JPH0787138B2 - Superconducting coil device - Google Patents

Superconducting coil device

Info

Publication number
JPH0787138B2
JPH0787138B2 JP62116833A JP11683387A JPH0787138B2 JP H0787138 B2 JPH0787138 B2 JP H0787138B2 JP 62116833 A JP62116833 A JP 62116833A JP 11683387 A JP11683387 A JP 11683387A JP H0787138 B2 JPH0787138 B2 JP H0787138B2
Authority
JP
Japan
Prior art keywords
superconducting
coil device
annular
oxide
annular conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62116833A
Other languages
Japanese (ja)
Other versions
JPS63283003A (en
Inventor
善則 白楽
久直 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62116833A priority Critical patent/JPH0787138B2/en
Publication of JPS63283003A publication Critical patent/JPS63283003A/en
Publication of JPH0787138B2 publication Critical patent/JPH0787138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物超電導セラミクスを利用した超電導装
置に関し、特に永久磁場を発生するに好適な超電導コイ
ル装置に関する。
TECHNICAL FIELD The present invention relates to a superconducting device using oxide superconducting ceramics, and more particularly to a superconducting coil device suitable for generating a permanent magnetic field.

〔従来の技術〕[Conventional technology]

Y−Ba−Cu系酸化物(Y:イットリウム、Ba:バリウム、C
u:銅)はTc≧90Kの高い転移温度Tcを有する酸化物超電
導材料である。このことは、フィジカル・レビュー・レ
ターズ(Physical Review Letters)58,pp908−910(19
87)において論じられている。この超電導材料は、酸化
性雰囲気においても高温まで安定で、超電導素子に適用
する場合には、信頼性が高く、また液体窒素温度レベル
に動作温度を設定できる可能性が述べられている。
Y-Ba-Cu based oxide (Y: yttrium, Ba: barium, C
u: copper) is an oxide superconducting material having a high transition temperature Tc of Tc ≧ 90K. This is due to Physical Review Letters 58, pp908-910 (19
87). It is described that this superconducting material is stable up to high temperatures even in an oxidizing atmosphere, has high reliability when applied to a superconducting element, and has the possibility of setting the operating temperature to the liquid nitrogen temperature level.

さて、Y−Ba−Cu系酸化物からなる超電導材料の線の製
法は、例えば銅や銀などの管に前記酸化物の粉末を充て
んし、これを熱処理することによって達成されている。
ところが、このようにして得られた線を用いてコイルを
作り、閉ループとするためには、必ず酸化物超電導体間
の接続が必要となる。この接続は、従来インジウムなど
を用いて行われていたが、その接続抵抗は完全に零とす
ることができないため、永久電流モードで前記超電導コ
イルを動作させることが難しかった。
Now, the method for producing a wire of a superconducting material made of a Y-Ba-Cu-based oxide is achieved by filling a tube of copper, silver or the like with the oxide powder and heat-treating the powder.
However, in order to form a coil using the wire thus obtained and form a closed loop, it is necessary to connect oxide superconductors. This connection was conventionally made using indium or the like, but since the connection resistance cannot be made completely zero, it was difficult to operate the superconducting coil in the permanent current mode.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、超電導セラミクス線の電気的接続の点
について配慮がされておらず、接続部で必ず有限の電気
抵抗が存在し、そのため完全に零抵抗で動作する超電導
コイルが得られないという問題があった。
The above-mentioned prior art does not consider the point of electrical connection of the superconducting ceramics wire, and there is always a finite electric resistance at the connecting portion, so that a superconducting coil that operates with completely zero resistance cannot be obtained. was there.

本発明の目的は、酸化物系の超電導セラミクスで構成す
る、完全に零抵抗で動作する超電導コイル装置を提供す
ることにある。
An object of the present invention is to provide a superconducting coil device which is composed of oxide-based superconducting ceramics and which operates with completely zero resistance.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明の超電導コイル装置
は、ペブロスカイト状結晶構造よりなる酸化物超電導材
料を複数配列してなる超電導コイル装置において、前記
酸化物超電導材料として、(L1-xBxx)CuOyであって、
0.4≦x≦0.7、y≦3、LはY及びLaなどのランタノイ
ド元素を用い、前記複数の超電導材料間の絶縁材料とし
て、前記酸化物超電導材料と同じ元素系であり、かつ他
の一つがSc、Y及びLaなどのランタノイド元素のうちの
一つからなるとともに同等のペブロスカイト状結晶構造
を有し、0≦x≦0.3、y≦3なるLリッチな化学量論
組成比をもつ材料を用いたことを特徴とするものであ
る。
In order to achieve the above object, the superconducting coil device of the present invention is a superconducting coil device in which a plurality of oxide superconducting materials having a perovskite crystal structure are arranged, as the oxide superconducting material, (L 1-x B xx ) CuOy,
0.4 ≦ x ≦ 0.7, y ≦ 3, L is a lanthanoid element such as Y and La, has the same element system as the oxide superconducting material as an insulating material between the plurality of superconducting materials, and another one is Uses a material that is composed of one of the lanthanoid elements such as Sc, Y, and La, has an equivalent perovskite crystal structure, and has an L-rich stoichiometric composition ratio of 0 ≦ x ≦ 0.3 and y ≦ 3. It is characterized by having been.

〔作用〕[Action]

ペブロスカイト状結晶構造よりなる酸化物超電導セラミ
クス材料を利用するものであって、この酸化物超電導材
料で複数の環状導体部を構成し、これらの環状導体群に
電流を流して永久磁場発生器にできるが、前記酸化物超
電導セラミクスの環状導体を、一体成形し、焼結、熱処
理を行なうので絶縁材も一体成形できる、又、それによ
って、前記環状導体は接続部がなく、完全に超電導体で
閉ループを形成できるので、電気抵抗が完全に零のコイ
ルを得ることができる。
An oxide superconducting ceramic material having a perovskite crystal structure is used. A plurality of annular conductor parts can be formed from this oxide superconducting material, and a current can be passed through these annular conductor groups to form a permanent magnetic field generator. However, since the annular conductor of the oxide superconducting ceramics is integrally molded, sintered, and heat-treated, the insulating material can be integrally molded, and thereby, the annular conductor has no connecting portion and is completely a superconductor in a closed loop. Can be formed, so that a coil having a completely zero electric resistance can be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。1a,1
b…は、ペロブスカイト状結晶構造をもつ酸化物超電導
セラミクス材料より構成された環状導体で、この実施例
においては円形状導体を示している。前記酸化物超電導
セラミクスは、(L1-xBax)CuOy(ここで0.4≦x≦0.7,
y3,LはSc,Y及びLaなどのランタノイド元素)なる化学
式で表わされる。これは、次のような方法で製造でき
る。例えば、(Y1-xBax)CuOyの場合には、酸化イット
リウム(Y2O3),炭酸バリウム(BaCO3),酸化第2銅
(CuO)の粉末を所望の化学量論組成比(0.4≦x≦0.
7)で混合し、この混合粉末を900℃,数時間,空気中で
反応させ、前記反応物を粉砕し、これを所望の環状導体
の形状に成形し、この成形物を950℃,数時間,酸化性
雰囲気中で焼結し、さらに600℃〜800℃,数十時間アニ
ール熱処理することで得られる。上記、粉末の成形,焼
結は、粉末を焼結する前の段階の有機のバインダーで固
めたグリーンシートを成形し焼結する方法が有望であ
る。2a,2b,…は、電気絶縁体であり、これらは、複数の
環状導体1a,1b,…の間の電気絶縁体として使用され、そ
の材質としてはガラス繊維強化エポキシ樹脂などのプラ
スチックス、あるいはアルミナ,ジルコニアなどのセラ
ミクスなどを用いることができる。
An embodiment of the present invention will be described below with reference to FIG. 1a, 1
b ... is a ring-shaped conductor made of an oxide superconducting ceramic material having a perovskite crystal structure, and in this embodiment, it is a circular conductor. The oxide superconducting ceramics is, (L 1-x B ax ) CuOy ( where 0.4 ≦ x ≦ 0.7,
y3, L are represented by chemical formulas such as Sc, Y and La). This can be manufactured by the following method. For example, in the case of (Y 1-x B ax) CuOy is yttrium oxide (Y 2 O 3), barium carbonate (BaCO 3), powder of the desired stoichiometric ratio of cupric oxide (CuO) ( 0.4 ≦ x ≦ 0.
Mix in 7), react this mixed powder in air at 900 ℃ for several hours, crush the reaction product, shape this into the shape of the desired annular conductor, and 950 ℃, this molding for several hours It can be obtained by sintering in an oxidizing atmosphere and annealing at 600 ℃ -800 ℃ for several tens of hours. As for the above-mentioned powder molding and sintering, a method of molding and sintering a green sheet which has been solidified with an organic binder at a stage before sintering the powder is promising. 2a, 2b, ... Are electrical insulators, and these are used as electrical insulators between the plurality of annular conductors 1a, 1b ,. The material is plastics such as glass fiber reinforced epoxy resin, or Ceramics such as alumina and zirconia can be used.

また、第1図では同一径の環状導体群のみを示したが、
径の異なる環状導体を組み合わせせもよい。
Further, although FIG. 1 shows only the annular conductor group having the same diameter,
Ring conductors having different diameters may be combined.

上記の説明では、環状導体1a,1b…及び電気絶縁体2a,2
b,…は、それぞれ別々に製造し、これらを組合わせるも
のである。このように、別々に製造し、組合せるのでな
く、環状導体1a,1b,…及び電気絶縁体2a,2b…を一体成
形し、焼結し、その後アニール熱処理を行い、複合環状
導体を得る方法について説明する。環状導体1a,1b,…の
材料組成としては、(Y1-xBax)CuOyを例にとって説明
する。先ず、酸化イットリウム(Y2O3),炭酸バリウム
(BaCO3),酸化第2銅(CuO)の粉末を超電導体となる
ための化学量論組成比(0.4≦x≦0.7)で混合し、この
混合粉末を900℃,数時間,空気中で反応させ、前記反
応物を粉砕し、反応粉末を準備する。次に、電気絶縁体
2a,2b,…の材料組成として、同じペロブスカイト状結晶
構造となり、かつ同じ元素系の(Y1-xBax)CuOyを選定
する。ここで、酸化イットリウム(Y2O3),炭酸バリウ
ム(BaCO3),酸化第2銅(CuO)の粉末を所望の化学量
論組成比(0≦x≦0.3)で混合し、この混合粉末を900
℃,数時間,空気中で反応させ、この反応物を粉砕し、
反応粉末を準備する。上記のように準備した酸化物超電
導体となる環状導体用の反応粉末と電気絶縁体となる反
応粉末を、所望量、順々に積層し、これをプレス成形
し、この成形物を950℃,数時間,酸化性雰囲気中で焼
結し、さらに600℃〜800℃で数十時間、酸化性雰囲気中
でアニール熱処理することで複数の超電導体の環状導体
と複数の電気絶縁体とからなる超電導コイルを得ること
ができる。前記超電導体となる環状導体は黒色を示し、
また前記電気絶縁体は緑色を示している。このように、
電気絶縁体も、同じペロブスカイト状結晶構造をもつも
ので構成すると、焼結温度,熱膨張率などが超電導体と
なる環状導体と同じになるので、製造し易く、かつ熱サ
イクルに対する安定性があるものができる。上記、超電
導体の環状導体と電気絶縁体の製法は、前記超電導体と
なる環状導体及び電気絶縁体のグリーンシート、すなわ
ち粉末を焼結する前の段階の有機のバインダーで固めた
ものを利用できることは言うまでもない。
In the above description, the annular conductors 1a, 1b ... And the electrical insulators 2a, 2
b, ... are manufactured separately and combined. In this way, the annular conductors 1a, 1b, ... And the electric insulators 2a, 2b ... are integrally molded, sintered, and then annealed and heat treated to obtain a composite annular conductor, instead of separately manufacturing and combining them. Will be described. Annular conductors 1a, 1b, ... as the material composition of the will be explained as an example (Y 1-x B ax) CuOy. First, powders of yttrium oxide (Y 2 O 3 ), barium carbonate (BaCO 3 ) and cupric oxide (CuO) are mixed in a stoichiometric composition ratio (0.4 ≦ x ≦ 0.7) for forming a superconductor, This mixed powder is reacted in air at 900 ° C. for several hours, and the reaction product is crushed to prepare a reaction powder. Then the electrical insulator
2a, 2b, ... as the material composition of, be the same perovskite-like crystal structure, and selecting (Y 1-x B ax) CuOy of the same element system. Here, powders of yttrium oxide (Y 2 O 3 ), barium carbonate (BaCO 3 ), cupric oxide (CuO) are mixed in a desired stoichiometric composition ratio (0 ≦ x ≦ 0.3), and the mixed powder The 900
Reaction in air at ℃ for several hours, crush the reaction product,
Prepare a reaction powder. The reaction powder for the annular conductor to be the oxide superconductor prepared as described above and the reaction powder to be the electrical insulator were laminated in the desired amount in order and press-molded, and the molded product was 950 ° C., Sintering for several hours in an oxidizing atmosphere, and then annealing heat treatment in an oxidizing atmosphere at 600 ° C to 800 ° C for several tens of hours to form a superconducting conductor consisting of multiple superconductor annular conductors and multiple electric insulators. A coil can be obtained. The annular conductor that is the superconductor shows a black color,
Further, the electric insulator shows a green color. in this way,
If the electric insulator also has the same perovskite-like crystal structure, the sintering temperature, the coefficient of thermal expansion, etc. will be the same as those of the annular conductor that will be the superconductor, so that it will be easy to manufacture and stable against heat cycles. I can do things. The manufacturing method of the annular conductor and the electric insulator of the superconductor can be the green sheet of the annular conductor and the electric insulator to be the superconductor, that is, the powder solidified by the organic binder before the sintering can be used. Needless to say.

次に、上記のようにして得られた超電導コイル群を励磁
する方法について説明する。
Next, a method of exciting the superconducting coil group obtained as described above will be described.

先ず、超電導体である環状導体に直接外部電源により通
電することで励磁する方法について第2図を用いて説明
する。環状導体1a,1b,…に、銅などの材料よりなる通電
端子3a,3b…及び4a,4b,…をインジウムなどの半田によ
って、超音波半田コテを用いて取り付けておく。さら
に、ヒータ5a,5b,…を前記通電端子3a,3b,…及び4a,4b,
…の間に前記環状導体と電気的には絶縁し、熱的には充
分接触させる。こうして、第3図に示すようにそれぞれ
の環状導体が直列になるように接続し、その両端に外部
電源6を接続する。ヒータ5a,5b,…は、図示しないヒー
タ用電源に接続される。環状導体の超電導転移温度はほ
ぼ90Kであるので、環状導体を図示しない冷却装置によ
り、90K以下の温度に冷却することで超電導状態に転移
させることができる。環状導体が全て超電導状態(電気
抵抗零)へ転移した後、ヒータ5a,5bに通電し、ヒータ
を取り付けた環状導体の一部分を90K以上の温度に加熱
し、この部分を常電導化する。このような状態で、外部
電源6により、直流電流を通電すると、この電流はそれ
ぞれ環状導体の部分のうち超電導状態にある部分のライ
ンに沿って流れる。この電流値を所望の数値となるまで
上昇させた後に、ヒータ5a,5bの通電を停止し、環状導
体のループ中のヒータ5a,5bを取り付けた部分の温度が
低下し、90K以下になると、この部分は超電導状態へ転
移し、環状導体に超電導ループ電流が生じる。このよう
にして、外部電源6から供給する電流を徐々に減少さ
せ、零にし、外部電源を取り除いたとしても、環状導体
は全て超電導状態にあるので、前記超電導ループ電流は
電気抵抗零の状態で流れ、永久電流モード状態となる。
First, a method for exciting a ring conductor, which is a superconductor, by directly energizing it with an external power source will be described with reference to FIG. Current-carrying terminals 3a, 3b ... And 4a, 4b, ... Made of a material such as copper are attached to the annular conductors 1a, 1b, ... With solder such as indium using an ultrasonic soldering iron. Further, the heaters 5a, 5b, ... Are connected to the energizing terminals 3a, 3b ,.
Between them, they are electrically insulated from the annular conductor and sufficiently contacted thermally. Thus, as shown in FIG. 3, the respective annular conductors are connected in series, and the external power source 6 is connected to both ends thereof. The heaters 5a, 5b, ... Are connected to a heater power source (not shown). Since the superconducting transition temperature of the annular conductor is approximately 90K, it can be transitioned to the superconducting state by cooling the annular conductor to a temperature of 90K or lower by a cooling device (not shown). After all the annular conductors have transitioned to the superconducting state (zero electrical resistance), the heaters 5a and 5b are energized to heat a part of the annular conductor to which the heaters are attached to a temperature of 90K or higher to make this part normal conductive. In this state, when a DC current is applied by the external power supply 6, the current flows along the line of the superconducting portion of the annular conductor. After increasing the current value to a desired value, the energization of the heaters 5a, 5b is stopped, the temperature of the portion of the loop of the annular conductor where the heaters 5a, 5b are attached decreases, and when it becomes 90K or less, This portion changes to a superconducting state, and a superconducting loop current is generated in the annular conductor. In this way, even if the current supplied from the external power supply 6 is gradually reduced to zero and the external power supply is removed, the annular conductors are all in the superconducting state, so that the superconducting loop current has a zero electric resistance. The current flows into the permanent current mode.

次に、超電導状態にある環状導体群に外部磁場発生マグ
ネットにより、誘導電流を発生させ励磁する方法を第4
図〜第6図により説明する。環状導体は、その超電導
転移温度より高い温度状態(T>Tc)に保ち、常電導状
態にしておく(第4図)。ここで、Tは環状導体の温
度、Tcは超電導転移温度を表わす。この状態で、外部磁
場発生マグネット7により、磁場分布8を発生させる。
次に、前記環状導体群を冷却し、その温度をTc以下に
する(T<Tc,第5図)。そうすると、環状導体群は超
電導状態になり、超電導体の特性の一つであるマイスナ
ー効果(完全反磁性効果)により、前記環状導体群の中
に磁束は入れないので、発生した一部磁束は、環状導体
群にトラップされる。最後に、外部磁場発生マグネッ
ト7の発生磁場を減少させ、零にする。この状態では、
複数の環状導体群1a,1b,…にトラップされた磁束9は超
電導体のマイスナー効果により、残留する(T<Tc,第
6図)。以上の方法により、複数の環状導体群を励磁す
ることができる。上記の方法では、外部磁場発生マグネ
ット7は、複数の環状導体群の外周側に配置したが、こ
れを内周側に配置しても、前記と同様に励磁できる。
Next, a method of generating an induced current by an external magnetic field generating magnet and exciting it in a ring-shaped conductor group in a superconducting state
This will be described with reference to FIGS. The annular conductor is maintained in a temperature state (T> Tc) higher than its superconducting transition temperature and kept in a normal conducting state (Fig. 4). Here, T represents the temperature of the annular conductor, and Tc represents the superconducting transition temperature. In this state, the magnetic field distribution 8 is generated by the external magnetic field generating magnet 7.
Next, the annular conductor group is cooled and the temperature thereof is set to Tc or lower (T <Tc, FIG. 5). Then, the annular conductor group becomes a superconducting state, and due to the Meissner effect (complete diamagnetic effect), which is one of the characteristics of the superconductor, the magnetic flux cannot enter the annular conductor group, so the generated partial magnetic flux is It is trapped in the ring conductor group. Finally, the magnetic field generated by the external magnetic field generating magnet 7 is reduced to zero. In this state,
The magnetic flux 9 trapped in the plurality of annular conductor groups 1a, 1b, ... Remains due to the Meissner effect of the superconductor (T <Tc, FIG. 6). By the above method, a plurality of annular conductor groups can be excited. In the above method, the external magnetic field generating magnet 7 is arranged on the outer peripheral side of the plurality of annular conductor groups, but even if it is arranged on the inner peripheral side, it can be excited in the same manner as described above.

最後に、超電導体となる環状導体群の冷却方法について
第7図で説明する。例えば、 Y1-xBaxCuOy(x0.6,Y3)のセラミクスの場合、超
電導臨界温度は約93Kである。そのため、環状導体群を
前記温度より低い状態に冷却する必要がある。そこで、
前記環状導体群をギフォード・マクマホンサイクル,ソ
ルベーサイクル,スターリングサイクルなどで動作する
小型ヘリウムガス冷凍機で直接冷却する方法を示す。環
状導体群10は、ヘリウムガス11で満された熱伝導容器12
の中に収納する。13は、支持体である。前記熱伝導容器
12は、良熱伝導性の材料で構成することが望ましい、熱
伝導容器12は、小型冷凍機14のコールドヘッド15の先端
に充分熱的にも接続できるように取り付けられる。前記
熱伝導容器12及びコールドヘッド15は、断熱とための真
空層16を保つために、真空容器17の中に収納される。こ
れにより、冷凍機14の運転により、そのコールドヘッド
15を介して、良熱伝導用ガスとしてのヘリウムガス11を
含む熱伝導容器12によって、前記コールドヘッド15の温
度と、被冷却物体である環状導体群10の温度とほぼ同一
温度に維持することができる。18,19はそれぞれ環状導
体群への通電用のリード線18を熱伝導容器12構ら真空層
16へ、及び真空層16から外部へ導出するためのハーメチ
ックシールである。21,22は、冷凍機14の図示しない外
部コンプレッサーに接続される管の接続用コネクターで
ある。また、環状導体群10により発生された磁場は、磁
場利用空間23でいろいろと利用できることは言うまでも
ない。また、前記環状導体群は、通常の液体窒素などの
冷媒を用いて冷却できることは言うまでもない。
Finally, a method for cooling the annular conductor group that will be the superconductor will be described with reference to FIG. For example, Y 1-x B ax CuOy (x0.6, Y3) For ceramics, the superconducting critical temperature is about 93K. Therefore, it is necessary to cool the annular conductor group to a temperature lower than the above temperature. Therefore,
A method of directly cooling the annular conductor group with a small helium gas refrigerator operating in a Gifford-McMahon cycle, a solve cycle, a Stirling cycle, etc. will be described. The ring-shaped conductor group 10 is a heat conduction container 12 filled with helium gas 11.
To store in. 13 is a support. The heat transfer container
It is desirable that 12 is made of a material having good heat conductivity. The heat conducting container 12 is attached to the tip of the cold head 15 of the small refrigerator 14 so that it can be sufficiently thermally connected. The heat transfer container 12 and the cold head 15 are housed in a vacuum container 17 in order to keep a vacuum layer 16 for heat insulation. This allows the cold head to be operated by operating the refrigerator 14.
The temperature of the cold head 15 and the temperature of the annular conductor group 10, which is the object to be cooled, are maintained at approximately the same temperature by the heat conduction container 12 containing the helium gas 11 as the good heat conduction gas through You can 18 and 19 are lead wires 18 for energizing the annular conductor group, respectively, and 12 layers of heat-conducting containers and vacuum layers.
A hermetic seal for leading out to and from the vacuum layer 16. Reference numerals 21, 22 are connectors for connecting pipes connected to an external compressor (not shown) of the refrigerator 14. Needless to say, the magnetic field generated by the annular conductor group 10 can be used in various ways in the magnetic field utilization space 23. Needless to say, the ring-shaped conductor group can be cooled by using a normal refrigerant such as liquid nitrogen.

〔発明の効果〕〔The invention's effect〕

本発明によれば、超電導体間の電気的接続を全く必要と
しなく、また、絶縁材を一体成形できるので、永久電流
モード状態で安定に利用できる小形の超電導コイル装置
を提供できる効果がある。
According to the present invention, it is possible to provide a small-sized superconducting coil device which can be stably used in a permanent current mode state because an insulating material can be integrally molded without requiring any electrical connection between superconductors.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は夫々本発明の実施例に係る超電導コ
イル装置の斜視図、第3図は本発明の一実施例の装置に
おける環状導体群を励磁するための電気的接続図、第4
図,第5図,第6図は夫々第3図の実施例の装置の動作
原理を説明する図、第7図は、第3図の実施例の装置の
冷却部の断面図である。 1a,1b……酸化物超電導セラミクス材料製環状導体、2a,
2b……電気絶縁体製環状導体。
1 and 2 are perspective views of a superconducting coil device according to an embodiment of the present invention, and FIG. 3 is an electrical connection diagram for exciting a ring conductor group in the device of an embodiment of the present invention. Four
FIGS. 5, 5 and 6 are views for explaining the operating principle of the apparatus of the embodiment of FIG. 3, and FIG. 7 is a sectional view of the cooling part of the apparatus of the embodiment of FIG. 1a, 1b …… Round conductor made of oxide superconducting ceramics material, 2a,
2b …… A ring conductor made of electrical insulator.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ペブロスカイト状結晶構造よりなる酸化物
超電導材料を複数配列してなる超電導コイル装置におい
て、前記酸化物超電導材料として、(L1-xBxx)CuOyで
あって、0.4≦x≦0.7、y≦3、LはY及びLaなどのラ
ンタノイド元素を用い、前記複数の超電導材料間の絶縁
材料として、前記酸化物超電導材料と同じ元素系であ
り、かつ他の一つがSc、Y及びLaなどのランタノイド元
素のうちの一つからなるとともに同等のペブロスカイト
状結晶構造を有し、0≦x≦0.3、y≦3なるLリッチ
な化学量論組成比をもつ材料を用いたことを特徴とする
超電導コイル装置。
1. A superconducting coil device in which a plurality of oxide superconducting materials each having a perovskite crystal structure are arranged, wherein (L 1-x B xx ) CuOy is 0.4 ≦ x ≦ as the oxide superconducting material. 0.7, y ≦ 3, L are lanthanoid elements such as Y and La, have the same element system as the oxide superconducting material as an insulating material between the plurality of superconducting materials, and the other one is Sc, Y and Characterized by using a material consisting of one of the lanthanoid elements such as La and having an equivalent perovskite crystal structure and having an L-rich stoichiometric composition ratio of 0 ≦ x ≦ 0.3, y ≦ 3 And superconducting coil device.
【請求項2】前記酸化物超電導材料が環状のものであっ
て、該環状導体の一部だけを常電導化するためのヒータ
を設け、前記常電導化された環状導体の領域の両端に通
電するための電極端を設けたことを特徴とする特許請求
の範囲第1項に記載の超電導コイル装置。
2. The oxide superconducting material is annular, and a heater is provided for normalizing only a part of the annular conductor, and current is applied to both ends of the region of the normally conducting annular conductor. The superconducting coil device according to claim 1, further comprising: an electrode end for performing the operation.
【請求項3】前記酸化物超電導材料が環状のものであっ
て、前記酸化物超電導材料をヘリウムガスを充填した熱
伝導容器中に収納し、前記ヘリウムガスの熱伝導によ
り、主に冷却することを特徴とする特許請求の範囲第1
項に記載の超電導コイル装置。
3. The oxide superconducting material is annular, and the oxide superconducting material is housed in a heat conduction container filled with helium gas, and is cooled mainly by heat conduction of the helium gas. Claim 1 characterized by
A superconducting coil device according to item.
【請求項4】前記熱伝導容器をギフォードマクマホンサ
イクルなどで動作する小型ガス冷凍機のコールドヘッド
に直接取付け、冷却することを特徴とする特許請求の範
囲第3項に記載の超電導コイル装置。
4. The superconducting coil device according to claim 3, wherein the heat conduction container is directly mounted on a cold head of a small gas refrigerator operating in a Gifford McMahon cycle or the like and cooled.
JP62116833A 1987-05-15 1987-05-15 Superconducting coil device Expired - Lifetime JPH0787138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62116833A JPH0787138B2 (en) 1987-05-15 1987-05-15 Superconducting coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62116833A JPH0787138B2 (en) 1987-05-15 1987-05-15 Superconducting coil device

Publications (2)

Publication Number Publication Date
JPS63283003A JPS63283003A (en) 1988-11-18
JPH0787138B2 true JPH0787138B2 (en) 1995-09-20

Family

ID=14696753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62116833A Expired - Lifetime JPH0787138B2 (en) 1987-05-15 1987-05-15 Superconducting coil device

Country Status (1)

Country Link
JP (1) JPH0787138B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316408A (en) * 1987-06-18 1988-12-23 Yokogawa Medical Syst Ltd Superconducting electromagnet and its manufacture
JPH0782939B2 (en) * 1989-01-20 1995-09-06 新日本製鐵株式会社 Magnet using oxide superconductor and method for manufacturing the same
US7667562B1 (en) * 1990-02-20 2010-02-23 Roy Weinstein Magnetic field replicator and method
JP4317646B2 (en) * 2000-06-26 2009-08-19 独立行政法人理化学研究所 Nuclear magnetic resonance apparatus
JP4806742B2 (en) * 2005-11-07 2011-11-02 アイシン精機株式会社 Magnetic field generator and nuclear magnetic resonance apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268204A (en) * 1987-04-24 1988-11-04 Furukawa Electric Co Ltd:The Superconducting magnet

Also Published As

Publication number Publication date
JPS63283003A (en) 1988-11-18

Similar Documents

Publication Publication Date Title
US5565763A (en) Thermoelectric method and apparatus for charging superconducting magnets
CN88102434A (en) Superconducting device
JPH11144938A (en) Current lead device and refrigerator-cooled superconducting magnet
EP0284062B2 (en) Ceramic oxide superconductive composite material
JP2909212B2 (en) Composite lead for conducting current between a temperature of 75-80K and a temperature of 4.5K
Tomita et al. Generation of 21.5 T by a superconducting magnet system using a Bi2Sr2CaCu2O x/Ag coil as an insert magnet
Jin et al. Measurement of persistent current in a Gd123 coil with a superconducting joint fabricated by the CJMB method
JPH0787138B2 (en) Superconducting coil device
KR101343887B1 (en) Splicing method for superconductive wires containing mg and b
US5262398A (en) Ceramic oxide superconductive composite material
EP0428993B2 (en) Use of an oxide superconducting conductor
JP3450318B2 (en) Thermoelectric cooling type power lead
JPH11340533A (en) High-temperature superconducting coil persistent current switch
JP2007093059A (en) Cooling method using nitrogen-oxygen mixed refrigerant
JPH10316421A (en) Superconductor
JP2002289049A (en) Low-resistance conductor and its manufacturing method, and electric member using them
JPH103829A (en) Manufacture of superconducting tape material
JPH1027928A (en) Superconductive coil with permanent current switch and its manufacturing method
JPH06349628A (en) Composite superconducting magnet device and composite superconductor
JP2569335B2 (en) Method for manufacturing superconducting wire
JP2519773B2 (en) Superconducting material
JPS63307622A (en) Manufacture of superconductive wire
Beales et al. Review of conductor development for use in high-temperature superconducting cables
US5183970A (en) Oriented superconductors for AC power transmission
JP2892418B2 (en) Metal-oxide superconductor composite and method for producing the same