JPH0789701B2 - High-speed short circuit removal method - Google Patents

High-speed short circuit removal method

Info

Publication number
JPH0789701B2
JPH0789701B2 JP63204161A JP20416188A JPH0789701B2 JP H0789701 B2 JPH0789701 B2 JP H0789701B2 JP 63204161 A JP63204161 A JP 63204161A JP 20416188 A JP20416188 A JP 20416188A JP H0789701 B2 JPH0789701 B2 JP H0789701B2
Authority
JP
Japan
Prior art keywords
short
circuit
bypass
protection device
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63204161A
Other languages
Japanese (ja)
Other versions
JPH0255516A (en
Inventor
輝一 関口
邦和 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP63204161A priority Critical patent/JPH0789701B2/en
Publication of JPH0255516A publication Critical patent/JPH0255516A/en
Publication of JPH0789701B2 publication Critical patent/JPH0789701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えば低圧配電系統の各需用家の分岐点に挿入
し、需用家側で発生した短絡故障部への電流の流入を抑
止して事故の拡大を最小限に喰止めると共に、引込線用
ヒューズあるいは高圧側ヒューズのような短絡保護装置
の遮断動作の促進を図って、短絡事故を配電系統から迅
速に除去して災害を最小限にくい止めるとともに広域停
電への発展を防止する高速短絡除去方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is, for example, inserted at a branch point of each customer of a low-voltage power distribution system to prevent a current from flowing into a short-circuit fault part generated on the customer side. To minimize the spread of accidents, and to promote the breaking operation of short-circuit protection devices such as lead wire fuses or high-voltage fuses, and quickly eliminate short-circuit accidents from the distribution system to minimize disasters. The present invention relates to a high-speed short-circuit elimination method that can prevent the occurrence of wide-area power outages while keeping it difficult.

(従来技術とその問題点) 配電系統から需用家に電力を供給する場合、一般には第
1図のように高圧配電線(1)の電圧を柱上変圧器
(2)により降圧して低圧配電線(3)に導いたのち、
引込線(4)により電力量計(5)を介して需用家
(6)に供給することが行われる。
(Prior art and its problems) When power is supplied from a distribution system to a consumer, generally, as shown in Fig. 1, the voltage of a high voltage distribution line (1) is stepped down by a pole transformer (2) to reduce the voltage. After leading to the distribution line (3),
The service line (4) supplies electricity to the consumer (6) through the electricity meter (5).

ところでこの場合引込線(4)以降における短絡事故に
よる障害の除去のため、一般に第1図に示すように引込
線(4)の分岐部(4a)の近傍に直列に引込用ヒューズ
(7)を設けることが多く行われている方法である。
By the way, in this case, in order to eliminate a fault due to a short circuit after the service wire (4), generally, a service fuse (7) is provided in series near the branch portion (4a) of the service wire (4) as shown in FIG. Is a method that is often used.

しかし低圧配電線において使用される引込用ヒューズは
系統運用上種類が限られていること、引込用ヒュー
ズの設置部から電力量計までの電線長(線路抵抗)が各
需用家毎にまちまちであること、短絡故障の状況が多
岐に亘ること、場合によっては高圧側ヒューズのみで
あること、などから短絡電流とヒューズの定格電流との
電流協調がとれず、予想以上にヒューズの動作時間が延
びて災害の拡大や停電の発生などを招く場合がある。例
えば電力量計は一定期間毎に検定品と交換されるが、こ
の場合引込線には断路器を備えていないのが通常である
ため、電力量計の交換を活線状態のままで行わざるを得
ない。このため例えば交換作業時の電線着脱中におい
て、作業者のミスによりアーク短絡が発生したようなと
きには、短絡電流がアーク電圧により大幅に制限されて
引込用ヒューズの遮断動作の遅れを招く。このためアー
ク熱により家庭の壁を焦がしたり、作業者が火傷を負う
事故の発生を招く場合がある。
However, the types of lead-in fuses used in low-voltage distribution lines are limited in terms of system operation, and the wire length (line resistance) from the place where the lead-in fuse is installed to the watt-hour meter varies depending on each consumer. However, due to the fact that there are various short-circuit failure conditions, and in some cases only the high-voltage side fuse is used, current coordination between the short-circuit current and the rated current of the fuse cannot be achieved, and the operating time of the fuse is longer than expected. This may lead to the spread of disasters and power outages. For example, the watt-hour meter is replaced with a certified product at regular intervals, but in this case, since the service wire is usually not equipped with a disconnector, it is necessary to replace the watt-hour meter in a live state. I don't get it. For this reason, for example, when an arc short circuit occurs due to an operator's mistake during the attachment / detachment of the electric wire during the replacement work, the short circuit current is significantly limited by the arc voltage, which causes a delay in the breaking operation of the lead-in fuse. For this reason, the arc heat may burn the wall of the home or may cause an accident in which the worker is burned.

(発明の目的) 本発明は故障点に流れる短絡電流の急減と引込用ヒュー
ズの遮断動作の迅速化を小型安価な装置により図りうる
方法を提案し、上記のような短絡故障点における災害の
拡大や停電への発展を防止したものである。
(Object of the Invention) The present invention proposes a method capable of rapidly reducing the short-circuit current flowing at a failure point and speeding up the breaking operation of the pull-in fuse with a small and inexpensive device, and expanding the disaster at the short-circuit failure point as described above. It also prevents the development of power outages.

(問題点を解決するための本発明の手段) 第2図に示すように分岐点(4a)以降の引込線(4)間
(以下負荷側と呼ぶ場合がある)に短絡事故Sが発生し
た場合、短絡電流は電源をもたない需用家側から供給さ
れることなく、低圧配電線(3)側(以下電源側と呼ぶ
場合がある)からのみ供給される。従って短絡事故発生
後直ちに短絡事故発生点の電源側である引込用ヒューズ
(7)の需用家(6)側において急激に強制短絡して、
電源から見たインピーダンスが短絡故障時のそれに比し
て著しく少ないバイパス回路Bを作れば、短絡故障点S
に流れる電流を急減することができ、前記したようなア
ークの急速な消滅を図ってアークにより需用家の壁を焦
がしたりするのを防ぐことができる。
(Means of the Present Invention for Solving Problems) As shown in FIG. 2, when a short circuit accident S occurs between the service lines (4) after the branch point (4a) (may be referred to as load side hereinafter) The short-circuit current is not supplied from the consumer side that does not have a power source, but is supplied only from the low-voltage distribution line (3) side (hereinafter sometimes referred to as the power source side). Therefore, immediately after the occurrence of the short-circuit accident, the power supply side at the short-circuit accident occurrence point is suddenly forcedly short-circuited on the consumer (6) side of the pull-in fuse (7),
If the bypass circuit B whose impedance seen from the power supply is significantly smaller than that at the time of short-circuit failure is created, the short-circuit failure point S
It is possible to sharply reduce the current flowing through the arc, and to prevent the arc from being burnt on the wall of the consumer by rapidly extinguishing the arc as described above.

またバイパス回路により、短絡故障のみの場合に比べて
大きな電流を引込用ヒューズ(7)に流すことができ
る。従って熔断を迅速確実として遮断動作の迅速化が図
られ、短絡故障の発生した需用家(6)を配電系統から
迅速に除去して、短絡故障の継続による他需用家の停電
を招くおそれも少なくできる。
In addition, the bypass circuit allows a larger current to flow through the lead-in fuse (7) than in the case of only a short circuit failure. Therefore, it is possible to speed up the shut-off operation by promptly and surely cutting the fuse, and to quickly remove the customer (6) in which the short-circuit failure has occurred from the distribution system, which may cause a power failure of other customers due to the continuation of the short-circuit failure. Can be reduced.

一方平行に間隔をおいて配置して例えば10cm長の2本の
導体に1000A以上の電流を流したとき、この流通電流と
これにより生ずる発生磁界との相互作用(フレミングの
左手の法則)にもとづき、導体には第3図に示す充分な
駆動力が働いて移動させる。
On the other hand, when a current of 1000 A or more is applied to two conductors that are 10 cm in length and are arranged in parallel with each other, based on the interaction between this flowing current and the magnetic field generated by this (Fleming's left-hand rule). , The conductor is moved by the sufficient driving force shown in FIG.

従って以上から前記の引込線の引込用ヒューズの負荷側
の両線にそれぞれ導体を接続すれば、短絡によって一般
に生ずる数1000Aの電流が流れたとき、電磁力の作用に
より導体をその間隔を変えるように運動させることがで
き、導体のそれぞれに接点を設けて電磁力作用時これを
閉成させるようにすれば、電流の検出器を設けたり、動
作電源を必要とすることなく、導体それ自身で電流を検
知して働く簡単小型安価なバイパス回路を作り得る。
Therefore, if conductors are connected to both the load-side wires of the lead-in fuse of the lead-in wire described above, when the current of several thousand amps, which is generally caused by a short circuit, flows, the conductors change their intervals by the action of electromagnetic force. It can be moved, and if each conductor is provided with a contact so that it is closed when an electromagnetic force is applied, the conductor itself can be connected to the current without providing a current detector or operating power source. It is possible to make a simple, small-sized and inexpensive bypass circuit that detects and works.

本発明は以上の着想にもとづくもので、次に実施例図を
用いて具体的に説明する。
The present invention is based on the above idea, and will be specifically described below with reference to the embodiments.

(実施例) 第4図は本発明の一実施例図である。図において、(1
1)は不動バイパス導体、(11a)はその一端に近い部分
に上方に向けて設けた不動バイパス接点、(11b)は引
込線接続端子、(11c)は引込用ヒューズ側接続端子、
(12)は可動バイパス導体、(12a)は可動バイパス接
点であって、上記不動バイパス接点(11a)と対向する
折返し部を有し、導体(12)上に設けられる。(12b)
は引込線接続端子、(12c)は引込用ヒューズ側接続端
子であって、接続端子(12c)には一端が不動バイパス
導体(11)の方向へ可動しうるように、可動バイパス導
体(12)の端部が軸止め(12d)され、かつ電流の流通
を阻害しないように接続端子(12c)と可動バイパス導
体(11)間は、例えば可撓性をもつ金属編組体(12e)
により接続される。また接続端子(12b)と可動バイパ
ス導体(12)の他端とは、可動バイパス導体が不動バイ
パス導体(11)側に動いて接点(11a)(12a)が接触し
うるように金属接続体(12f)、例えば可撓性をもつ金
属編組体によって接続される。(13)は固定位置決め絶
縁体であって、不動バイパス導体(11)と可動バイパス
導体(12)とを接点(11a)と(12a)とが対向するよう
に所定の間隔で固定する。(14)は可動位置決め絶縁体
であって、不動バイパス導体(11)を固定し、また可動
バイパス導体(12)を支承穴(14a)により動きうるよ
うに支承する。(15)は磁気伝達体、(15a)は可動バ
イパス導体の挿入用割部であって、可動バイパス導体
(12)が割部(15a)内に位置し、かつ不動バイパス導
体(11)を包囲するように位置決め絶縁体(13)(14)
に固定される。(16)はケースであって、以上でバイパ
ス装置Bを形成し、これは接続端子(11b)(11c),
(12b)(12c)とにより、第2図のように引込み用ヒュ
ーズ(7)の負荷側引込線の両線(4b)(4c)に直列に
接続される。
(Embodiment) FIG. 4 is a diagram showing an embodiment of the present invention. In the figure, (1
1) is an immovable bypass conductor, (11a) is an immovable bypass contact provided upward in a portion near one end thereof, (11b) is a lead-in wire connection terminal, (11c) is a lead-in fuse side connection terminal,
(12) is a movable bypass conductor, and (12a) is a movable bypass contact, which has a folded portion facing the immovable bypass contact (11a) and is provided on the conductor (12). (12b)
Is a lead-in wire connection terminal, and (12c) is a lead-in fuse side connection terminal. One end of the connection terminal (12c) is movable in the direction of the immovable bypass conductor (11). Between the connection terminal (12c) and the movable bypass conductor (11), for example, a metal braid (12e) having flexibility is secured at the end so as not to hinder the current flow.
Connected by. Further, the connection terminal (12b) and the other end of the movable bypass conductor (12) are connected to the metal connection body (so that the movable bypass conductor moves to the stationary bypass conductor (11) side and the contacts (11a) (12a) can come into contact with each other. 12f), for example connected by a flexible metal braid. A fixed positioning insulator (13) fixes the stationary bypass conductor (11) and the movable bypass conductor (12) at a predetermined interval so that the contacts (11a) and (12a) face each other. (14) is a movable positioning insulator that fixes the immobile bypass conductor (11) and also supports the movable bypass conductor (12) so that it can move through the bearing hole (14a). (15) is a magnetic transmitter, (15a) is a split part for inserting the movable bypass conductor, the movable bypass conductor (12) is located in the split part (15a), and surrounds the immovable bypass conductor (11). Positioning insulators (13) (14)
Fixed to. Reference numeral (16) is a case, which forms the bypass device B, and is composed of the connection terminals (11b) (11c),
(12b) and (12c), as shown in FIG. 2, are connected in series to both lines (4b) and (4c) of the load side lead-in wire of the lead-in fuse (7).

(作用) 高速バイパス装置Bの需用家側において短絡故障が発生
すると、不動バイパス導体(11)には、第4図中の矢印
方向に電流(+I)が流れ、可動バイパス導体(12)に
は逆方向に電流(−I)が流れる。
(Operation) When a short-circuit fault occurs on the consumer side of the high-speed bypass device B, a current (+ I) flows in the immovable bypass conductor (11) in the direction of the arrow in FIG. 4, and the movable bypass conductor (12). Current (-I) flows in the opposite direction.

このため不動バイパス導体(11)の周囲には第5図
(a)中の矢印方向の磁界BAが発生し、可動バイパス導
体(12)には不動バイパス導体(11)と逆方向の磁界BB
を発生する。しかし発生磁界BBは磁気伝達体(15)にさ
えぎられて殆ど不動バイパス導体(11)に作用せず、可
動バイパス導体のみが第5図(b)のように発生磁界BA
による磁気伝達体(15)の対向する割部端間の磁界中に
位置することになる。このため可動バイパス導体(12)
には、ここに流れる電流と磁界Bとにより不動バイパス
導体(11)から離す下方への力Fが作用し、これにより
可動バイパス接点(12a)も下方に下がって不動バイパ
ス接点(11a)に接触する。従って短絡故障発生点の電
源側には抵抗値の極めて小さいバイパス回路Bが形成さ
れるので短絡事故災害の不拡大などを図りうる。
Therefore, a magnetic field B A in the direction of the arrow in FIG. 5 (a) is generated around the stationary bypass conductor (11), and a magnetic field B A in the direction opposite to the stationary bypass conductor (11) is generated in the movable bypass conductor (12). B
To occur. However the generated magnetic field B B does not act almost immobile bypass conductor is blocked in the magnetic transmission member (15) (11), the magnetic field generated B A As only the movable bypass conductor FIG. 5 (b)
Are located in the magnetic field between the opposing ends of the splitting portion of the magnetic transmitter (15). For this reason the movable bypass conductor (12)
A downward force F that separates from the immovable bypass conductor (11) is applied to the movable bypass contact (12a) by the current flowing therethrough and the magnetic field B, so that the movable bypass contact (12a) also moves downward to contact the immobile bypass contact (11a). To do. Therefore, since the bypass circuit B having an extremely small resistance value is formed on the power source side at the short-circuit fault occurrence point, the short-circuit accident disaster cannot be expanded.

なお以上の例は反撥力を利用したものであるが、例えば
第6図のように可動バイパス導体(12)をループ状に折
返して短絡故障発生時不動バイパス導体(11)と可動バ
イパス導体(12)に同方向の電流を流すことにより、可
動バイパス導体(12)に不動バイパス導体(11)方向へ
の吸引電磁力Fを発生させ、それぞれの導体面に対向配
置された接点(11a)と(12a)を接触させて引込線(4
a)(4b)間にバイパス回路を作るようにすることもで
きる。なお第6図中の(17)は磁気遮蔽体であって、可
動バイパス導体(12)の不動バイパス導体(11)との対
向部分以外の部分を覆って、この部分により生じた磁界
が可動バイパス導体(12)が位置する磁界に影響を与え
ないようにして動作の確実さを増すようにしたものであ
って、これは実施例Iのケース(16)と共に省略でき
る。
The above example uses the repulsive force. For example, as shown in FIG. 6, the movable bypass conductor (12) is folded back into a loop shape to immobilize the bypass conductor (11) and the movable bypass conductor (12) when a short circuit occurs. ) In the same direction to generate a attracting electromagnetic force F in the movable bypass conductor (12) toward the immovable bypass conductor (11), and contact points (11a) and ( 12a) to contact and drop wire (4
It is also possible to create a bypass circuit between a) and (4b). Reference numeral (17) in FIG. 6 denotes a magnetic shield, which covers a portion of the movable bypass conductor (12) other than the portion facing the immovable bypass conductor (11), and the magnetic field generated by this portion is moved by the movable bypass conductor (11). The conductor (12) does not affect the magnetic field in which the conductor (12) is located so as to increase the certainty of operation, which can be omitted together with the case (16) of the embodiment I.

また以上の実施例においては2本のバイパス導体のうち
1本を可動としたが、2本のバイパス導体を共に可動と
することにより、短絡故障電流が流れてから接点が接触
するまでの時間を短縮することができる。
Further, in the above embodiment, one of the two bypass conductors is made movable, but by making both of the bypass conductors movable, the time from the flow of the short-circuit fault current to the contact of the contacts is reduced. It can be shortened.

また以上では引込用ヒューズの負荷側の短絡故障に本発
明を使用した場合について説明したが、高圧配系統に適
用することによって、例えば絶縁部分の劣化を生じた場
合、或いは落雷等の異常電圧によりアーク短絡故障が発
生したような場合に効果を挙げることができる。また更
に一般的な電気配線回路にも応用が可能である。
Further, although the case where the present invention is used for the load side short-circuit fault of the pull-in fuse has been described above, by applying the present invention to the high-voltage distribution system, for example, when the insulation part is deteriorated or due to abnormal voltage such as lightning strike. The effect can be obtained when an arc short circuit failure occurs. Further, it can be applied to a general electric wiring circuit.

(発明の効果) 以上のように本発明は短絡故障を自ら検出してヒューズ
の負荷側で回路を短絡し、これにより短絡故障点に流れ
る電流を急速に小さくすると共に、ヒューズの遮断動作
の促進を図ってヒューズの動作遅れのために生ずる被害
の波及を最小限にとどめことができ、しかも装置は小型
簡単安価であって各引込線へ使用も容易であるので、特
に配電線の保守管理に大きな寄与をなすものである。
(Effects of the Invention) As described above, the present invention detects a short-circuit fault by itself and short-circuits the circuit on the load side of the fuse, thereby rapidly reducing the current flowing to the short-circuit fault point and promoting the fuse breaking operation. Therefore, the spread of damage caused by the delay in the operation of the fuse can be minimized, and the device is small, simple, and inexpensive, and easy to use for each drop line. It makes a contribution.

【図面の簡単な説明】[Brief description of drawings]

第1図は配電系統図、第2図,第3図は本発明の原理説
明図、第4図,第5図は本発明の一実施例図とその作用
説明図、第6図は本発明の他の実施例図である。
FIG. 1 is a power distribution system diagram, FIGS. 2 and 3 are explanatory diagrams of the principle of the present invention, FIGS. 4 and 5 are one embodiment diagram of the present invention and its operation explanatory diagram, and FIG. 6 is the present invention. It is another example figure of.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】負荷が短絡保護装置を介して電源に接続さ
れた電気回路において、前記短絡保護装置の負荷側と負
荷との間の両電線にそれぞれ直列に接続され、かつ対向
する接点を有する第1,第2バイパス導体を平行に配置
し、負荷側における短絡事故発生時に生ずる過大な流通
電流にもとづき前記第1,第2バイパス導体間に働く電磁
力により該第1,第2バイパス導体相互の間隔を変化せし
めて前記接点を閉成し、この接点閉成により両電線間を
強制的に短絡して短絡事故発生点の電流を急激に減少さ
せると共に、前記短絡保護装置の流通電流を増大せしめ
て該短絡保護装置を動作させ、短絡事故災害の不拡大を
図りながら短絡保護装置による負荷遮断の迅速化を図る
ようにしたことを特徴とする高速短絡除去方法。
1. In an electric circuit in which a load is connected to a power source through a short-circuit protection device, both electric wires between the load side of the short-circuit protection device and the load are respectively connected in series and have opposing contacts. By arranging the first and second bypass conductors in parallel with each other, an electromagnetic force acting between the first and second bypass conductors based on an excessive flowing current generated when a short-circuit accident occurs on the load side causes the first and second bypass conductors to be mutually connected. The contact is closed by changing the interval of, and the current at the point of short-circuit accident is sharply reduced by forcibly short-circuiting both wires by closing the contact, and the current flowing through the short-circuit protection device is increased. A high-speed short-circuit removal method, characterized in that the short-circuit protection device is operated at least to speed up load shedding by the short-circuit protection device while attempting to expand the short-circuit accident disaster.
JP63204161A 1988-08-17 1988-08-17 High-speed short circuit removal method Expired - Lifetime JPH0789701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63204161A JPH0789701B2 (en) 1988-08-17 1988-08-17 High-speed short circuit removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63204161A JPH0789701B2 (en) 1988-08-17 1988-08-17 High-speed short circuit removal method

Publications (2)

Publication Number Publication Date
JPH0255516A JPH0255516A (en) 1990-02-23
JPH0789701B2 true JPH0789701B2 (en) 1995-09-27

Family

ID=16485845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63204161A Expired - Lifetime JPH0789701B2 (en) 1988-08-17 1988-08-17 High-speed short circuit removal method

Country Status (1)

Country Link
JP (1) JPH0789701B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156974A (en) * 1974-11-13 1976-05-19 Omron Tateisi Electronics Co IJODENRYUKENSHUTSUKI
JPS5541506A (en) * 1978-09-18 1980-03-24 Hitachi Ltd Position detection system in crt display unit

Also Published As

Publication number Publication date
JPH0255516A (en) 1990-02-23

Similar Documents

Publication Publication Date Title
JPS59169029A (en) High temperature technique current breaker
US6936779B2 (en) Bypass recloser assembly
JPH0789701B2 (en) High-speed short circuit removal method
KR840001584B1 (en) Wireless emergency power interrupting system for multibranch circuits
CN210778374U (en) Isolating switch for low-voltage distribution box and protection device thereof
KR200441145Y1 (en) Assembled structure between arc runner and fixed conductor in circuit braker
CA2451177C (en) Spacer for an insulator assembly
US2617908A (en) Flip-open disconnecting switch
US2945108A (en) Polyphase fuse construction
US2370037A (en) Protective device for electrical apparatus and systems
US2501963A (en) Circuit-faulting fuse construction
Matthews Power arc-over on overhead distribution lines and newly developed equipment for protection against conductor burndown from that cause
US3401305A (en) Y-connected shunt capacitor bank
KR20010013527A (en) Direct grounding system capable of limiting ground fault current
US2313118A (en) Electrical protective distribution system
JP2005285534A (en) Disconnector
JPH02291621A (en) Method and equipment for changing over electric circuit
SU70437A1 (en) Device for limiting short-circuit currents in high voltage distribution networks
RU85410U1 (en) DEVICE FOR DETERMINING THE TERMINATION OF INSULATED WIRES OF AIR LINES WITH A VOLTAGE OVER 1000 V AT THEIR LOCATION ON THE SUPPORTS OF THE CONTACT AC NETWORK
SU843017A1 (en) Method of protecting heavy-duty circuits with aid of current-limiting switches
WO2019092834A1 (en) Dc interrupting device
Kaufmann Electric-circuit fault-protective principles as applied to DC aircraft systems
KR100479438B1 (en) Air circuit breakers
US1013133A (en) System of electrical distribution.
PL241485B1 (en) Hybrid short-circuiting switch