JPH0786626A - Thin-film solar cell in which optical confinement structure is formed on surface of glass substrate and manufacture thereof - Google Patents

Thin-film solar cell in which optical confinement structure is formed on surface of glass substrate and manufacture thereof

Info

Publication number
JPH0786626A
JPH0786626A JP5184329A JP18432993A JPH0786626A JP H0786626 A JPH0786626 A JP H0786626A JP 5184329 A JP5184329 A JP 5184329A JP 18432993 A JP18432993 A JP 18432993A JP H0786626 A JPH0786626 A JP H0786626A
Authority
JP
Japan
Prior art keywords
glass substrate
tool
solar cell
ultrasonic
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5184329A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hayashi
和行 林
Kinya Miyashita
欣也 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOUZOU KAGAKU KK
SOZO KAGAKU KK
Original Assignee
SOUZOU KAGAKU KK
SOZO KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOUZOU KAGAKU KK, SOZO KAGAKU KK filed Critical SOUZOU KAGAKU KK
Priority to JP5184329A priority Critical patent/JPH0786626A/en
Publication of JPH0786626A publication Critical patent/JPH0786626A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain the state of a specular surface, and to form optical an confinement structure on the surface of a glass substrate by ultrasonic-machining the surface of the glass substrate, transferring the shape of the machining surface of a tool and heating and melting the machining surface at a point close to a glass softening point. CONSTITUTION:A tool 2 with a plurality of continuous grooves or other three- dimensional-shaped projections is mounted on the machining surface of an ultrasonic horn. An ultrasonic vibrator 3 is driven, and the ultrasonic horn 1 and the tool 2 are given ultrasonic vibrations of 15-40KHz. The tool 2 is pushed against the surface of a glass substrate 4 while a section between the tool 2 and the glass substrate 4 is supplied with slurry containing the free abrasive grains 5 of gain size of 1000 (mean grain size of l0mum, maximum grain size of 30mum)-grain size of 8000 (mean grain size of 1mum, maximum grain size of 6mum). The surface of the glass substrate 4 is heated. Accordingly, a thin-film solar cell is formed onto the machining surface of the completed glass substrate 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アモルファスシリコン
太陽電池、化合物半導体太陽電池などの薄膜太陽電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to thin film solar cells such as amorphous silicon solar cells and compound semiconductor solar cells.

【0002】[0002]

【従来の技術】従来、太陽電池のエネルギー変換効率を
高める手段の一つとして、太陽電池表面の形状操作がお
こなわれている。これは、太陽電池表面に光閉じ込め構
造を形成して反射損失を低減しようとするもので、太陽
電池の種類によって次のような方法がある。 (イ)単結晶シリコン太陽電池 異方性エッチングにより、シリコン表面に多数のピラミ
ッド形状を形成する。 (ロ)多結晶シリコン太陽電池 上記単結晶シリコンのような異方性エッチングによる形
状操作が不可能であるため、砥石による研削加工が試み
られている。また、ウエハー化した多結晶シリコンを再
溶融、再結晶させた後、異方性エッチングにより表面を
加工する方法もある。
2. Description of the Related Art Conventionally, the shape of the surface of a solar cell has been manipulated as one means for increasing the energy conversion efficiency of the solar cell. This aims to reduce the reflection loss by forming a light confinement structure on the surface of the solar cell, and there are the following methods depending on the type of the solar cell. (A) Single crystal silicon solar cell A large number of pyramid shapes are formed on the silicon surface by anisotropic etching. (B) Polycrystalline silicon solar cell Since it is impossible to manipulate the shape by anisotropic etching like the above-mentioned single crystal silicon, grinding work with a grindstone has been attempted. In addition, there is also a method in which the polycrystalline silicon made into a wafer is remelted and recrystallized, and then the surface is processed by anisotropic etching.

【0003】[0003]

【発明が解決しようとする課題】しかし、アモルファス
シリコンや化合物半導体による薄膜太陽電池は、その膜
厚が1μm〜数μmしかないため、結晶系太陽電池のよ
うな表面の形状操作は非常に困難であった。そのため、
薄膜太陽電池において容易に光閉じ込め構造を形成する
方法が望まれていた。
However, since a thin film solar cell made of amorphous silicon or a compound semiconductor has a film thickness of only 1 μm to several μm, it is very difficult to manipulate the surface shape like a crystalline solar cell. there were. for that reason,
A method for easily forming an optical confinement structure in a thin film solar cell has been desired.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題を解
決するするためになされたもので、以下の手段より構成
されている。すなわち、薄膜太陽電池の製造において、 (イ)超音波ホーンの加工面上に連続した複数のV溝ま
たはピラミッド形状などの三次元形状の突起を有する工
具を取り付ける。 (ロ)超音波振動子3を駆動し、超音波ホーンおよび工
具に15〜40kHzの超音波振動をあたえる。 (ハ)粒度1000番(平均粒径10μm、最大粒径3
0μm)〜8000番(平均粒径1μm、最大粒径6μ
m)の遊離砥粒を含むスラリーを工具とガラス基板の間
に供給しながら、工具をガラス基板の表面に押し付け
る。 (ニ)ガラス基板の加工面を加熱する。加熱方法は、加
工形状に合わせた金型をガラスの軟化点付近に加熱し
て、真空または不活性雰囲気中でガラス基板の加工面に
接触させたり、エネルギービームを用いて基板の加工面
の表層部のみを加熱したり、あるいはバーナーや加熱炉
を用いたりする。 以上、完成したガラス基板の加工面上に薄膜太陽電池を
形成する。
The present invention has been made to solve the above problems, and is constituted by the following means. That is, in the manufacture of a thin film solar cell, (a) a tool having a plurality of continuous V-shaped grooves or a projection having a three-dimensional shape such as a pyramid shape is attached on the processed surface of the ultrasonic horn. (B) The ultrasonic vibrator 3 is driven to apply ultrasonic vibration of 15 to 40 kHz to the ultrasonic horn and the tool. (C) Particle size 1000 (average particle size 10 μm, maximum particle size 3
0 μm to 8000 (average particle size 1 μm, maximum particle size 6 μm
While supplying the slurry containing the loose abrasive grains of m) between the tool and the glass substrate, the tool is pressed against the surface of the glass substrate. (D) The processed surface of the glass substrate is heated. The heating method is to heat the mold according to the processing shape near the softening point of the glass and bring it into contact with the processing surface of the glass substrate in a vacuum or an inert atmosphere, or use the energy beam to form the surface layer of the processing surface of the substrate. Heat only the part, or use a burner or heating furnace. As described above, the thin film solar cell is formed on the processed surface of the completed glass substrate.

【0005】[0005]

【作用】上記手段(イ)〜(ハ)により、ガラス基板の
表面には超音波加工が施され、工具の加工面の形状が転
写される。この段階ではガラス基板の加工面は砥粒痕が
残っているが、手段(ニ)によってガラス基板の表面は
溶融し、砥粒痕が消えて再び鏡面の状態にもどる。すな
わち、ガラス基板の表面に光閉じ込め構造が形成され
る。そして、このガラス基板表面に加工されたV溝やピ
ラミッド型などの形状に添って薄膜太陽電池が形成され
るので、結局、薄膜太陽電池においても結晶系太陽電池
と同様の光閉じ込め構造が実現できたことになる。
With the above means (a) to (c), the surface of the glass substrate is ultrasonically machined to transfer the shape of the machined surface of the tool. At this stage, abrasive grain marks remain on the processed surface of the glass substrate, but the surface of the glass substrate is melted by the means (d), the abrasive grain marks disappear, and the state returns to a mirror state. That is, a light confinement structure is formed on the surface of the glass substrate. Then, since the thin film solar cell is formed along the shape of the V groove or pyramid shape processed on the surface of the glass substrate, an optical confinement structure similar to that of the crystalline solar cell can be finally realized in the thin film solar cell. It will be.

【0006】[0006]

【実施例1】本発明の実施例1について図面に基づき説
明する。図1において、 (イ)超音波ホーン1に加工面上に連続した複数のV溝
を有する工具2を取り付ける。V溝は、ピッチ140μ
m(図2のp寸法)、高さ45μm(図2のh寸法)、
加工面積400mmである。 (ロ)超音波振動子3を300Wで駆動し、超音波ホー
ン1および工具2に28kHzの超音波振動をあたえ
る。 (ハ)直径20mm、厚さ0.3mmのガラス基板4と
工具2の間に、粒度2500番(平均粒径5.5μm、
最大粒径16μm)の遊離砥粒5を含むスラリーを供給
しながら工具2をガラス基板4の表面に押し付ける。 (ニ)工具2と同形状の金型を820℃に加熱して、真
空中でガラス基板の加工面に接触させた。 以上の方法により、ガラス基板4の表面全域にピッチ1
40μm、高さ45μmのV溝が形成できた。図2に示
すとおり、このガラス基板4のV溝加工が施された面の
上に透明導電膜6、p型アモルファスシリコン層7、i
型アモルファスシリコン層8、n型アモルファスシリコ
ン層9、金属膜10を順次積層し、アモルファスシリコ
ン太陽電池を形成したところ13%を上回るエネルギー
変換効率が得られた。
First Embodiment A first embodiment of the present invention will be described with reference to the drawings. In FIG. 1, (a) the ultrasonic horn 1 is attached with a tool 2 having a plurality of continuous V grooves on the processing surface. V groove has a pitch of 140μ
m (p dimension in FIG. 2), height 45 μm (h dimension in FIG. 2),
The processing area is 400 mm 2 . (B) The ultrasonic vibrator 3 is driven at 300 W, and ultrasonic vibration of 28 kHz is applied to the ultrasonic horn 1 and the tool 2. (C) Between the glass substrate 4 having a diameter of 20 mm and a thickness of 0.3 mm and the tool 2, a grain size of 2500 (average grain size of 5.5 μm,
The tool 2 is pressed against the surface of the glass substrate 4 while supplying a slurry containing loose abrasive grains 5 having a maximum grain size of 16 μm. (D) A mold having the same shape as the tool 2 was heated to 820 ° C. and brought into contact with the processed surface of the glass substrate in vacuum. By the above method, the pitch 1 is formed on the entire surface of the glass substrate 4.
A V groove having a height of 40 μm and a height of 45 μm could be formed. As shown in FIG. 2, the transparent conductive film 6, the p-type amorphous silicon layer 7, i on the V-grooved surface of the glass substrate 4.
Type amorphous silicon layer 8, n-type amorphous silicon layer 9, and metal film 10 were sequentially laminated to form an amorphous silicon solar cell, and energy conversion efficiency exceeding 13% was obtained.

【0007】[0007]

【実施例2】次に、本発明の実施例2について説明す
る。本実施例においては、上記実施例1で使用したV溝
を有する工具2にかわり、多数のピラミッド状の突起を
有する工具11を用いてガラス基板に超音波加工をおこ
ない、以下、上記実施例1と全く同じ工程でガラス基板
上にアモルファスシリコン太陽電池を形成したところ、
やはり13%を上回るエネルギー変換効率が得られた。
尚、ピラミッド状の突起を有する工具11は、加工面積
400mm、ピラミッドの底辺の長さは70μm、高
さは35μmとした。
Second Embodiment Next, a second embodiment of the present invention will be described. In this embodiment, instead of the tool 2 having the V-groove used in the first embodiment, a tool 11 having a large number of pyramid-shaped protrusions is used to perform ultrasonic processing on a glass substrate. When an amorphous silicon solar cell was formed on a glass substrate in the same process as
Again, energy conversion efficiencies above 13% were obtained.
The tool 11 having the pyramid-shaped protrusions had a processing area of 400 mm 2 , a base length of the pyramid of 70 μm, and a height of 35 μm.

【0008】[0008]

【発明の効果】上記の如く、超音波加工によりガラス基
板上に光閉じ込め構造を形成することができたため、太
陽電池の核となる半導体薄膜に特殊な操作を加えること
無しに、光閉じ込め構造をもった薄膜太陽電池を容易に
製造することができた。すなわち、製造コストが低いと
いう薄膜太陽電池の特長を生かしたまま、そのエネルギ
ー変換効率を高めることができた。
As described above, since the light confining structure can be formed on the glass substrate by the ultrasonic processing, the light confining structure can be formed without applying a special operation to the semiconductor thin film which is the nucleus of the solar cell. It was possible to easily manufacture a thin-film solar cell having the same. That is, the energy conversion efficiency of the thin-film solar cell could be increased while making the most of the advantage of the thin-film solar cell that the manufacturing cost is low.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超音波加工方法の説明図である。FIG. 1 is an explanatory view of an ultrasonic processing method of the present invention.

【図2】V溝およびピラミッド状の突起の説明図であ
る。
FIG. 2 is an explanatory diagram of a V groove and a pyramid-shaped protrusion.

【図3】ガラス基板表面に光閉じ込め構造を形成した薄
膜太陽電池断面の説明図である。
FIG. 3 is an explanatory view of a cross section of a thin film solar cell in which a light confining structure is formed on the surface of a glass substrate.

【符号の説明】[Explanation of symbols]

1…超音波ホーン、 2…V溝を有する工具、 3…超
音波振動子、4…ガラス基板、 5…遊離砥粒ン、 6
…透明導電膜、7…p型アモルファスシリコン層、 8
…i型アモルファスシリコン層、9…n型アモルファス
シリコン層、 10…金属膜、11…V溝、12…ピラ
ミッド状の突起
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic horn, 2 ... Tool which has V groove, 3 ... Ultrasonic vibrator, 4 ... Glass substrate, 5 ... Free abrasive grain, 6
... transparent conductive film, 7 ... p-type amorphous silicon layer, 8
... i-type amorphous silicon layer, 9 ... n-type amorphous silicon layer, 10 ... metal film, 11 ... V groove, 12 ... pyramidal protrusion

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】薄膜太陽電池の製造において、 (イ)超音波ホーンの加工面上に連続した複数のV溝、
またはその他三次元形状の突起を有する工具を取り付け
る。 (ロ)超音波振動子を駆動し、超音波ホーンおよび工具
に15〜40kHzの超音波振動をあたえる。 (ハ)粒度1000番(平均粒径10μm、最大粒径3
0μm)〜8000番(平均粒径1μm、最大粒径6μ
m)の遊離砥粒を含むスラリーを工具とガラス基板の間
に供給しながら、工具をガラス基板の表面に押し付け
る。 (ニ)ガラス基板の表面を加熱する。 (ホ)上記ガラス基板の加工面上に薄膜太陽電池を形成
する 以上の如く構成されたことを特徴とするガラス基板表面
に光閉じ込め構造を形成した薄膜太陽電池とその製造方
1. In the production of a thin-film solar cell, (a) a plurality of V-grooves which are continuous on the processed surface of an ultrasonic horn,
Alternatively, a tool having a projection with a three-dimensional shape is attached. (B) The ultrasonic vibrator is driven, and ultrasonic vibration of 15 to 40 kHz is given to the ultrasonic horn and the tool. (C) Particle size 1000 (average particle size 10 μm, maximum particle size 3
0 μm to 8000 (average particle size 1 μm, maximum particle size 6 μm
While supplying the slurry containing the loose abrasive grains of m) between the tool and the glass substrate, the tool is pressed against the surface of the glass substrate. (D) The surface of the glass substrate is heated. (E) Forming a thin film solar cell on the processed surface of the glass substrate A thin film solar cell having an optical confinement structure formed on the surface of the glass substrate having the above-mentioned structure, and a method for manufacturing the same
JP5184329A 1993-06-17 1993-06-17 Thin-film solar cell in which optical confinement structure is formed on surface of glass substrate and manufacture thereof Pending JPH0786626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5184329A JPH0786626A (en) 1993-06-17 1993-06-17 Thin-film solar cell in which optical confinement structure is formed on surface of glass substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5184329A JPH0786626A (en) 1993-06-17 1993-06-17 Thin-film solar cell in which optical confinement structure is formed on surface of glass substrate and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0786626A true JPH0786626A (en) 1995-03-31

Family

ID=16151418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5184329A Pending JPH0786626A (en) 1993-06-17 1993-06-17 Thin-film solar cell in which optical confinement structure is formed on surface of glass substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0786626A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100679797B1 (en) * 2004-08-20 2007-02-07 전주선 Ultrasonic waves soldering apparatus for soldering of glass material
JP2008153570A (en) * 2006-12-20 2008-07-03 Sharp Corp Base body of solar cell, method of manufacturing the same, and solar cell module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100679797B1 (en) * 2004-08-20 2007-02-07 전주선 Ultrasonic waves soldering apparatus for soldering of glass material
JP2008153570A (en) * 2006-12-20 2008-07-03 Sharp Corp Base body of solar cell, method of manufacturing the same, and solar cell module

Similar Documents

Publication Publication Date Title
TWI321828B (en) Manufacturing method of a semiconductor device
US20040050483A1 (en) Method of fabricating substrates, in partictular for optics, electronics or optoelectronics
US6110391A (en) Method of manufacturing a bonding substrate
US20050170616A1 (en) Wafer dividing method
JPH07120810B2 (en) Method for producing large-area silicon crystal body for solar cell
JP2002324768A (en) Substrate cutting method
JP4938449B2 (en) Diamond wafer assembly for use in a method of processing a single crystal diamond substrate
US6660643B1 (en) Etching of semiconductor wafer edges
CN112620947B (en) Laser preparation method of vein bionic surface diamond cutting tool
JPWO2020136624A5 (en)
JPH0786626A (en) Thin-film solar cell in which optical confinement structure is formed on surface of glass substrate and manufacture thereof
EP1537258B9 (en) Method of fabricating substrates, in particular for optics, electronics or optoelectronics----------------------------------------
CN111441072A (en) Method for producing crystal grains by cutting crystal grains first and then electroplating on two sides
CN114415277B (en) Method for preparing soft X-ray-extreme ultraviolet transmission grating on diamond film
CN114227555B (en) Method for manufacturing chemical mechanical polishing trimmer
EP0300224B2 (en) Strainless precision after-treatment process by radical reaction
Friedmann et al. Laser wafering for silicon solar.
US11077525B2 (en) Method of processing a silicon carbide containing crystalline substrate, silicon carbide chip, and processing chamber
JPH0529238A (en) Dopant thermal diffusion device
CN112658968B (en) Wafer grinding device based on laser in-situ assistance
JPS60117688A (en) Manufacture of amorphous solar cell
JP2795980B2 (en) High precision plane processing method
JPH09148603A (en) Solar battery and its manufacture
JPH05129639A (en) Solar cell and manufacture thereof
CN115083896A (en) Multilayer modification method and device for silicon carbide wafer ingot cutting wafer