JPH0788580B2 - Diamond coated cemented carbide and method for producing the same - Google Patents

Diamond coated cemented carbide and method for producing the same

Info

Publication number
JPH0788580B2
JPH0788580B2 JP15830086A JP15830086A JPH0788580B2 JP H0788580 B2 JPH0788580 B2 JP H0788580B2 JP 15830086 A JP15830086 A JP 15830086A JP 15830086 A JP15830086 A JP 15830086A JP H0788580 B2 JPH0788580 B2 JP H0788580B2
Authority
JP
Japan
Prior art keywords
diamond
cemented carbide
thin film
mesh
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15830086A
Other languages
Japanese (ja)
Other versions
JPS6314869A (en
Inventor
正明 飛岡
明彦 池ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15830086A priority Critical patent/JPH0788580B2/en
Publication of JPS6314869A publication Critical patent/JPS6314869A/en
Publication of JPH0788580B2 publication Critical patent/JPH0788580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ダイヤモンドの薄膜を表面に被覆した超硬合
金及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a cemented carbide having a diamond thin film coated on its surface and a method for producing the same.

〔従来の技術〕[Conventional technology]

最近、気相反応法を利用して炭化水素と水素の混合気体
から加熱したシリコンやダイヤモンド等の母材表面にダ
イヤモンド薄膜を析出させる、いわゆるダイヤモンドコ
ーテイング技術が開発され(松本精一郎、日本結晶学会
誌、25、212(1983)参照)、従来の超高圧高温による
ダイヤモンド合成技術に比較してコストが安く、母材形
状の制約がないことから極めて注目を集めている。
Recently, a so-called diamond coating technology has been developed that deposits a diamond thin film on the surface of a base material such as silicon or diamond heated from a mixed gas of hydrocarbon and hydrogen using a gas phase reaction method (Matsumoto Seiichiro, Journal of the Crystallographic Society of Japan. , 25, 212 (1983)), the cost is lower than that of the conventional diamond synthesis technology using ultra-high pressure and high temperature, and there is no restriction on the shape of the base material, and therefore, it has attracted a great deal of attention.

このダイヤモンドコーテイング技術においては母材の表
面状態が極めて重要であることが知られており、例えば
特開昭60−86096号公報に記載されたように、ダイヤモ
ンドコーテイングに先立つて母材表面を遊離状態のダイ
ヤモンド砥粒等で傷つけ処理することが必須とされてい
る。このダイヤモンド砥粒での傷つけ処理がなにゆえ必
要か詳細は明らかではないが、少なくとも形成された傷
がダイヤモンドの核生成のサイトとして働くものと考え
られる。
In this diamond coating technology, it is known that the surface state of the base material is extremely important. For example, as described in JP-A-60-86096, the base material surface is in a free state prior to diamond coating. It is indispensable to perform a scratching treatment with the diamond abrasive grains. It is not clear in detail why the scratch treatment with the diamond abrasive grains is necessary, but at least the scratches formed are considered to act as sites for nucleation of diamond.

上記ダイヤモンドコーテイング技術を用いて、WC−Co系
ないしWC−(Ti,Ta)C−Co系等の超硬合金の表面にダ
イヤモンド薄膜を形成し、切削工具として利用すること
が考えられている。しかし、ダイヤモンドコーテイング
に先立つての遊離状態でのダイヤモンド砥粒等による傷
つけ処理は、母材がシリコンウエハーのように比較的研
削性に富む材料であれば容易であるが、超硬合金は極め
て研削性が悪いために困難な作業である。特に、三次元
的に複雑な形状をしている切削工具では必要な部分をむ
らなく傷つけ処理するのは極めて困難であり、例えば細
径のツイストドリルやエンドミル等は事実上ダイヤモン
ド砥粒による均一な傷つけ処理が不可能であり、これら
の表面を切削工具として有効な状態のダイヤモンド薄膜
で被覆することは困難であつた。
It is considered that a diamond thin film is formed on the surface of a cemented carbide such as a WC-Co type or a WC- (Ti, Ta) C-Co type by using the above diamond coating technology and used as a cutting tool. However, prior to diamond coating, scratch treatment with diamond abrasive grains in a free state is easy if the base material is a material with relatively high grindability such as a silicon wafer, but cemented carbide is extremely ground. This is a difficult task due to poor sex. In particular, it is extremely difficult to uniformly scratch and process a necessary part with a cutting tool having a three-dimensionally complicated shape.For example, a twist drill or an end mill having a small diameter is practically uniform with diamond abrasive grains. It was impossible to perform a scratching treatment, and it was difficult to coat these surfaces with a diamond thin film in a state effective as a cutting tool.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、切削工具のような複雑な形状をした超硬合金
の表面に有効にダイヤモンド薄膜を形成したダイヤモン
ド被覆超硬合金及びその製造方法を提供することを目的
とするものである。
It is an object of the present invention to provide a diamond-coated cemented carbide in which a diamond thin film is effectively formed on the surface of a cemented carbide having a complicated shape such as a cutting tool, and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、結晶粒界やデイスロケーシヨン等も核生
成のサイトとして有効であるとの知見から、超硬合金の
WC界面がダイヤモンドの核生成のサイトにならないか詳
細に検討した結果、本発明に到達したものである。
The inventors of the present invention have found that grain boundaries, dislocations, etc. are also effective as nucleation sites.
The present invention has been achieved as a result of detailed examination as to whether the WC interface becomes a site for diamond nucleation.

即ち、本発明のダイヤモンド被覆超硬合金は、Coを含有
する超硬合金で、ダイヤモンド薄膜で被覆された部分の
超硬合金表面のWC結晶がCo金属よりも0.05μm以上0.5
μm以下の段差で突出していることを特徴とする。
That is, the diamond-coated cemented carbide of the present invention is a cemented carbide containing Co, and the WC crystal on the surface of the cemented carbide in the portion coated with the diamond thin film is 0.05 μm or more than Co metal 0.5
It is characterized in that it projects at a step of less than μm.

かかるダイヤモンド被覆超硬合金の製造方法は、Coを含
有する超硬合金の表面上に気相反応によりダイヤモンド
薄膜を析出させる前に、超硬合金の被覆されるべき部分
の表面を80メツシユ以上で400メツシユ以下の粒度のダ
イヤモンド砥石にて研削仕上を行うことを特徴としてい
る。
Such a diamond-coated cemented carbide manufacturing method, before depositing a diamond thin film by vapor phase reaction on the surface of the cemented carbide containing Co, the surface of the portion to be coated of the cemented carbide is 80 mesh or more. The feature is that grinding is performed with a diamond grindstone with a grain size of 400 mesh or less.

〔作用〕[Action]

WC−Co系ないしWC−(Ti,Ta)C−Co系等の超硬合金は
いずれも粉末冶金法による焼結を経て製造され、微細な
WC結晶とこれを結合するCo金属とを含有している。焼結
後の超硬合金は表面がCo金属で覆われているのでこれを
除き、表面のWC結晶がCo金属よりも0.05μm以上0.5μ
m以下の段差で突出した状態とすることにより、これら
の結晶界面からの核生成が可能となり、完全なダイヤモ
ンド薄膜が形成される。
Cemented carbides such as WC-Co type or WC- (Ti, Ta) C-Co type are manufactured by sintering by powder metallurgy method
It contains a WC crystal and a Co metal that bonds it. The surface of the cemented carbide after sintering is covered with Co metal, so the WC crystal on the surface is 0.05 μm or more and 0.5 μm or more than Co metal.
Nucleation from these crystal interfaces is made possible by forming a protrusion at a step of m or less, and a complete diamond thin film is formed.

このような表面状態を得るために超硬合金の被覆される
べき部分の表面を80メツシユ〜400メツシユの間の粒度
のダイヤモンド砥石にて研削仕上を行うのであるが、粒
度が80メツシユ未満では表面の乱れが大きくなりすぎ、
又400メツシユを超えると表面のWC結晶とCo金属との段
差が小さすぎて好ましくない。遊離状態のダイヤモンド
砥粒のみでの研磨は、やはり表面のWC結晶とCo金属との
段差が小さすぎるので採用できない。
In order to obtain such a surface state, the surface of the portion to be coated of the cemented carbide is ground with a diamond grindstone with a grain size between 80 mesh and 400 mesh, but the grain size is less than 80 mesh Turbulence becomes too large,
Further, if it exceeds 400 mesh, the step between the WC crystal and the Co metal on the surface is too small, which is not preferable. Polishing with only free diamond abrasive grains cannot be adopted because the step between the WC crystal and Co metal on the surface is too small.

〔実施例〕〔Example〕

以下、実施例により本発明を更に説明する。 The present invention will be further described below with reference to examples.

実施例1 母材として焼結により製造した超硬合金チツプ(WC95重
量%、Co5重量%)を使用し、そのチツプの全表面を粒
度200メツシユのダイヤモンド砥石で研削加工した。こ
の表面のWC結晶粒子はCo金属よりも0.15μm突出してい
た。マイクロ波プラズマCVD装置において、50TorrでH2
とCH4の混合気体から950℃に加熱した上記チツプにダイ
ヤモンドコーテイングを5時間実施した。冷却後にチツ
プを走査型電子顕微鏡で調べたところ陵線の明確な粒子
が表面を完全に被覆しており、更に電子線回折、X線回
折及びラマンスペクトルにより、この被覆物質がダイヤ
モンドであることが確認された。
Example 1 A cemented carbide chip (95% by weight of WC, 5% by weight of Co) produced by sintering was used as a base material, and the entire surface of the chip was ground with a diamond grindstone having a grain size of 200 mesh. The WC crystal grains on this surface protruded by 0.15 μm from the Co metal. H 2 at 50 Torr in microwave plasma CVD equipment
Diamond coating was carried out for 5 hours on the chip heated to 950 ° C. from a mixed gas of CH 4 and CH 4 . After cooling, the chip was examined with a scanning electron microscope to find that the particles with well-defined ridges completely covered the surface. Further, electron diffraction, X-ray diffraction, and Raman spectra revealed that the coating material was diamond. confirmed.

同じ超硬合金のチツプ全表面を1000メツシユのダイヤモ
ンド砥粒で研磨した。この表面のWC結晶粒子はCo金属よ
りも0.03μm突出していた。上記と同様にダイヤモンド
コーテイングを実施した結果、表面にダイヤモンド粒子
が析出するものの、核粒子間が接触せず連続した薄膜が
形成されなかつた。
The entire surface of the same cemented carbide chip was polished with 1000 mesh diamond grains. The WC crystal grains on this surface protruded 0.03 μm from the Co metal. As a result of performing diamond coating in the same manner as above, although diamond particles were deposited on the surface, a continuous thin film was not formed because the core particles were not in contact with each other.

更に、同じ超硬合金のチツプ全表面をダイヤモンド砥粒
で研磨したのち、800メツシユのダイヤモンド砥粒で30
分間傷つけ処理を行い、上記と同様にダイヤモンドコー
テイングを実施したところ、平滑な表面ではWC結晶粒子
とCo金属の段差は0.08μmで不完全ながらダイヤモンド
薄膜が析出するものの、傷つけ処理が困難なチツプ側面
や、特に湾曲部では上記段差が0.02μmであるためほと
んどダイヤモンド薄膜の析出がなかつた。
Further, after polishing the entire surface of the same cemented carbide chip with diamond abrasive grains, 30 particles with 800 mesh diamond abrasive grains are used.
When scratch treatment was performed for minutes and diamond coating was performed as above, a diamond thin film was deposited on the smooth surface with a WC crystal grain-Co metal step difference of 0.08 μm, but the chip side surface was difficult to scratch. In particular, in the curved portion, since the step is 0.02 μm, almost no diamond thin film was deposited.

尚、焼結したままの超硬合金の表面にはダイヤモンド薄
膜が全く析出しないことが確認された。
It was confirmed that no diamond thin film was deposited on the surface of the cemented carbide as it was sintered.

実施例2 上記実施例1と同じ超硬合金のチツプを、夫々(A)60
メツシユ、(B)100メツシユ、(C)200メツシユ、
(D)400メツシユ及び(E)800メツシユのダイヤモン
ド砥石で研削仕上を行い、その後実施例1と同じ条件で
ダイヤモンドコーテイングを実施した。比較のために
(F)200メツシユのダイヤモンド砥石で研削仕上した
だけのダイヤモンド薄膜を有しないチツプも準備した。
尚、各チツプ(A)から(F)の表面でのWC結晶粒子と
Co金属の段差は夫々(A)0.52μm、(B)0.12μm、
(C)0.10μm、(D)0.08μm、(E)0.03μm、
(F)0.10μmであつた。
Example 2 Chips of the same cemented carbide as in Example 1 above were each (A) 60
Mesh, (B) 100 mesh, (C) 200 mesh,
(D) 400 mesh and (E) 800 mesh diamond grindstones were used for grinding finish, and then diamond coating was carried out under the same conditions as in Example 1. For comparison, a chip without a diamond thin film (F) which was just ground and finished with a 200-mesh diamond wheel was also prepared.
In addition, WC crystal particles on the surface of each chip (A) to (F)
The steps of Co metal are (A) 0.52 μm, (B) 0.12 μm,
(C) 0.10 μm, (D) 0.08 μm, (E) 0.03 μm,
(F) It was 0.10 μm.

これらのチツプ(A)から(F)について、下記の条件
で切削試験を実施した; 被切削材 AC4C 切削速度 1500m/min 送 り 0.20mm/rev 切り込み 1mm ホルダー FP21R−44A その結果、(A)は1分28秒の切削でフランク摩耗が0.
20mm以上、(E)は1分38秒でフランク摩耗0.20mm以
上、及び(F)は1分30秒でフランク摩耗0.20mm以上で
いずれも寿命となつた。一方、(B),(C)及び
(D)は10分の切削でフランク摩耗が0であり、さらに
切削可能であつた。
A cutting test was performed on these chips (A) to (F) under the following conditions: Work material AC4C Cutting speed 1500m / min Feed 0.20mm / rev Depth of cut 1mm Holder FP21R-44A As a result, (A) is The flank wear is 0 after cutting for 1 minute 28 seconds.
20 mm or more, (E) 1 minute 38 seconds, flank wear 0.20 mm or more, and (F) 1 minute 30 seconds, flank wear 0.20 mm or more. On the other hand, in (B), (C) and (D), the flank wear was 0 after cutting for 10 minutes, and further cutting was possible.

〔発明の効果〕〔The invention's effect〕

本発明によれば、Coを含有する超硬合金について、ダイ
ヤモンドコーテイング技術によつて超硬合金の表面に連
続した完全なダイヤモンド薄膜を形成することができ、
更に、複雑な形状をした超硬合金の表面も完全にダイヤ
モンド薄膜で被覆できるので新規な切削工具を安価に提
供することができる。
According to the present invention, for a cemented carbide containing Co, it is possible to form a continuous and complete diamond thin film on the surface of the cemented carbide by the diamond coating technique,
Further, since the surface of the cemented carbide having a complicated shape can be completely covered with the diamond thin film, a new cutting tool can be provided at low cost.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】表面に気相反応により析出させたダイヤモ
ンド薄膜を有するダイヤモンド被覆超硬合金において、
Coを含有する超硬合金のダイヤモンド薄膜で被覆された
部分の表面のWC結晶がCo金属よりも0.05μm以上0.5μ
m以下の段差で突出していることを特徴とするダイヤモ
ンド被覆超硬合金。
1. A diamond-coated cemented carbide having a diamond thin film deposited on its surface by a vapor phase reaction,
The WC crystal on the surface of the part coated with the Co-containing cemented carbide diamond thin film is 0.05 μm or more and 0.5 μm or more than Co metal.
A diamond-coated cemented carbide characterized in that it projects at a step of m or less.
【請求項2】超硬合金の表面上に気相反応によりダイヤ
モンド薄膜を析出させるダイヤモンド被覆超硬合金の製
造方法において、Coを含有する超硬合金の被覆されるべ
き部分の表面を80メツシユ〜400メツシユの粒度のダイ
ヤモンド砥石にて研削仕上げを行つた後、この表面にダ
イヤモンド薄膜を析出させることを特徴とするダイヤモ
ンド被覆超硬合金の製造方法。
2. A method for producing a diamond-coated cemented carbide in which a diamond thin film is deposited on the surface of the cemented carbide by a gas phase reaction, wherein the surface of the portion of the cemented carbide containing Co to be coated is 80 mesh or less. A method for producing a diamond-coated cemented carbide, which comprises performing a grinding finish with a diamond grindstone having a grain size of 400 mesh and then depositing a diamond thin film on the surface.
JP15830086A 1986-07-04 1986-07-04 Diamond coated cemented carbide and method for producing the same Expired - Fee Related JPH0788580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15830086A JPH0788580B2 (en) 1986-07-04 1986-07-04 Diamond coated cemented carbide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15830086A JPH0788580B2 (en) 1986-07-04 1986-07-04 Diamond coated cemented carbide and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6314869A JPS6314869A (en) 1988-01-22
JPH0788580B2 true JPH0788580B2 (en) 1995-09-27

Family

ID=15668603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15830086A Expired - Fee Related JPH0788580B2 (en) 1986-07-04 1986-07-04 Diamond coated cemented carbide and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0788580B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396102U (en) * 1990-01-24 1991-10-01
US5585176A (en) * 1993-11-30 1996-12-17 Kennametal Inc. Diamond coated tools and wear parts
US5716170A (en) * 1996-05-15 1998-02-10 Kennametal Inc. Diamond coated cutting member and method of making the same
JP2003251503A (en) * 2001-12-26 2003-09-09 Sumitomo Electric Ind Ltd Surface covering cutting tool

Also Published As

Publication number Publication date
JPS6314869A (en) 1988-01-22

Similar Documents

Publication Publication Date Title
JPS61124573A (en) Diamond-coated base material and its production
EP1052058B1 (en) Grinding & polishing tool for diamond, method for polishing diamond and polished diamond, single crystal diamond and sintered diamond compact obtained thereby
JP2000246512A (en) Diamond coating cutting tool
WO1994013852A1 (en) Superhard film-coated material and method of producing the same
WO1988007599A1 (en) Composite diamond particles
JPH0621360B2 (en) Diamond-coated sintered bond excellent in peel resistance and method for producing the same
JPH0788580B2 (en) Diamond coated cemented carbide and method for producing the same
JPS6267174A (en) Production of hard carbon film coated sintered hard alloy
JP3575540B2 (en) Numerical control polishing method
JP2767897B2 (en) Method for producing composite diamond abrasive grains for precision polishing
JP3199127B2 (en) Diamond-containing composite coated member and method for producing the same
JPH06262525A (en) Grinding wheel and its manufacture
JP2881876B2 (en) Diamond coated cutting tool and cutting edge finishing method
JP3696807B2 (en) Sliding member and manufacturing method thereof
JPH0643280B2 (en) Vapor phase synthesis of film diamond
JPH01208397A (en) Diamond coated product and cutting tool using said product
JPH04331798A (en) Method of forming diamond film
JPH0224005A (en) Diamond coated tool and manufacture thereof
JPH0665466B2 (en) Soot mixed diamond polishing wheel
JPS63283858A (en) Hard complex powder polishing material
JP2734134B2 (en) Diamond coated tool and manufacturing method thereof
JP2772494B2 (en) Super hard film coated member and method of manufacturing the same
JPH0620645B2 (en) Diamond coated cemented carbide and method for producing the same
JP3537300B2 (en) Dresser for polishing cloth for semiconductor substrate and method of manufacturing the same
JPS61242996A (en) Diamond-coated sintered hard alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees