JPH0787709B2 - Ultrasonic motor and its driving method - Google Patents

Ultrasonic motor and its driving method

Info

Publication number
JPH0787709B2
JPH0787709B2 JP62281315A JP28131587A JPH0787709B2 JP H0787709 B2 JPH0787709 B2 JP H0787709B2 JP 62281315 A JP62281315 A JP 62281315A JP 28131587 A JP28131587 A JP 28131587A JP H0787709 B2 JPH0787709 B2 JP H0787709B2
Authority
JP
Japan
Prior art keywords
elastic plate
vibration
ultrasonic motor
main surface
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62281315A
Other languages
Japanese (ja)
Other versions
JPH01126178A (en
Inventor
修 大西
修 冥加
武志 井上
貞行 高橋
忠保 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62281315A priority Critical patent/JPH0787709B2/en
Publication of JPH01126178A publication Critical patent/JPH01126178A/en
Publication of JPH0787709B2 publication Critical patent/JPH0787709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sheets, Magazines, And Separation Thereof (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超音波振動エネルギーを利用し、紙などの可
とう性を有するシートを動かす機能を有するモータに関
するものである。
TECHNICAL FIELD The present invention relates to a motor having a function of moving a flexible sheet such as paper by utilizing ultrasonic vibration energy.

(従来の技術) 超音波紙送り用モータとして、従来弾性板の片面に圧電
セラミック板を接着し、長さ縦振動と幅屈曲振動の二つ
の共振周波数を一致もしくは接近させ、その近傍の周波
数の電界を圧電体に印加することにより前記二つの振動
を共振状態で励振する振動子(以後縦屈曲多重モード振
動子と呼ぶ)を利用する超音波モータが提案されてい
る。
(Prior Art) As an ultrasonic paper feed motor, a piezoelectric ceramic plate is adhered to one side of a conventional elastic plate, and the two resonance frequencies of the longitudinal longitudinal vibration and the width bending vibration are made to match or come close to each other. There has been proposed an ultrasonic motor that uses a vibrator (hereinafter referred to as a longitudinal bending multimode vibrator) that excites the two vibrations in a resonance state by applying an electric field to a piezoelectric body.

まず従来形の振動子の一例を第5図に示す。これは長さ
方向の一次の縦振動と幅方向の一次の屈曲振動を共に共
振状態で励振する方法のものである。第5図(a)は側
面図、第5図(c)は正面図である。厚さ方向に一様に
分極した圧電セラミック板52の上下両面に金属電極膜53
を設け、それを弾性板51を底面に張り合わせている。こ
のとき弾性板51と圧電セラミック52は、長さ方向の1次
の縦振動モードと幅方向の1次の屈曲振動モードの共振
周波数が一致するような寸法となっている。このような
振動子の金属電極間に2つの振動モードの共振周波数と
等しい電気信号を入力する事により、第5図(b)、
(d)で表される振幅変位分布を持つ定在波が励振され
る。ここで第5図(b)における55は長さ方向の1次の
縦振動の変位分布、第5図(d)における56は幅方向の
一次の屈曲振動の変位分布を示す。このように従来は2
種類の異なる振動モードを共振状態で使用していた。
First, an example of a conventional vibrator is shown in FIG. This is a method of exciting both the primary longitudinal vibration in the length direction and the primary bending vibration in the width direction in a resonant state. FIG. 5 (a) is a side view and FIG. 5 (c) is a front view. A metal electrode film 53 is formed on both upper and lower surfaces of a piezoelectric ceramic plate 52 uniformly polarized in the thickness direction.
Is provided, and the elastic plate 51 is attached to the bottom surface thereof. At this time, the elastic plate 51 and the piezoelectric ceramic 52 are dimensioned so that the resonance frequencies of the primary longitudinal vibration mode in the length direction and the primary bending vibration mode in the width direction match. By inputting an electric signal equal to the resonance frequencies of the two vibration modes between the metal electrodes of such a vibrator, as shown in FIG.
A standing wave having an amplitude displacement distribution represented by (d) is excited. Here, 55 in FIG. 5B shows a displacement distribution of the primary longitudinal vibration in the length direction, and 56 in FIG. 5D shows a displacement distribution of the primary bending vibration in the width direction. Thus, in the past, 2
Different types of vibration modes were used in resonance.

(発明が解決しようとする問題点) 上記振動子を利用した超音波モータは、従来の進行波を
利用した超音波モータと比較して、速度・駆動力が共に
大きく、弾性板の形状に工夫を凝らすことにより、更に
高速度・高駆動力化が可能である。
(Problems to be Solved by the Invention) The ultrasonic motor using the above-mentioned vibrator has a large speed and driving force as compared with the ultrasonic motor using the conventional traveling wave, and the shape of the elastic plate is devised. It is possible to further increase the speed and driving force by making the

しかしながら、特にハイパワー励振時に於て圧電セラミ
ック板が圧電的に伸縮したとき、接着面にずれ応力が加
わるため圧電体が剥がれ易いといった欠点があった。
However, when the piezoelectric ceramic plate expands and contracts piezoelectrically during high-power excitation, a displacement stress is applied to the adhesive surface, and the piezoelectric body is easily peeled off.

また、長さ縦振動と幅屈曲振動という複数のモードの共
振周波数を一致させる必要があるために、振動子を設計
する際に自由度が小さく、実際に使用する共振モードで
ある長さ縦振動モード付近に複数の高次の長さ屈曲振動
によるスプリアス振動が発生し、これらのスプリアス振
動を抑える事は極めて難しかった。そのため自励式で駆
動することが困難であるといった欠点があった。
In addition, since it is necessary to match the resonance frequencies of multiple modes of length longitudinal vibration and width bending vibration, the degree of freedom when designing a vibrator is small, and the longitudinal longitudinal vibration that is the resonance mode actually used is It was extremely difficult to suppress these spurious vibrations due to the occurrence of spurious vibrations due to multiple high-order bending vibrations near the mode. Therefore, there is a drawback that it is difficult to drive by self-excitation.

(問題点を解決するための手段) 本発明に従った超音波モータは、矩形状の弾性板の主面
の長手方向にそって所定の間隔で設けられた複数の突起
部及び前記突起部間に挟持されかつ各突起部のみに接触
している圧電体とから構成される振動子と、前記振動子
に直接あるいは薄いシートを介して圧接された前記弾性
板の主面と平行な回転軸を有するロータとからなること
を特徴とする。また、その長さ方向縦振動の共振周波数
の電界を印加することによって屈曲振動変位を発生させ
て駆動することを特徴とする。
(Means for Solving Problems) An ultrasonic motor according to the present invention is provided with a plurality of protrusions provided at predetermined intervals along the longitudinal direction of the main surface of a rectangular elastic plate and between the protrusions. A vibrator composed of a piezoelectric body sandwiched between the piezoelectric body and only in contact with each protrusion, and a rotary shaft parallel to the main surface of the elastic plate pressed against the vibrator directly or through a thin sheet. And a rotor having the same. Further, it is characterized in that bending vibration displacement is generated and driven by applying an electric field having a resonance frequency of longitudinal vibration in the longitudinal direction.

(作用) 振動子を上記の構成とすることで、高速度かつ高駆動力
の超音波モータが実現できる。以下図面を参照しながら
説明する。
(Operation) By configuring the vibrator as described above, a high speed and high driving force ultrasonic motor can be realized. Hereinafter, description will be given with reference to the drawings.

第1図(a)は本発明における振動子の基本構成図であ
る。弾性板11に突起部12を設け、その間に圧電体13を挟
んでいる。この振動子には長さ方向縦振動1次モードの
共振周波数が存在するが、圧電体13にその共振周波数の
電界を印加すると、圧電体13で生じた歪と応力が突起部
12との接触面14から突起部12・弾性板11に伝わり結果と
して振動子全体が共振する。共振時の長さ方向の変位分
布を第1図(b)14に示す。この振動子は厚さ方向に対
して非対称であるために、長さ方向の伸び縮みに付随し
て、面の屈曲が発生する。この屈曲振動の変位分布を第
1図(b)15に示す。この屈曲振動は一般に非共振状態
であるために、共振状態での屈曲振動に比較してZ軸方
向の変位量は減少するが、モータとしての主な駆動源は
X軸方向の変位であるので屈曲振動は非共振状態で十分
である。
FIG. 1A is a basic configuration diagram of a vibrator according to the present invention. The elastic plate (11) is provided with a protrusion (12), and the piezoelectric body (13) is sandwiched between them. This resonator has a resonance frequency of the longitudinal longitudinal vibration first mode, but when an electric field of the resonance frequency is applied to the piezoelectric body 13, the strain and stress generated in the piezoelectric body 13 cause protrusions.
It is transmitted from the contact surface 14 with 12 to the projection 12 and the elastic plate 11, and as a result, the entire vibrator resonates. The displacement distribution in the length direction at resonance is shown in FIG. 1 (b) 14. Since this oscillator is asymmetric with respect to the thickness direction, the bending of the surface occurs accompanying the expansion and contraction in the length direction. The displacement distribution of this bending vibration is shown in FIG. 1 (b) 15. Since this flexural vibration is generally in the non-resonant state, the displacement amount in the Z-axis direction is smaller than that in the flexural vibration in the resonant state, but the main drive source as a motor is the displacement in the X-axis direction. The flexural vibration is sufficient in the non-resonant state.

本発明を用いると、圧電体13は接触面14を通して突起部
12とのみ接触しているため、構造上弾性体と圧電体の間
に全くずれ応力が発生する余地がない。従って圧電体13
が剥がれ難くなり、より大きなパワーでの振動が可能と
なる。
Using the present invention, the piezoelectric body 13 is projected through the contact surface 14
Since there is only contact with 12, there is no room for displacement stress to occur between the elastic body and the piezoelectric body due to the structure. Therefore, the piezoelectric body 13
Is less likely to come off, and it is possible to vibrate with greater power.

従来の縦屈曲多重モード振動子では2種類の振動モード
の共振周波数を一致させる必要があり、これらの共振周
波数は振動子の形状に大きく依存する。従って二つの異
なる共振周波数一致させるためには、振動子に対して厳
密な寸法が要求されるのみならず、振動子を構成する材
料の材料定数に関しても厳しい要求がある。従って、実
際に上記縦屈曲多重モード振動子を製造する場合は、二
つの共振モードの周波数調整が必要不可欠であった。こ
れに対して本発明の方法によれば、共振状態にある振動
モードは1種類だけであるので寸法の自由度がはるかに
大きいものになる。またスプリアス振動が本質的に少な
いために、使用共振モードにおいて自励発振が容易にな
る。
In the conventional longitudinal bending multimode oscillator, it is necessary to match the resonance frequencies of two kinds of vibration modes, and these resonance frequencies greatly depend on the shape of the oscillator. Therefore, in order to match two different resonance frequencies, not only strict dimensions are required for the oscillator, but also strict requirements are imposed on the material constants of the materials forming the oscillator. Therefore, when actually manufacturing the above-mentioned longitudinal bending multimode oscillator, frequency adjustment of the two resonance modes was indispensable. On the other hand, according to the method of the present invention, since there is only one type of vibration mode in the resonance state, the degree of freedom in dimension becomes much larger. Also, since spurious vibrations are essentially small, self-sustained pulsation becomes easy in the resonance mode used.

(実施例) 以下、本発明の実施例について図を参照しながら説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第2図は本発明の超音波モータの実施例の一つを示す図
で、これはシートフィーダ用超音波モータである。23は
ステンレスで作製された弾性板、24は弾性板23上に設け
られた突起部、25はPZT圧電セラミック板、26は銀の焼
き付け電極である。振動子の寸法は以下の通りである。
FIG. 2 is a diagram showing one embodiment of the ultrasonic motor of the present invention, which is an ultrasonic motor for a sheet feeder. Reference numeral 23 is an elastic plate made of stainless steel, 24 is a protrusion provided on the elastic plate 23, 25 is a PZT piezoelectric ceramic plate, and 26 is a silver baking electrode. The dimensions of the vibrator are as follows.

弾性板23は長さ102mm、幅9.5mm、厚さ2.0mm、突起部24
は長さ5mm、幅9.5mm、厚さ3.0mm、圧電セラミック板25
は長さ40mm、幅9.5mm、厚さ3.0mm、本振動子において長
さ方向縦振動の共振周波数は25kHzとなる。
Elastic plate 23 is 102 mm long, 9.5 mm wide, 2.0 mm thick, and protrusions 24
Is 5 mm in length, 9.5 mm in width, 3.0 mm in thickness, piezoelectric ceramic plate 25
Has a length of 40 mm, a width of 9.5 mm, and a thickness of 3.0 mm, and the resonance frequency of longitudinal vibration in this oscillator is 25 kHz.

弾性板25上部に薄い紙22を載せ、直径15mmのステンレス
製ローラ21を弾性体端面より30mmの位置に置き、このロ
ーラ21で紙22を圧接した。焼付け電極26から圧電セラミ
ック25に、25kHz・最高3kVp-p/cmの交流電界を印加した
ところローラ21は矢印27の方向に回転し、紙22は矢印28
の方向に進んだ。第5図に示すような従来型の縦屈曲多
重モード振動子を用いたシートフィーダ用超音波モータ
の場合、入力パワー10W以上では約1/3の振動子の圧電セ
ラミック52の剥離が生じたが、第2図の振動子の場合入
力パワー20Wでも圧電セラミックの剥離は起きなかっ
た。この様な大きなパワーで振動させることができるの
で、結果として、圧電セラミックの体積が同じ場合約2
倍の最高速度及び起動駆動力が得られた。
A thin paper 22 was placed on the elastic plate 25, a stainless roller 21 having a diameter of 15 mm was placed at a position 30 mm from the end face of the elastic body, and the paper 22 was pressed by this roller 21. When an alternating electric field of 25 kHz and a maximum of 3 kV pp / cm was applied from the baking electrode 26 to the piezoelectric ceramic 25, the roller 21 rotated in the direction of arrow 27, and the paper 22 indicated by arrow 28.
Went in the direction of. In the case of an ultrasonic motor for a sheet feeder using a conventional longitudinal bending multimode oscillator as shown in FIG. 5, about 1/3 of the piezoelectric ceramic 52 of the oscillator peeled off when the input power was 10 W or more. In the case of the vibrator shown in FIG. 2, peeling of the piezoelectric ceramic did not occur even with an input power of 20W. Since it is possible to vibrate with such a large power, as a result, when the volume of the piezoelectric ceramic is the same, about 2
Double maximum speed and starting drive force were obtained.

前記実施例では2個の突起部間に圧電セラミック板を挿
入したが、第3図に示すように3個以上の突起部を設け
た場合においても圧電セラミックの体積同一という条件
下で前記実施例と同様の結果が得られた。
In the above-mentioned embodiment, the piezoelectric ceramic plate is inserted between the two protrusions, but even when three or more protrusions are provided as shown in FIG. Similar results were obtained.

第4図は回転用モータとしての実施例の一つで、第2図
の紙を取り除き、弾性板42で直接ローラ41を回転させる
ものである。ロータの圧接力を10kgとしたときに、従来
よりある進行波を用いた円輪型超音波モータに比べて約
1.5倍の起動トルクが得られた。
FIG. 4 is one of the embodiments as a rotation motor, in which the paper in FIG. 2 is removed and the roller 41 is directly rotated by the elastic plate 42. When the pressure contact force of the rotor is set to 10 kg, it is about the same as the conventional circular ring type ultrasonic motor that uses traveling waves.
A 1.5 times higher starting torque was obtained.

(発明の効果) 以上述べたように、本発明によれば超音波エネルギーを
利用した薄型高駆動力のモータが実現でき、例えばプリ
ンタ、ファクシミリ等の紙送り機構の超薄型化が図れる
といった長所を有し、工業的価値が多大である。
(Effects of the Invention) As described above, according to the present invention, it is possible to realize a thin motor having a high driving force using ultrasonic energy, and it is possible to achieve an ultrathin paper feeding mechanism for a printer, a facsimile, or the like. And has a great industrial value.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明の基本構成図、第1図(b)は変
位分布、第2図から第4図は実施例構成図、第5図
(a)、(c)は従来型振動子の基本構成図、第5図
(b)、(d)は変位分布図である。 図において、 11,23,42,51は弾性板、12,24,43は突起部、13は圧電
体、25,44,52は圧電セラミック、26,45,53は銀の焼付け
電極、21,41はローラ、22,32は薄い紙、14は圧電体13と
突起部12の接触面、54は電極53と弾性板51主面の接触
面、15,16,55,56は変位分布、27はローラの回転方向、2
8は紙の進行方向をそれぞれ示す。
1 (a) is a basic configuration diagram of the present invention, FIG. 1 (b) is a displacement distribution, FIGS. 2 to 4 are configuration diagrams of an embodiment, and FIGS. 5 (a) and 5 (c) are conventional types. The basic configuration diagram of the vibrator and FIGS. 5B and 5D are displacement distribution diagrams. In the figure, 11,23,42,51 are elastic plates, 12,24,43 are protrusions, 13 is a piezoelectric body, 25,44,52 are piezoelectric ceramics, 26,45,53 are silver baking electrodes, 21, 41 is a roller, 22 and 32 are thin papers, 14 is a contact surface between the piezoelectric body 13 and the protrusion 12, 54 is a contact surface between the electrode 53 and the elastic plate 51 main surface, 15, 16, 55 and 56 are displacement distributions, 27 Is the direction of rotation of the roller, 2
8 indicates the traveling direction of the paper.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 貞行 東京都港区芝5丁目33番1号 日本電気株 式会社内 (72)発明者 内川 忠保 東京都港区芝5丁目33番1号 日本電気株 式会社内 (56)参考文献 実開 昭64−50696(JP,U) 信学技報Vol.87,No.46,P.29 〜36 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Sadayuki Takahashi 5-33-1 Shiba, Minato-ku, Tokyo Inside NEC Corporation (72) Inventor Tadaho Uchikawa 5-33-1, Shiba, Minato-ku, Tokyo Japan Inside the electric company (56) Bibliography Sho 64-50696 (JP, U) IEICE Technical Report Vol. 87, No. 46, p. 29 ~ 36

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】矩形状の弾性板の主面の長手方向にそって
所定の間隔で設けられた複数の突起部及び前記突起部間
に挟持されかつ各突起部のみに接触している圧電体とか
ら構成される振動子と、前記振動子に直接あるいは薄い
シートを介して圧接された前記弾性板の主面と平行な回
転軸を有するロータとからなることを特徴とする超音波
モータ。
1. A piezoelectric body sandwiched between a plurality of protrusions provided at a predetermined interval along the longitudinal direction of the main surface of a rectangular elastic plate and contacting only the respective protrusions. And an rotor having a rotation axis parallel to the main surface of the elastic plate, which is pressed against the vibrator directly or through a thin sheet.
【請求項2】矩形状の弾性板の主面の長手方向にそって
所定の間隔で設けられた複数の突起部及び前記突起部間
に挟持されかつ各突起部のみに接触している圧電体とか
ら構成される振動子と、前記振動子に直接あるいは薄い
シートを介して圧接された前記弾性板の主面と平行な回
転軸を有するロータとからなる超音波モータを、その長
さ方向縦振動の共振周波数の電界を印加することによっ
て屈曲振動変位を発生させて駆動することを特徴とする
超音波モータの駆動方法。
2. A plurality of protrusions provided at a predetermined interval along the longitudinal direction of the main surface of a rectangular elastic plate, and a piezoelectric body sandwiched between the protrusions and contacting only each protrusion. And a rotor having a rotation axis parallel to the main surface of the elastic plate, which is pressed against the vibrator directly or through a thin sheet, A method of driving an ultrasonic motor, characterized in that a bending vibration displacement is generated and driven by applying an electric field having a resonance frequency of vibration.
JP62281315A 1987-11-06 1987-11-06 Ultrasonic motor and its driving method Expired - Lifetime JPH0787709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62281315A JPH0787709B2 (en) 1987-11-06 1987-11-06 Ultrasonic motor and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281315A JPH0787709B2 (en) 1987-11-06 1987-11-06 Ultrasonic motor and its driving method

Publications (2)

Publication Number Publication Date
JPH01126178A JPH01126178A (en) 1989-05-18
JPH0787709B2 true JPH0787709B2 (en) 1995-09-20

Family

ID=17637382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281315A Expired - Lifetime JPH0787709B2 (en) 1987-11-06 1987-11-06 Ultrasonic motor and its driving method

Country Status (1)

Country Link
JP (1) JPH0787709B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389875A (en) * 1989-08-31 1991-04-15 Brother Ind Ltd Linear ultrasonic motor
KR100714729B1 (en) 2005-09-13 2007-05-07 엘지전자 주식회사 Power generating device and mobile terminal having the same and control method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230471A (en) * 1983-06-08 1984-12-25 Murata Mfg Co Ltd Surface wave motor
JPS6022481A (en) * 1983-07-18 1985-02-04 Shinsei Kogyo:Kk Stator of surface wave motor
JPS62147975A (en) * 1985-12-21 1987-07-01 Matsushita Electric Works Ltd Piezoelectric motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
信学技報Vol.87,No.46,P.29〜36

Also Published As

Publication number Publication date
JPH01126178A (en) 1989-05-18

Similar Documents

Publication Publication Date Title
JP3502161B2 (en) Vibration system for electrophotographic equipment
JPH0453786B2 (en)
JPH0787709B2 (en) Ultrasonic motor and its driving method
JP2646668B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JP2847758B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JP2605355B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JPH0732611B2 (en) Ultrasonic motor oscillator
JPH01264582A (en) Ultrasonic linear motor
JP2590536B2 (en) Ultrasonic motor
JPS63174581A (en) Oscillatory wave motor
JPH07107756A (en) Ultrasonic motor
JPH0669303B2 (en) Ultrasonic motor oscillator
JPS62277079A (en) Piezoelectric driving device
JPS62285834A (en) Paper feed device
JPS63294271A (en) Ultrasonic wave motor
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JPH074071B2 (en) Ultrasonic motor
JPH07337046A (en) Ultrasonic motor drive
JPH06169582A (en) Ultrasonic driving device
JPS63294272A (en) Driving method for ultrasonic wave motor
JPH01103176A (en) Supersonic motor and driving method therefor
JPS63290176A (en) Driving method for supersonic motor
JPH01117672A (en) Driving method for ultrasonic motor
JPH01110070A (en) Driving method for supersonic motor
JPH01110071A (en) Driving method for supersonic motor