JPH0788367A - Ethylene degradation photocatalyst - Google Patents

Ethylene degradation photocatalyst

Info

Publication number
JPH0788367A
JPH0788367A JP25775293A JP25775293A JPH0788367A JP H0788367 A JPH0788367 A JP H0788367A JP 25775293 A JP25775293 A JP 25775293A JP 25775293 A JP25775293 A JP 25775293A JP H0788367 A JPH0788367 A JP H0788367A
Authority
JP
Japan
Prior art keywords
catalyst
ethylene
outer coating
carrier
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25775293A
Other languages
Japanese (ja)
Other versions
JP3499585B2 (en
Inventor
Makoto Sakura
真 佐倉
修二 ▲奥▼平
Shuji Okudaira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikki Universal Co Ltd
Original Assignee
Nikki Universal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Universal Co Ltd filed Critical Nikki Universal Co Ltd
Priority to JP25775293A priority Critical patent/JP3499585B2/en
Publication of JPH0788367A publication Critical patent/JPH0788367A/en
Application granted granted Critical
Publication of JP3499585B2 publication Critical patent/JP3499585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To further improve the ethylene degradation ability of a catalyst as well as to improve the peeling resistance and to provide an ethylene degradation photocatalyst exhibiting very high ethylene degradation ability under light. CONSTITUTION:When fine titanium oxide particles having 100-500A grain diameter are carried on a carrier having a high reflectance surface, layers of a material having satisfactory transparency are formed under and/or on the titanium oxide particles and the objective ethylene degradation photocatalyst is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、青果物の呼吸作用の進
行に伴って発生するエチレンを光化学的に分解するため
の触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for photochemically decomposing ethylene produced by the progress of respiration of fruits and vegetables.

【0002】[0002]

【従来の技術】エチレンガスは青果物の呼吸作用の進行
に伴って発生し、このエチレンガスの作用により青果物
の完熟および老化が促進され、その結果として青果物の
日持ちが悪くなる。したがって、収穫後青果物の移送中
もしくは貯蔵中における鮮度を保持するためには、これ
らから発生するエチレンガスを効率よく除去することが
好ましい。
2. Description of the Related Art Ethylene gas is generated along with the progress of respiration of fruits and vegetables, and the action of ethylene gas promotes maturity and aging of fruits and vegetables, resulting in poor shelf life of fruits and vegetables. Therefore, in order to maintain the freshness of the fruits and vegetables after harvesting during transportation or storage, it is preferable to efficiently remove ethylene gas generated from these.

【0003】本発明者は、先にエチレンガスを効率よく
除去するため、特定粒子径の酸化チタン微粒子を反応ガ
スおよび光が流通可能な白色多孔質担体に担持させ特定
温度で焼成することによって、疎水性を持ちエチレンガ
スを飛躍的に効率よく除去できる白色エチレン分解触媒
を見いだし、特願平4−354314号として出願した
が、該担体がハニカム構造や三次元網状構造を有してい
るため、担持方法が難しく担体自体の価格が高価である
ことと相まって、結局触媒全体の価格を高いものとして
いた。そこで、さらに改良を重ね製法が簡単で安価であ
るにもかかわらず、光により極めて高いエチレン分解能
を有するシート状エチレン分解触媒を開発し、特願平5
−115403号として出願した。
In order to efficiently remove ethylene gas, the inventor of the present invention supports fine particles of titanium oxide having a specific particle diameter on a white porous carrier through which a reaction gas and light can flow, and calcinates them at a specific temperature. A white ethylene decomposition catalyst having hydrophobicity and capable of dramatically efficiently removing ethylene gas was found, and an application was filed as Japanese Patent Application No. 4-354314. However, since the carrier has a honeycomb structure or a three-dimensional network structure, Combined with the difficulty of the loading method and the expensive price of the carrier itself, the price of the entire catalyst was ultimately high. Therefore, we have developed a sheet-shaped ethylene decomposition catalyst that has an extremely high ethylene resolution by light, even though the manufacturing method is simple and inexpensive, after repeated improvements.
-115403 filed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、剥離強
度およびエチレン分解能をさらに改善する余地が残って
おり、触媒の剥離強度を改善するとともにエチレン分解
能をさらに改善し光により極めて高いエチレン分解能を
発揮するエチレン分解光触媒を開発することが望まれて
いた。
However, there is still room for further improving the peeling strength and the ethylene decomposing ability, and it is possible to improve the peeling strength of the catalyst and further improve the ethylene decomposing ability so that ethylene, which exhibits an extremely high ethylene decomposing ability by light, can be obtained. It was desired to develop a decomposition photocatalyst.

【0005】[0005]

【課題を解決するための手段】本発明者はこのような問
題点を解決すべく鋭意研究を重ねた結果、高反射率表面
をもつ担体に光の透過性の良いバインダ−を用いて下地
処理し電価分離層を形成することにより、触媒の担持強
度ならびにエチレン分解能をさらに改善できることを見
いだし、さらに触媒活性成分を担持した触媒の上を同様
な光の透過性の良いバインダ−でオ−バ−コ−トするこ
とにより外被膜層を形成すると、剥離強度の向上のみな
らず、不思議なことにエチレン分解能をも一層改善でき
ることを見いだした。本発明はかかる知見に基づいて完
成したものである。
As a result of intensive studies to solve the above problems, the present inventor has conducted a surface treatment using a carrier having a high reflectance surface and a binder having a good light transmission property. It was found that the formation of the charge separation layer can further improve the supporting strength of the catalyst and the ethylene decomposing ability, and over the catalyst supporting the catalytically active component with the same binder with good light transmission. -It was found that forming an outer coating layer by coating can not only improve the peel strength but also mysteriously improve the ethylene resolution. The present invention has been completed based on such findings.

【0006】すなわち、本発明の第一の態様は、高反射
率表面をもつ担体上に光の透過性の良い電価分離層を設
け、その上に100〜500オングストローム、好まし
くは150〜300オングストロームの結晶粒子径を有
する酸化チタン微粒子を、担持させたことを特徴とする
エチレン分解光触媒を提供することである。
That is, according to the first aspect of the present invention, a charge separation layer having good light transmission is provided on a carrier having a high reflectance surface, and 100 to 500 angstroms, preferably 150 to 300 angstroms is provided thereon. It is intended to provide an ethylene decomposition photocatalyst, characterized in that titanium oxide fine particles having a crystal particle diameter of (3) are carried.

【0007】本発明の第二の態様は、高反射率表面をも
つ担体上に100〜500オングストローム、好ましく
は150〜300オングストロームの結晶粒子径を有す
る酸化チタン微粒子を担持させ、その上に光の透過性の
良い外被膜層を設けることを特徴とするエチレン分解光
触媒を提供することである。
In a second aspect of the present invention, titanium oxide fine particles having a crystal grain size of 100 to 500 angstroms, preferably 150 to 300 angstroms are supported on a carrier having a high reflectance surface, and light particles of light are deposited thereon. It is intended to provide an ethylene decomposition photocatalyst characterized by providing an outer coating layer having good permeability.

【0008】本発明の第三の態様は、高反射率表面をも
つ担体上に光の透過性の良い電化分離層を設け、その上
に100〜500オングストローム、好ましくは150
〜300オングストロームの結晶粒子径を有する酸化チ
タン微粒子を担持させ、さらにその上に光の透過性の良
い外被膜層を設けることを特徴とするエチレン分解光触
媒を提供することである。
A third aspect of the present invention is to provide a charge separating layer having a good light transmission property on a carrier having a high reflectance surface, and 100 to 500 angstrom, preferably 150, on the charge separating layer.
It is intended to provide an ethylene decomposition photocatalyst, characterized in that titanium oxide fine particles having a crystal particle diameter of ˜300 Å are supported, and an outer coating layer having good light transmission is further provided thereon.

【0009】[0009]

【構成の詳細】本発明のエチレン分解光触媒の一成分は
高反射率表面をもつ担体である。その1つとしては、白
色の紙状物がある。他の1つは鏡やアルミニウムシート
のように高い反射率表面を構成する鏡面を有するシート
状物である。前記紙状物の構成要素は、例えばコ−ジラ
イト、アルミナ、シリカアルミナ、チタニアシリカ、ジ
ルコニア、ゼオライト、セピオライト等の白色無機物ま
たは天然、半合成あるいは合成高分子よりなる有機物で
ある。また、前記シート状物としては、鏡面をもつ金属
シートを例示することができる。これらの金属シート
は、耐水性に優れており、シ−トの厚さを選択すること
によって任意の機械強度をもたせることができ、さらに
簡便に成形加工できる。なお、金属箔使用の場合は、紙
などの補強材を裏面に積層して使用してもよい。これら
のシート状担体は、触媒の担持前あるいは担持後に耐水
化処理を行うことができる。
DETAILED DESCRIPTION OF THE STRUCTURE One component of the ethylene decomposition photocatalyst of the present invention is a carrier having a high reflectance surface. One of them is a white paper-like material. The other one is a sheet-like material having a mirror surface forming a high reflectance surface such as a mirror or an aluminum sheet. The constituents of the paper-like material are, for example, white inorganic materials such as cordierite, alumina, silica-alumina, titania silica, zirconia, zeolite and sepiolite, or organic materials composed of natural, semi-synthetic or synthetic polymers. Further, as the sheet-like material, a metal sheet having a mirror surface can be exemplified. These metal sheets are excellent in water resistance, can be given arbitrary mechanical strength by selecting the thickness of the sheet, and can be easily molded. When a metal foil is used, a reinforcing material such as paper may be laminated on the back surface for use. These sheet-shaped carriers can be subjected to water resistance treatment before or after the catalyst is loaded.

【0010】シート状エチレン分解光触媒は筒状体とし
て使用することが好ましく、筒状体の形態は、円筒状、
多面柱状などを採ることができる。また、シートを波状
に成形してから筒状体にして使用することにより表面積
の拡大を計ることもできる。なお、光の利用効率は低下
するが、筒状に加工しないシート状エチレン分解光触媒
をそのまま使用することを制限するものではない。
The sheet-shaped ethylene decomposition photocatalyst is preferably used as a tubular body, and the tubular body has a cylindrical shape,
For example, a polygonal column can be adopted. Further, the surface area can be increased by forming the sheet into a wavy shape and then using it as a tubular body. It should be noted that although the utilization efficiency of light is reduced, the use of the sheet-shaped ethylene-decomposing photocatalyst that is not processed into a tubular shape as it is is not limited.

【0011】エチレン含有ガスのガス拡散効率を良く
し、エチレン分解に必要な触媒の量(受光面積)を確保
するために、光源と触媒表面との距離は少なくとも10
mm以上、好ましくは20mm以上必要である。即ち、
直径15mmの棒状ランプを用いる場合には、筒状体の
直径は、35mm以上、好ましくは55mm以上である
ことが好ましい。
The distance between the light source and the catalyst surface is at least 10 in order to improve the gas diffusion efficiency of the ethylene-containing gas and to secure the amount of the catalyst (light receiving area) necessary for the decomposition of ethylene.
mm or more, preferably 20 mm or more. That is,
When a rod-shaped lamp having a diameter of 15 mm is used, the diameter of the tubular body is preferably 35 mm or more, more preferably 55 mm or more.

【0012】多孔質担体としては、反応ガスおよび光が
流通可能で、かつ光を良く反射する白色担体であって、
酸化チタンが担持できるものであれば良い。例えばコ−
ジライト、アルミナ、シリカアルミナ、チタニアシリ
カ、ゼオライト、セピオライト等の白色無機質担体が適
している。担体の色を、光エネルギ−の反射率の高い白
色にすることによって、エチレン分解能を高めることが
でき、清潔感を醸し出すこともできる。多孔質担体は、
反応ガスおよび光の流通が容易なハニカム構造体もしく
は三次元網状構造体が好ましい。該ハニカム構造は、例
えば特公昭59−15028号公報に提案されているよ
うなセラミック繊維の集合体(ハニクル担体)、すなわ
ち珪酸ゲルにより互いに結合されているシリカ繊維、ア
ルミナ繊維、アルミノシリケ−ト繊維、ジルコニア繊維
などの無機繊維から選択されるセラミック繊維のシ−ト
状集合体をハニカム状に積層して構成されるハニカム構
造であれば圧力損失も少なく幾何学表面積も大きいので
より好ましい。また該三次元網状構造体としては、例え
ば特公昭57−35048号公報に開示されているよう
なセラミック多孔体が光を良く透過し圧力損失も少なく
幾何学表面積も大きいので特に好ましいものである。
The porous carrier is a white carrier through which a reaction gas and light can flow and which reflects light well,
Any material that can support titanium oxide may be used. For example
White inorganic carriers such as gillite, alumina, silica-alumina, titania silica, zeolite, sepiolite are suitable. By changing the color of the carrier to white, which has a high reflectance of light energy, the ethylene resolution can be increased and a clean feeling can be produced. The porous carrier is
A honeycomb structure or a three-dimensional network structure which allows easy passage of the reaction gas and light is preferable. The honeycomb structure is composed of an aggregate of ceramic fibers (hanicle carrier) as proposed in Japanese Patent Publication No. 59-15028, that is, silica fibers, alumina fibers, aluminosilicate fibers which are bonded to each other by silica gel. A honeycomb structure formed by stacking a sheet-shaped aggregate of ceramic fibers selected from inorganic fibers such as zirconia fibers in a honeycomb shape is more preferable because it has a small pressure loss and a large geometric surface area. Further, as the three-dimensional network structure, for example, a ceramic porous body as disclosed in Japanese Patent Publication No. 57-35048 is particularly preferable because it transmits light well, has a small pressure loss, and has a large geometric surface area.

【0013】本発明においては、光源と前記多孔質触媒
の組合せに加えて、光源と反対方向の該触媒の背後に反
射板を設けたエチレン分解装置とすることにより、光の
照射効率を一層向上させることができる。さらに、該触
媒の厚さを調整することにより、光の透過をより容易に
し、エチレンの分解効率を向上させることができる。す
なわち、該触媒の厚さは、薄すぎるとエチレンの分解性
能が低下するのみならず、機械的強度も低下し、僅かな
衝撃によっても崩壊し、厚すぎても反応に寄与しない部
分が多くなり触媒として不経済となるので、5〜40m
mとするのが好適である。
In the present invention, in addition to the combination of the light source and the porous catalyst, an ethylene decomposing device is provided with a reflecting plate behind the catalyst in the direction opposite to the light source, whereby the light irradiation efficiency is further improved. Can be made. Furthermore, by adjusting the thickness of the catalyst, light can be more easily transmitted and the decomposition efficiency of ethylene can be improved. That is, when the thickness of the catalyst is too thin, not only the decomposition performance of ethylene is lowered, but also the mechanical strength is lowered, the catalyst is disintegrated even by a slight impact, and if it is too thick, there are many portions that do not contribute to the reaction. 5-40m as it becomes uneconomical as a catalyst
It is preferable that it is m.

【0014】本発明のエチレン分解光触媒のもう一つの
構成成分は、担体上に形成された光の透過性の良い電価
分離層である。この電価分離層は、担体と触媒活性成分
との電気絶縁性を良好なものとし、触媒金属の電子が担
体へ放出され、活性が低下すること防止するものである
と推定される。さらにこの電気絶縁性と相まって、この
電価分離層は触媒活性成分を強固に担体上に保持し、光
の透過性が良く光エネルギ−を損なわない特性を合わせ
持つものであることが好ましい。この電価分離層は、光
の透過性のよいシリカ系バインダ−を用いて、エアスプ
レ−法、浸漬法等の従来法によって担体上に形成するこ
とができる。電価分離層の担持量は、0.05〜0.3
mg/cm2(電価分離層の厚さに換算すると0.5〜
3μm)、好ましくは0.1〜0.2mg/cm2(電
価分離層の厚さに換算すると1〜2μm)である。
Another component of the ethylene-decomposing photocatalyst of the present invention is a charge separation layer formed on a carrier and having good light transmittance. It is presumed that the charge separation layer has good electric insulation between the carrier and the catalytically active component, and prevents electrons of the catalytic metal from being released to the carrier and thus deteriorating the activity. Further, in combination with this electric insulation property, it is preferable that the charge separation layer has a property of firmly holding the catalytically active component on the carrier, has a good light transmission property and does not impair the light energy. This charge separation layer can be formed on the carrier by a conventional method such as an air spray method or a dipping method using a silica-based binder having good light transmittance. The carrying amount of the charge separation layer is 0.05 to 0.3.
mg / cm 2 (0.5 to when converted to the thickness of the charge separation layer)
3 μm), preferably 0.1 to 0.2 mg / cm 2 (1 to 2 μm when converted to the thickness of the charge separation layer).

【0015】本発明のエチレン分解光触媒の他のもう一
つの構成成分は光触媒成分であって、金属酸化物半導体
系光触媒としての酸化チタンである。酸化チタンの結晶
粒子経は100〜500オングストローム、好ましくは
150〜300オングストロームのものが特に光による
エチレン分解能が優れている。光触媒成分の担持量は光
源の強さに依存するが、バインダーとの合計でシート状
担体の面積(cm2)当たり0.3〜5.0mg(触媒
層の厚さに換算すると3〜50μm)、好ましくは0.
5〜3.0mg(触媒層の厚さに換算すると5〜30μ
m)である。好ましい触媒層の厚みを得るための光触媒
成分の担持量は、担体がハニカム構造体からなるものに
ついては、バインダーとの合計で触媒構造体全容積に対
して20〜200g/l、好ましくは50〜150g/
l、セラミック繊維の集合体からなるものについては1
0〜100g/l、好ましくは20〜50g/l、三次
元網状構造体からなるものについては2〜50g/l、
さらに好ましくは2〜15g/lであり、これが担体に
バインダ−により保持される。バインダーは、光の透過
率のよいシリカ系バインダーが好ましく、光触媒成分の
重量の10〜30%の量で使用する。
Another component of the ethylene decomposition photocatalyst of the present invention is a photocatalyst component, which is titanium oxide as a metal oxide semiconductor photocatalyst. Titanium oxide having a crystal particle size of 100 to 500 angstroms, preferably 150 to 300 angstroms, is particularly excellent in the ability to decompose ethylene by light. The amount of the photocatalyst component carried depends on the strength of the light source, but the total amount with the binder is 0.3 to 5.0 mg per area (cm 2 ) of the sheet-like carrier (3 to 50 μm when converted to the thickness of the catalyst layer). , Preferably 0.
5 to 3.0 mg (5 to 30 μ when converted to the thickness of the catalyst layer
m). The supported amount of the photocatalyst component for obtaining a preferable thickness of the catalyst layer is 20 to 200 g / l, preferably 50 to 50 with respect to the total volume of the catalyst structure when the carrier is composed of a honeycomb structure, in total with the binder. 150 g /
l, 1 for a composite of ceramic fibers
0 to 100 g / l, preferably 20 to 50 g / l, 2 to 50 g / l for a three-dimensional network structure,
More preferably, it is 2 to 15 g / l, which is held on the carrier by a binder. The binder is preferably a silica-based binder having good light transmittance, and is used in an amount of 10 to 30% by weight of the photocatalyst component.

【0016】本発明のエチレン分解光触媒のさらなる構
成成分は、触媒層の上に設けられた機械強度が高く光の
透過性の良い外被膜層である。この外被膜層は、光エネ
ルギ−を無駄に吸収せず光を良く透過するものであっ
て、外被膜層形成時に触媒層にも浸透して触媒層の酸化
チタンの結晶粒子と、バインダーとして用いたシリカ系
成分に起因するSiO2の結晶粒子をさらに緊密に結合
させる。このようにシリカ系オーバーコート層(外被膜
層)を設けたにもかかわらず、驚くことに触媒層の透明
性が増加し、その結果、光の透過性を改善することがで
きた。この外被膜層はシリカ微粒子によって構成するこ
とが好ましい。すなわち、この外被膜層は、光の透過性
のよいシリカ系バインダ−を用いて、エアスプレ−法、
浸漬法等の従来法によって触媒層の上に形成できる。外
被膜層の担持量は、0.05〜1.0mg/cm2(外
被膜層の厚さに換算すると0.5〜10μm)、好まし
くは0.1〜0.5mg/cm2(外被膜層の厚さに換
算すると1〜5μm)である。
A further constituent component of the ethylene decomposition photocatalyst of the present invention is an outer coating layer provided on the catalyst layer and having high mechanical strength and good light transmission. This outer coating layer does not wastefully absorb light energy and transmits light well, and when the outer coating layer is formed, it penetrates into the catalyst layer and serves as titanium oxide crystal particles in the catalyst layer and as a binder. The SiO 2 crystal particles resulting from the silica-based component are further tightly bonded. Even though the silica-based overcoat layer (outer coating layer) was thus provided, the transparency of the catalyst layer was surprisingly increased, and as a result, the light transmittance could be improved. This outer coating layer is preferably composed of silica fine particles. That is, this outer coating layer is formed by using a silica-based binder having a good light transmission property by an air spray method,
It can be formed on the catalyst layer by a conventional method such as a dipping method. The supported amount of the outer coating layer is 0.05 to 1.0 mg / cm 2 (0.5 to 10 μm when converted to the thickness of the outer coating layer), preferably 0.1 to 0.5 mg / cm 2 (outer coating It is 1 to 5 μm when converted to the layer thickness.

【0017】光源としては、酸化チタンを光化学的に励
起させるものであればよく、3.2eV以上のバンドギ
ャップを有し、波長が388nm以下の紫外線を放出
し、触媒成分に光エネルギーを供給するものであればよ
い。
The light source may be any one that photochemically excites titanium oxide, has a band gap of 3.2 eV or more, emits ultraviolet rays having a wavelength of 388 nm or less, and supplies light energy to the catalyst component. Anything will do.

【0018】[0018]

【実施例】以下の実施例により本発明を更に詳しく説明
するが、本発明はこれら実施例によって何ら限定される
ものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0019】実施例1 日産化学工業社製のスノーテックス−OUP(SiO2
を20重量%含有)をイオン交換水で希釈しSiO2
含有量が5重量%のシリカ溶液を調製た。150mm×
298mmに切断したアルミニウム板に、前記シリカ溶
液をエア−スプレ−法により均一に塗布した後、150
℃の温度で3時間乾燥して、0.15mg/cm2(電
価分離層の厚さに換算すると1.5μm)のSiO2
らなる電価分離層をアルミニウム板に担持形成し、下地
処理担体を得た。イオン交換水3000gに60重量%
の濃硝酸6gを加えた溶液に、バインダ−として500
gの日産化学工業社製のスノーテックス−OUP(Si
2を20重量%含有)を加えて混合した。この溶液に
500gの日本アエロジル社製酸化チタン粉末P−25
をターボミキサーで混合しながら加え、SiO2を2.5
重量%、TiO2を12.5重量%含有する触媒スラリー
溶液4000gを得た。得られた上記の下地処理担体
に、前記触媒スラリー溶液をエア−スプレ−法により均
一に塗布した後、150℃の温度で3時間乾燥して、T
iO2とSiO2との合計量で0.7mg/cm2(触媒
層の厚さに換算すると7μm)を担持したシ−ト状触媒
を得た。得られたシ−ト状触媒を筒状体に丸め、触媒A
を調製した。
Example 1 Snowtex-OUP (SiO 2 manufactured by Nissan Chemical Industries, Ltd.
Of 20% by weight) was diluted with ion-exchanged water to prepare a silica solution having a SiO 2 content of 5% by weight. 150 mm x
The silica solution was uniformly applied to an aluminum plate cut into 298 mm by an air spray method, and then 150
After drying for 3 hours at a temperature of ℃, 0.15 mg / cm 2 (1.5 μm in terms of the thickness of the charge separation layer) of a charge separation layer made of SiO 2 is supported and formed on an aluminum plate, and the surface treatment is performed. A carrier was obtained. 60% by weight in 3000 g of ion-exchanged water
To the solution containing 6 g of concentrated nitric acid, 500 as a binder
Snowtex-OUP (Si manufactured by Nissan Chemical Industries, Ltd.
The O 2 was added and mixed 20 wt% content). 500 g of titanium dioxide powder P-25 manufactured by Nippon Aerosil Co., Ltd. was added to this solution.
While mixing with a turbo mixer, add SiO 2 to 2.5
By weight, 4000 g of a catalyst slurry solution containing 12.5% by weight of TiO 2 was obtained. The catalyst slurry solution was uniformly applied to the obtained base treatment carrier by an air spray method, and then dried at a temperature of 150 ° C. for 3 hours to obtain T
A sheet-like catalyst supporting 0.7 mg / cm 2 (7 μm in terms of the thickness of the catalyst layer) in the total amount of iO 2 and SiO 2 was obtained. The obtained sheet-shaped catalyst was rolled into a cylindrical body, and a catalyst A
Was prepared.

【0020】比較例1 下地処理をせず(電価分離層を有さない)、150mm
×298mmに切断したアルミニウム板をそのまま用い
た以外は、実施例1と同様にして、TiO2とSiO2
の合計量で1.0mg/cm2(触媒層の厚さに換算す
ると10μm)を担持したシ−ト状触媒を調製し、得ら
れたシ−ト状触媒を筒状体に丸め、触媒Xを得た。
Comparative Example 1 No base treatment (no charge separation layer), 150 mm
The total amount of TiO 2 and SiO 2 was 1.0 mg / cm 2 (10 μm when converted to the thickness of the catalyst layer) in the same manner as in Example 1 except that the aluminum plate cut to × 298 mm was used as it was. A supported sheet-like catalyst was prepared, and the obtained sheet-like catalyst was rolled into a cylindrical body to obtain a catalyst X.

【0021】実施例2 比較例1で得られた触媒Xの触媒層の上に、実施例1の
下地処理に用いたと同じ5重量%シリカ溶液を、エア−
スプレ−法により均一に塗布した後、150℃の温度で
3時間乾燥して、SiO2を0.17mg/cm2(外被
膜層の厚さに換算すると1.7μm)をさらにオ−バ−
コ−ト担持し、外被膜層をその上に形成したオ−バ−コ
−トシ−ト状触媒を得た。得られたシ−ト状触媒を、筒
状体に丸めた触媒Bを調製した。
Example 2 On the catalyst layer of the catalyst X obtained in Comparative Example 1, the same 5 wt% silica solution used for the base treatment of Example 1 was air-dried.
Spray - it was uniformly applied by law, and dried 3 hours at a temperature of 0.99 ° C., (when converted into the thickness of the outer coating layer 1.7 [mu] m) the SiO 2 0.17mg / cm 2 for an additional O - Ba -
An overcoat-sheet-like catalyst having a coat supported thereon and an outer coating layer formed thereon was obtained. The obtained sheet-shaped catalyst was rolled into a tubular body to prepare a catalyst B.

【0022】実施例3 実施例2において、比較例1で得られた触媒Xに代えて
実施例1で得られた触媒Aを用いたことを除いて同様に
して、0.15mg/cm2(外被膜層の厚さに換算す
ると1.5μm)のSiO2をさらに実施例1で得られ
た触媒Aにオ−バ−コ−ト担持し、外被膜層を有するシ
−ト状触媒を得た。得られたシ−ト状触媒を筒状体に丸
め、触媒Cを調製した。実施例2および実施例3におい
て得られた外被膜層を有する触媒は、外被膜層を担持形
成する際、シリカ溶液が触媒層にも浸透し触媒層自体の
透明度も改善されていることが視認された。前記実施例
1〜3で得られた触媒A〜Cおよび比較例1で得られた
触媒Xを用いて下記のエチレン分解能評価試験1を行っ
た。
Example 3 In the same manner as in Example 2, except that the catalyst A obtained in Example 1 was used in place of the catalyst X obtained in Comparative Example 1, 0.15 mg / cm 2 ( SiO 2 ( 1.5 μm in terms of the thickness of the outer coating layer) was further carried on the catalyst A obtained in Example 1 in an overcoat to obtain a sheet-like catalyst having an outer coating layer. It was The sheet-like catalyst thus obtained was rolled into a cylindrical body to prepare a catalyst C. In the catalysts having the outer coating layer obtained in Examples 2 and 3, when the outer coating layer was supported and formed, it was visually confirmed that the silica solution penetrated into the catalyst layer and the transparency of the catalyst layer itself was improved. Was done. Using the catalysts A to C obtained in Examples 1 to 3 and the catalyst X obtained in Comparative Example 1, the following ethylene decomposition evaluation test 1 was conducted.

【0023】エチレン分解能評価試験1 波長が254nmの紫外線を放出する12Wのプリンス
社製紫外線殺菌ランプ(QGULR−11−200N)
を、載架した筒状試料触媒の中心軸上に挿入載架し、そ
の下方部に大気の循環用のファンを設置した16リッタ
ーのガラスケースに、99.6%のエチレン1.6mlを
注入し、ガラスケース内のエチレン濃度を100ppm
に調整した。試料触媒を設置した後、試料触媒のエチレ
ン吸着性能を見るため、最初の十分間はファンにより大
気を循環させるのみで該ランプを点燈しないで、エチレ
ン濃度の変化を測定したが、エチレン濃度は変化せずエ
チレンは試料触媒には吸着されていないことがわかっ
た。10分経過した後、該ランプを点灯し、点灯後50
分経過後のエチレン濃度を測定した。その結果を表1、
2に示す。なお、筒状試料触媒の一部を重ね合わすよう
に巻き込むことによって筒体の直径を調整した。
Ethylene resolution evaluation test 1 12 W Prince germ UV lamp (QGULR-11-200N) that emits ultraviolet rays having a wavelength of 254 nm
Was inserted and mounted on the central axis of the mounted cylindrical sample catalyst, and 1.6 ml of 99.6% ethylene was injected into a 16-liter glass case in which a fan for circulating the atmosphere was installed in the lower part. The ethylene concentration in the glass case to 100 ppm
Adjusted to. After installing the sample catalyst, in order to see the ethylene adsorption performance of the sample catalyst, the change in ethylene concentration was measured without first turning on the lamp by circulating the atmosphere with a fan for the first ten minutes. It was found that ethylene remained unchanged and was not adsorbed on the sample catalyst. After 10 minutes, turn on the lamp, and then turn on 50
After a lapse of minutes, the ethylene concentration was measured. The results are shown in Table 1,
2 shows. The diameter of the cylindrical body was adjusted by winding the cylindrical sample catalysts so that they overlap each other.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 表1、2から明らかなように、本発明のシ−ト状触媒
A、BおよびCはいずれも、電価分離層も外被膜層も持
たない従来の触媒Xに比べて極めて優れたエチレン分解
性能を有することが裏付けられた。
[Table 2] As is clear from Tables 1 and 2, all of the sheet-like catalysts A, B and C of the present invention are extremely excellent in the decomposition of ethylene as compared with the conventional catalyst X having neither a charge separation layer nor an outer coating layer. It has been proved that it has performance.

【0026】実施例4 日産化学工業社製のスノーテックス−OUP(SiO2
を20重量%含有)をイオン交換水で希釈しSiO2
含有量が2重量%のシリカ溶液を調製した。この2重量
%シリカ溶液に、アルミノシリケ−ト繊維のシ−ト状集
合体によって構成されるハニカム構造体を有するニチア
ス社製白色ハニクル担体(200セル、縦60mm、横
150mm、厚さ10mm)を浸漬し、取り出し、余剰
のスラリーを空気を吹き付けて除去した後、150℃の
温度で6時間乾燥し、触媒の容積1リッター当り3gの
SiO2(0.2mg/cm2に相当し、電価分離層の厚
さに換算すると2μm)を担持し、電価分離層を形成し
た下地処理ハニクル担体を得た。イオン交換水3000
gに60重量%の濃硝酸6gを加えた溶液に、バインダ
−として1000gの日産化学工業社製のスノーテック
ス−OUP(SiO2を20重量%含有)を加えて混合
した。この溶液に500gの日本アエロジル社製酸化チ
タン粉末P−25をターボミキサーで混合しながら加
え、SiO2を2.5重量%、TiO2を12.5重量%含
有する触媒スラリー溶液4000gを得た。上記下地処
理ハニクル担体を、得られた触媒スラリー溶液に浸漬
し、取り出し、余剰のスラリーを空気を吹き付けて除去
した後、150℃の温度で6時間乾燥し、500℃の温
度で1時間焼成して、触媒の容積1リッター当りTiO
2とSiO2との合計量で37g(2.47mg/cm2
に相当し、触媒層の厚さに換算すると24.7μm)を
担持した触媒Dを得た。
Example 4 Snowtex-OUP (SiO 2 manufactured by Nissan Chemical Industries, Ltd.
Of 20% by weight) was diluted with ion-exchanged water to prepare a silica solution having a SiO 2 content of 2% by weight. A 2% by weight silica solution was dipped in a white hanicle carrier (200 cells, length 60 mm, width 150 mm, thickness 10 mm) manufactured by Nichias Co., which has a honeycomb structure composed of a sheet-shaped aggregate of aluminosilicate fibers. After removing the excess slurry by blowing air, the slurry was dried at a temperature of 150 ° C. for 6 hours to obtain 3 g of SiO 2 (corresponding to 0.2 mg / cm 2 ) per 1 liter of the volume of the catalyst. (2 μm in terms of the thickness), and an undertreated hanicle carrier having a charge separation layer formed thereon was obtained. Ion-exchanged water 3000
To a solution obtained by adding 6 g of 60% by weight concentrated nitric acid to g, 1000 g of Snowtex-OUP (containing 20% by weight of SiO 2 ) manufactured by Nissan Chemical Industries, Ltd. was added and mixed as a binder. The solution of 500g Nippon Aerosil Co., Ltd. titanium oxide powder P-25 was added with mixing at turbomixer, a SiO 2 2.5 wt%, to obtain a catalyst slurry solution 4000g containing TiO 2 12.5% by weight . The above-mentioned base treatment hanicle carrier is immersed in the obtained catalyst slurry solution, taken out, and excess slurry is blown off with air to be removed, followed by drying at a temperature of 150 ° C. for 6 hours and firing at a temperature of 500 ° C. for 1 hour. TiO2 per 1 liter volume of catalyst
The total amount of 2 and SiO 2 is 37 g (2.47 mg / cm 2
Corresponding to the above, and converted into the thickness of the catalyst layer, a catalyst D carrying 24.7 μm) was obtained.

【0027】比較例2 担体に下地処理を行わないことを除いて実施例1と同様
にして、触媒の容積1リッター当りTiO2とSiO2
の合計量で38g(2.53mg/cm2に相当し、触
媒層の厚さに換算すると25.3μm)を担持した触媒
Y(電価分離層、外皮膜層なし)を得た。
Comparative Example 2 In the same manner as in Example 1 except that the carrier was not subjected to a base treatment, the total amount of TiO 2 and SiO 2 per liter of the catalyst was 38 g (equivalent to 2.53 mg / cm 2). Then, when converted to the thickness of the catalyst layer, a catalyst Y (without a charge separation layer and an outer coating layer) carrying 25.3 μm) was obtained.

【0028】実施例5 比較例2の触媒Yを、実施例4の2重量%のシリカ溶液
に浸漬し、取り出し、余剰のスラリーを空気を吹き付け
て除去した後、150℃の温度で6時間乾燥し、触媒の
容積1リッター当り3gのSiO2(0.2mg/cm2
に相当し、外被膜層の厚さに換算すると2μm)よりな
る外被膜層をもつ触媒Eを得た。
Example 5 The catalyst Y of Comparative Example 2 was dipped in the 2% by weight silica solution of Example 4, taken out, the excess slurry was blown with air to remove it, and then dried at a temperature of 150 ° C. for 6 hours. 3 g of SiO 2 (0.2 mg / cm 2
And a catalyst E having an outer coating layer of 2 μm in terms of the thickness of the outer coating layer was obtained.

【0029】実施例6 比較例2の触媒Yに代えて実施例4の触媒Dを用いたこ
とを除いて比較例3と同様にして、触媒の容積1リッタ
ー当り3gのSiO2(0.2mg/cm2に相当し、外
被膜層の厚さに換算すると2μm)を担持し、さらに、
その上に外被膜層を形成し、触媒Fを得た。実施例5お
よび実施例6において得られたオ−バ−コ−ト層、すな
わち外被膜層を有する触媒Eおよび触媒Fは、実施例2
および実施例3の外被膜層を有する触媒Bおよび触媒C
と同様に、外被膜層を担持形成する際に、外被膜を形成
するためのシリカ溶液がすでに担持されている触媒層に
も浸透し全体の透明度も改善されることが視認された。
前記実施例4〜6で得られた触媒D〜Fおよび比較例2
で得られた触媒Yを用いて下記のエチレン分解能評価試
験2を行った。
Example 6 The procedure of Comparative Example 3 was repeated except that the catalyst Y of Comparative Example 2 was replaced with the catalyst D of Example 4, and 3 g of SiO 2 (0.2 mg) was added per 1 liter of the catalyst volume. / Cm2, which corresponds to 2 μm when converted to the thickness of the outer coating layer, and further,
An outer coating layer was formed thereon to obtain a catalyst F. The catalyst E and the catalyst F having the overcoat layer, that is, the outer coating layer, obtained in Examples 5 and 6 were the same as those in Example 2
And Catalyst B and C with the outer coating layer of Example 3.
Similarly, when supporting and forming the outer coating layer, it was visually confirmed that the silica solution for forming the outer coating penetrates into the already-supported catalyst layer to improve the overall transparency.
Catalysts D to F obtained in Examples 4 to 6 and Comparative Example 2
The following ethylene decomposition evaluation test 2 was conducted using the catalyst Y obtained in 1.

【0030】エチレン分解能評価試験2 波長が254nmの紫外線を放出する12Wのプリンス
社製紫外線殺菌ランプ(QGULR−11−200N)
を使用し、該ランプの照射効率を上げるため、アルミ板
等の反射材をその背後に設置し、該ランプから4cmの
距離を置いた位置に試料触媒を載架し、その下方部に大
気の循環用のファンを設置した16リッターのガラスケ
ースに、99.6%のエチレン1.6mlを注入し、ガラ
スケース内のエチレン濃度を100ppmに調整した。
試料触媒を設置した後、試料触媒のエチレン吸着性能を
見るため、最初の十分間はファンにより大気を循環させ
るのみで該ランプを点燈しないで、エチレン濃度の変化
を測定したが、エチレン濃度は変化せずエチレンは試料
触媒には吸着されていないことがわかった。10分経過
した後、該ランプを点灯し、点灯後50分経過後のエチ
レン濃度を測定した。その結果を表3に示す。
Ethylene resolution evaluation test 2 12 W Prince UV ultraviolet sterilization lamp (QGULR-11-200N) which emits ultraviolet rays having a wavelength of 254 nm.
In order to increase the irradiation efficiency of the lamp, a reflector such as an aluminum plate is installed behind it, and the sample catalyst is placed at a position 4 cm away from the lamp, and the atmosphere below the sample catalyst. 1.6 ml of 99.6% ethylene was injected into a 16-liter glass case equipped with a circulation fan, and the ethylene concentration in the glass case was adjusted to 100 ppm.
After installing the sample catalyst, in order to check the ethylene adsorption performance of the sample catalyst, the change in ethylene concentration was measured without first turning on the lamp by circulating the atmosphere with a fan for the first ten minutes. It was found that ethylene remained unchanged and was not adsorbed on the sample catalyst. After 10 minutes, the lamp was turned on, and the ethylene concentration was measured 50 minutes after the lighting. The results are shown in Table 3.

【0031】[0031]

【表3】 表3から明らかなように、本発明のハニクル担体触媒
D,EおよびFはいずれも、電価分離層も外被膜層も持
たない従来の触媒Yに比べて極めて優れたエチレン分解
性能を有することが裏付けられた。
[Table 3] As is clear from Table 3, all of the hanicle carrier catalysts D, E and F of the present invention have extremely excellent ethylene decomposing performance as compared with the conventional catalyst Y having neither a charge separation layer nor an outer coating layer. Was backed up.

【0032】つぎに、触媒の剥離強度を調べるため、比
較例2の触媒Yおよび実施例4の触媒Dを用いて下記の
超音波振動剥離強度試験を行った。
Next, in order to examine the peel strength of the catalyst, the following ultrasonic vibration peel strength test was conducted using the catalyst Y of Comparative Example 2 and the catalyst D of Example 4.

【0033】超音波振動剥離強度試験 試料を、150℃の温度で2時間加熱し後、試料の重量
を測定した。ついで、超音波洗浄装置(島津製作所製
SUS−103型)の水槽の水中に試料を入れ、45k
Hzの周波数で20分間処理した。超音波処理した試料
を150℃の温度で2時間乾燥した後、重量を測定し、
超音波処理前後の重量差から試料の剥離量を求めた。電
価分離層を有する実施例4の触媒Dの剥離量が1.8m
g/gであるのに対して、電価分離層も外被膜層ももた
ない比較例2の触媒Yの剥離量は5.0mg/gと多か
ったが、これにより電価分離層をもつだけでも剥離強度
が改善されたことが裏付けられた。電価分離層に加え
て、さらに外被膜層を形成した触媒の剥離量はさらに少
なく、測定値は誤差範囲で実質的に剥離は認められなか
った。すなわち、シリカバインダ−で、下地処理または
オ−バ−コ−ト処理の一方もしくは両方を施した本発明
の触媒の機械強度の改善が裏付けられた。
Ultrasonic Vibration Peel Strength Test After heating the sample at a temperature of 150 ° C. for 2 hours, the weight of the sample was measured. Next, ultrasonic cleaning device (manufactured by Shimadzu Corporation)
Put the sample in the water of the water tank of SUS-103 type), 45k
It was treated at a frequency of Hz for 20 minutes. After the ultrasonically treated sample was dried at a temperature of 150 ° C. for 2 hours, the weight was measured,
The amount of peeling of the sample was determined from the weight difference before and after ultrasonic treatment. The stripping amount of the catalyst D of Example 4 having a charge separation layer was 1.8 m.
In contrast to g / g, the amount of peeling of the catalyst Y of Comparative Example 2 having neither the charge separation layer nor the outer coating layer was as large as 5.0 mg / g, which resulted in the charge separation layer. It was confirmed that the peel strength was improved even by itself. In addition to the charge separation layer, the amount of peeling of the catalyst on which the outer coating layer was further formed was smaller, and the measured value was within the error range, and substantially no peeling was observed. That is, the improvement of the mechanical strength of the catalyst of the present invention which was subjected to one or both of the base treatment and the overcoat treatment with the silica binder was proved.

【0034】[0034]

【発明の効果】本発明のエチレン分解光触媒は、電価分
離層を担体と触媒層の間に設けることによってエチレン
分解能が改善され、また触媒成分がより強固に担体に保
持されるため触媒層に割れや亀裂が入り難くなり触媒層
の剥離が少ないという顕著な効果を奏する。さらに、外
被膜層をその上に形成した本発明のエチレン分解光触媒
は、外被膜層形成時にシリカバインダ−が触媒層にも浸
透して触媒層の酸化チタンの結晶粒子とSiO2の結晶
粒子をさらに緊密に結合させるために、触媒層の透明性
が増加し光の透過性が改善されるためエチレン分解能が
向上するのみならず、触媒層の下に設けられた電価分離
層の働きと相まって触媒活性成分の剥離強度をさらに増
加させるという極めて顕著な効果を奏する。
INDUSTRIAL APPLICABILITY The ethylene decomposition photocatalyst of the present invention improves the ethylene decomposing ability by providing the charge separation layer between the carrier and the catalyst layer, and since the catalyst component is more firmly retained on the carrier, It has a remarkable effect that cracks and cracks are less likely to occur and the catalyst layer is less likely to be peeled off. Furthermore, in the ethylene decomposition photocatalyst of the present invention having the outer coating layer formed thereon, the silica binder penetrates into the catalyst layer during the formation of the outer coating layer to form titanium oxide crystal particles and SiO 2 crystal particles in the catalyst layer. In order to bond more closely, the transparency of the catalyst layer is increased and the light transmission is improved, so not only the ethylene decomposing ability is improved, but also in combination with the action of the charge separation layer provided under the catalyst layer. It has a very remarkable effect of further increasing the peel strength of the catalytically active component.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高反射率表面をもつ担体上に光の透過性
の良い電価分離層を設け、その上に100〜500オン
グストロームの結晶粒子径を有する酸化チタン微粒子を
担持させたことを特徴とするエチレン分解光触媒。
1. A charge separation layer having good light transmittance is provided on a carrier having a high reflectance surface, and titanium oxide fine particles having a crystal particle size of 100 to 500 angstroms are carried thereon. And ethylene decomposition photocatalyst.
【請求項2】 高反射率表面をもつ担体上に100〜5
00オングストロームの結晶粒子径を有する酸化チタン
微粒子を担持させ、その上に光の透過性の良い外被膜層
を設けることを特徴とするエチレン分解光触媒。
2. 100 to 5 on a carrier having a high reflectance surface.
An ethylene decomposition photocatalyst comprising titanium oxide fine particles having a crystal particle diameter of 00 angstrom supported thereon, and an outer coating layer having good light transmittance provided thereon.
【請求項3】 高反射率表面をもつ担体上に光の透過性
の良い電化分離層を設け、その上に100〜500オン
グストロームの結晶粒子径を有する酸化チタン微粒子を
担持させ、さらにその上に光の透過性の良い外被膜層を
設けることを特徴とするエチレン分解光触媒。
3. A charge separation layer having good light transmission is provided on a carrier having a high reflectance surface, and titanium oxide fine particles having a crystal particle diameter of 100 to 500 angstroms are carried thereon, and further thereon. An ethylene decomposition photocatalyst, which is provided with an outer coating layer having good light transmission.
【請求項4】 前記電価分離層および/または外被膜層
がシリカ系バインダ−により構成されている請求項1、
2または3記載のエチレン分解光触媒。
4. The method according to claim 1, wherein the charge separation layer and / or the outer coating layer is composed of a silica-based binder.
The ethylene decomposition photocatalyst according to 2 or 3.
【請求項5】 前記電価分離層および/または外被膜層
の厚みが、それぞれ0.5〜3μm、0.5〜10μm
である請求項1、2、3または4記載のエチレン分解光
触媒。
5. The thickness of the charge separation layer and / or the outer coating layer is 0.5 to 3 μm and 0.5 to 10 μm, respectively.
The ethylene decomposition photocatalyst according to claim 1, 2, 3, or 4.
【請求項6】 前記酸化チタン微粒子の粒子径が150
〜300オングストロームである請求項1、2、3、4
または5記載のエチレン分解光触媒。
6. The titanium oxide fine particles have a particle size of 150.
~ 300 angstroms.
Or the ethylene decomposition photocatalyst according to 5.
JP25775293A 1993-09-21 1993-09-21 Ethylene decomposition photocatalyst Expired - Lifetime JP3499585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25775293A JP3499585B2 (en) 1993-09-21 1993-09-21 Ethylene decomposition photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25775293A JP3499585B2 (en) 1993-09-21 1993-09-21 Ethylene decomposition photocatalyst

Publications (2)

Publication Number Publication Date
JPH0788367A true JPH0788367A (en) 1995-04-04
JP3499585B2 JP3499585B2 (en) 2004-02-23

Family

ID=17310612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25775293A Expired - Lifetime JP3499585B2 (en) 1993-09-21 1993-09-21 Ethylene decomposition photocatalyst

Country Status (1)

Country Link
JP (1) JP3499585B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230810A (en) * 1995-12-22 1997-09-05 Toto Ltd Outdoor display board and its cleaning method
EP0812619A1 (en) * 1996-06-12 1997-12-17 Eastman Kodak Company Inorganic transparent photocatalytic composition
JPH11512336A (en) * 1995-09-15 1999-10-26 ロディア シミ Substrate with photocatalytic coating based on titanium dioxide and organic dispersion based on titanium dioxide
KR20020048057A (en) * 2000-12-15 2002-06-22 서평원 The preparation method of flower preservatives of highly effective preservation of freshness and prolongation of life using titanium oxide photocatalyst
EP1483972A1 (en) * 2003-06-02 2004-12-08 Université Catholique de Louvain Method and apparatus for preserving agricultural products
JP2008523979A (en) * 2004-12-17 2008-07-10 アルミン Amorphous composite structures for photocatalysis
EP2486785B1 (en) * 2009-10-09 2018-04-25 Fujitsu Limited Protective bag

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512336A (en) * 1995-09-15 1999-10-26 ロディア シミ Substrate with photocatalytic coating based on titanium dioxide and organic dispersion based on titanium dioxide
JPH09230810A (en) * 1995-12-22 1997-09-05 Toto Ltd Outdoor display board and its cleaning method
EP0812619A1 (en) * 1996-06-12 1997-12-17 Eastman Kodak Company Inorganic transparent photocatalytic composition
FR2749777A1 (en) * 1996-06-12 1997-12-19 Kodak Pathe INORGANIC TRANSPARENT PHOTOCATALYTIC COMPOSITION
US5972831A (en) * 1996-06-12 1999-10-26 Eastman Kodak Company Inorganic transparent photocatalytic composition
KR20020048057A (en) * 2000-12-15 2002-06-22 서평원 The preparation method of flower preservatives of highly effective preservation of freshness and prolongation of life using titanium oxide photocatalyst
EP1483972A1 (en) * 2003-06-02 2004-12-08 Université Catholique de Louvain Method and apparatus for preserving agricultural products
WO2004105497A1 (en) * 2003-06-02 2004-12-09 Certech Asbl Method and device for preserving agricultural products
JP2008523979A (en) * 2004-12-17 2008-07-10 アルミン Amorphous composite structures for photocatalysis
EP2486785B1 (en) * 2009-10-09 2018-04-25 Fujitsu Limited Protective bag

Also Published As

Publication number Publication date
JP3499585B2 (en) 2004-02-23

Similar Documents

Publication Publication Date Title
US6878191B2 (en) Photocatalytic composition
WO2005058467A2 (en) Bifunctional layered photocatalyst/thermocatalyst for improving indoor air quality
TW201117879A (en) Photoreactor
JP3499585B2 (en) Ethylene decomposition photocatalyst
JPH0796183A (en) Hc eliminating member
CN107308992B (en) Photocatalytic fiber net and preparation method and application thereof
JP3554343B2 (en) Sheet-shaped ethylene cracking catalyst and ethylene cracking device
JP2000218161A (en) Photo-catalyst body
JP5786116B2 (en) Photocatalytic filter and water purification device
JP3362669B2 (en) Photocatalyst manufacturing method
JP3352740B2 (en) Water-resistant white ethylene decomposition catalyst, method for producing the same, and ethylene decomposition apparatus
CN1410151A (en) High adsorptivity light catalyzed air processor
JP2000225349A (en) Filter
JP2000051712A (en) Photocatalyst body
JP3546547B2 (en) HC adsorbent for exhaust gas purification device and method for producing the same
JPH11183728A (en) Gas treatment apparatus and gas treatment filter
JP2000210372A (en) Air cleaning film and deodorant filter
JP2000167355A (en) Purifying apparatus
JPH0716473A (en) Ethylene degradation catalyst
JPH11319580A (en) Photocatalyst filter
JP3502412B2 (en) Ethylene decomposition photocatalytic lamp and ethylene decomposition device
JP4125819B2 (en) Photocatalyst
WO2011115237A1 (en) Photocatalyst filter, and deodorizing device equipped with same
JPH10263395A (en) Gaseous organic solvent adsorbing element
JP2005230757A (en) Photocatalyst carrier

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10