 mm steel plate 4 with a plastic screw 5 to obtain a sample 6. As shown in FIG. 4, this test piece 6 was placed at a water depth of 1
m was placed in water, and the wave receiver D and the wave transmitter E were arranged in this order on the central axis zz of the test piece 6. The distance between the wave receiver D and the underwater acoustic wave reflection reducing material 1 was 1 m, and the distance between the wave receiver D and the wave transmitter E was 0.5 m. In the measurement, the reflected wave of the sample 6 of the sound wave transmitted from the wave transmitter E was received by the wave receiver D, and the wave transmission / reception sensitivity product ATT1 (dB) was measured. Also, instead of the specimen 6, the transmission and reception sensitivity product ATT of the reflected wave of only the steel plate 4
2 (dB) was also measured. The reflection reducing effect ER (dB) of the underwater acoustic wave reflection reducing material 1 was obtained by the following equation (6).

【0021】 ER=−(ATT1−ATT2) ……(6) その結果を図6に示す。但し、横軸は周波数(kH
z)、縦軸は反射低減効果(dB)である。図5から明
らかなように、体積空隙率が10%の水中音波反射低減
材1aの伝搬速度cは480〜670(m/s)、体積
空隙率が20%の水中音波反射低減材1bの伝搬速度c
は350〜550(m/s)、体積空隙率が30%の水
中音波反射低減材1cの伝搬速度cは300〜500
(m/s)を示し、軟質の粘弾性反応性樹脂2に軟質の
壁を有するマイクロバルーン3を含有させて水中音波反
射低減材1の体積空隙率を変化させることにより、水中
音波反射低減材1の伝搬速度cを十分に変化させうるこ
とが分かる。
ER =-(ATT1-ATT2) (6) The results are shown in FIG. However, the horizontal axis is frequency (kH
z), the vertical axis is the reflection reduction effect (dB). As is clear from FIG. 5, the propagation velocity c of the underwater acoustic reflection reducing material 1a having a volume porosity of 10% is 480 to 670 (m / s), and the propagation speed of the underwater acoustic reflection reducing material 1b having a volume porosity of 20%. Speed c
Is 350 to 550 (m / s), and the propagation velocity c of the underwater acoustic wave reflection reducing material 1c having a volume porosity of 30% is 300 to 500.
(M / s), and the soft viscoelastic reactive resin 2 contains a microballoon 3 having a soft wall to change the volume porosity of the underwater acoustic wave reflection reducing material 1. It can be seen that the propagation velocity c of 1 can be changed sufficiently.

【0022】即ち、水中音波反射低減材1の音響伝搬定
数γは前述の(3) 式に示すように、水中音波反射低減材
の伝搬速度cと弾性的損失係数ηとで定まる。伝搬速度
cは主に、体積空隙率を変えて変化させることができ、
弾性的損失係数ηは主に、使用する樹脂の弾性的損失係
数を変えて変化させることができる。従って、この発明
の水中音波反射低減材1は伝搬速度cを十分に変化させ
ることができるため、音響伝搬定数γを適切な値に調整
することが可能となる。
That is, the acoustic propagation constant γ of the underwater acoustic wave reflection reducing material 1 is determined by the propagation velocity c and the elastic loss coefficient η of the underwater acoustic wave reflection reducing material as shown in the above equation (3). The propagation velocity c can be changed mainly by changing the volume porosity,
The elastic loss coefficient η can be changed mainly by changing the elastic loss coefficient of the resin used. Therefore, since the underwater acoustic wave reflection reducing material 1 of the present invention can sufficiently change the propagation velocity c, the acoustic propagation constant γ can be adjusted to an appropriate value.

【0023】また図6から明らかなように、水中音波反
射低減材1aは周波数が55〜63(kHz)におい
て、水中音波反射低減材1bは周波数は36〜43(k
Hz)において、水中音波反射低減材1cは周波数は3
2〜38(kHz)において10dB以上の反射低減効
果を示す。このことから軟質の粘弾性反応性樹脂2に軟
質の壁を有するマイクロバルーン3を含有させて体積空
隙率を変化させることにより、良好な反射低減効果が得
られることが分かる。
As is clear from FIG. 6, the underwater acoustic wave reflection reducing material 1a has a frequency of 55 to 63 (kHz), and the underwater acoustic wave reflection reducing material 1b has a frequency of 36 to 43 (kHz).
Hz), the underwater acoustic wave reflection reducing material 1c has a frequency of 3
A reflection reducing effect of 10 dB or more is shown at 2 to 38 (kHz). From this, it can be seen that by adding the microballoons 3 having a soft wall to the soft viscoelastic reactive resin 2 to change the volume porosity, a good reflection reducing effect can be obtained.

【0024】[0024]

【発明の効果】この発明は上述したように軟質の粘弾性
反応性樹脂中に軟質の壁を有するマイクロバルーンを有
しているため、音圧により水中音波反射低減材に変形が
生じ、水中音波反射低減材の音響伝搬定数を十分に変化
させることができ、必要な音響伝搬定数を有する水中音
波反射低減材を容易に得ることができる。また、マイク
ロバルーンの含有量の調整により水中音波反射低減材の
体積空隙率を調整するため、その体積空隙率を所望の値
に精度良く調整することができる。従って、使用条件に
適合した水中音波反射低減効果を得ることが可能であ
る。
As described above, according to the present invention, the underwater acoustic wave reflection reducing material is deformed by the sound pressure because the microballoon having the soft wall in the soft viscoelastic reactive resin is deformed, and the underwater acoustic wave is reduced. The acoustic propagation constant of the reflection reducing material can be changed sufficiently, and an underwater acoustic wave reflection reducing material having a required acoustic propagation constant can be easily obtained. Further, since the volume porosity of the underwater acoustic wave reflection reducing material is adjusted by adjusting the content of the microballoons, the volume porosity can be accurately adjusted to a desired value. Therefore, it is possible to obtain the underwater acoustic wave reflection reduction effect that is suitable for the usage conditions.

【0025】またさらに、マイクロバルーンの軟質の壁
により空隙部への水の浸透を有効に防止することができ
るので、水中に長時間おかれても体積空隙率が変化する
ことがなく、耐水耐久性に優れている。
Furthermore, since the soft walls of the microballoons can effectively prevent water from penetrating into the voids, the volume porosity does not change even when the microballoons are left in water for a long time, and the water resistance durability is improved. It has excellent properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の水中音波反射低減材の1例を示す一
部断面拡大正面図である。
FIG. 1 is a partially sectional enlarged front view showing an example of an underwater acoustic wave reflection reducing material of the present invention.

【図2】図1の水中音波反射低減材の伝搬速度の測定試
験を示す説明図である。
FIG. 2 is an explanatory view showing a measurement test of a propagation velocity of the underwater acoustic wave reflection reducing material of FIG.

【図3】反射低減効果の測定に使用される供試体の断面
図である。
FIG. 3 is a cross-sectional view of a sample used for measuring a reflection reducing effect.

【図4】図1の水中音波反射低減材の反射低減効果の測
定試験を示す説明図である。
FIG. 4 is an explanatory view showing a measurement test of a reflection reducing effect of the underwater acoustic wave reflection reducing material of FIG.

【図5】図1の水中音波反射低減材の伝搬速度の測定結
果を示すグラフ図である。
5 is a graph showing the measurement result of the propagation velocity of the underwater acoustic wave reflection reducing material of FIG.

【図6】図1の水中音波反射低減材の反射低減効果の測
定結果を示すグラフ図である。
FIG. 6 is a graph showing the measurement results of the reflection reducing effect of the underwater acoustic wave reflection reducing material of FIG.

【図7】水中音波反射低減材の反射低減効果を説明する
説明図である。
FIG. 7 is an explanatory diagram illustrating a reflection reducing effect of the underwater acoustic wave reflection reducing material.

【符号の説明】[Explanation of symbols]

1 水中音波反射低減材 2 反応性樹脂 3 マイクロバルーン 4 鋼板 6 供試体 1 Underwater acoustic reflection reducing material 2 Reactive resin 3 Micro balloon 4 Steel plate 6 Specimen

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤司 茂 神奈川県横浜市港南区大久保2−13−18 (72)発明者 荒木 公範 神奈川県平塚市追分2番1号 横浜ゴム株 式会社平塚製造所内 (72)発明者 堀井 浩 神奈川県平塚市追分2番1号 横浜ゴム株 式会社平塚製造所内 (72)発明者 高垣 直樹 神奈川県平塚市追分2番1号 横浜ゴム株 式会社平塚製造所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shigeru Akashi 2-13-18 Okubo, Konan-ku, Yokohama-shi, Kanagawa Prefecture (72) Kiminori Araki Oiwake No. 2-1, Hiratsuka-shi, Kanagawa Yokohama Rubber Co., Ltd. Hiratsuka Factory (72) Inventor Hiroshi Horii No. 2 Oiwake, Hiratsuka-shi, Kanagawa Yokohama Rubber Co., Ltd. Hiratsuka Factory (72) Inventor Naoki Takagaki No. 2 Oiwake, Hiratsuka-shi, Kanagawa Yokohama Rubber Co., Ltd. Hiratsuka Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 軟質の粘弾性反応性樹脂に軟質の壁を有
するマイクロバルーンを分散させてなる水中音波反射低
減材用樹脂組成物。
1. A resin composition for an underwater acoustic wave reflection reducing material, which is obtained by dispersing microballoons having a soft wall in a soft viscoelastic reactive resin.
【請求項2】 請求項1記載の樹脂組成物を硬化させて
なる水中音波反射低減材。
2. An underwater acoustic wave reflection reducing material obtained by curing the resin composition according to claim 1.
JP23367593A 1993-09-20 1993-09-20 Resin composition for underwater acoustic reflection reducing material and underwater acoustic reflection reducing material Expired - Lifetime JPH0794608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23367593A JPH0794608B2 (en) 1993-09-20 1993-09-20 Resin composition for underwater acoustic reflection reducing material and underwater acoustic reflection reducing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23367593A JPH0794608B2 (en) 1993-09-20 1993-09-20 Resin composition for underwater acoustic reflection reducing material and underwater acoustic reflection reducing material

Publications (2)

Publication Number Publication Date
JPH0790119A true JPH0790119A (en) 1995-04-04
JPH0794608B2 JPH0794608B2 (en) 1995-10-11

Family

ID=16958778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23367593A Expired - Lifetime JPH0794608B2 (en) 1993-09-20 1993-09-20 Resin composition for underwater acoustic reflection reducing material and underwater acoustic reflection reducing material

Country Status (1)

Country Link
JP (1) JPH0794608B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928736A (en) * 2020-06-18 2020-11-13 天津科技大学 In-situ self-expansion underwater camouflage body
JP2020187219A (en) * 2019-05-13 2020-11-19 三菱重工業株式会社 Reflection sound control structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187219A (en) * 2019-05-13 2020-11-19 三菱重工業株式会社 Reflection sound control structure
CN111928736A (en) * 2020-06-18 2020-11-13 天津科技大学 In-situ self-expansion underwater camouflage body
CN111928736B (en) * 2020-06-18 2022-11-11 天津科技大学 In-situ self-expansion underwater camouflage body

Also Published As

Publication number Publication date
JPH0794608B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
Prosser et al. Advanced waveform-based acoustic emission detection of matrix cracking in composites
US8215172B2 (en) Device and method for determining the dynamic elastic modulus of a material
JP2794720B2 (en) Composite piezoelectric vibrator
EP1911530B1 (en) Ultrasound converter with acoustic impedance adjustment
JP5836941B2 (en) Sonic barrier for audible acoustic frequency management
JP5457369B2 (en) Sonic barrier for audible acoustic frequency management
DE3025233A1 (en) TRANSMISSION DEVICE FOR ULTRASOUND IMPULSES IN AIR
Alderson et al. An experimental study of ultrasonic attenuation in microporous polyethylene
GB736204A (en) Improvements in measuring apparatus and method therefor
AU8532398A (en) Measurement of physical or technical values of viscous media by means of rayleigh waves
Nguyen et al. Highly attenuative rubber modified epoxy for ultrasonic transducer backing applications
JP2016213666A (en) Ultrasonic transducer, method for manufacturing the same, ultrasonic probe, and ultrasonic imaging apparatus
Kondo et al. New tissue mimicking materials for ultrasound phantoms
GB2063007A (en) Ultrasonic transducer
JPH0790119A (en) Resin composition for material to reduce reflection of sound wave in water, and material to reduce reflection of sound wave in water
Baron et al. Dynamic stiffness of materials used for reduction in impact noise: comparison between different in measurement techniques
JP3283035B2 (en) Ultrasonic probe
Durmuş et al. Investigation of the effect of tungsten used in backing materials of ultrasound probes on acoustical parameters
RU2006107830A (en) METHOD OF ULTRASONIC VISCOSITY CONTROL BY MOON POLYMERS
JP3444589B2 (en) Resin composition for acoustic reflection reducing material and acoustic reflection reducing material
JPH0618501A (en) Ultrasonic member
Dyaur et al. Elastic properties of iron meteorites
JPH0543422Y2 (en)
Prassianakis et al. Curing effects on the acoustical properties of epoxy polymers
Hosten et al. Ultrasonic measurements of elastic constants in polymeric matrix/glass fibers composite materials versus temperature

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20101011

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20111011

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20121011

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 17

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 18