JPH0786034A - Magnetoresistive material and electromagnetic sensor using the same - Google Patents

Magnetoresistive material and electromagnetic sensor using the same

Info

Publication number
JPH0786034A
JPH0786034A JP5231303A JP23130393A JPH0786034A JP H0786034 A JPH0786034 A JP H0786034A JP 5231303 A JP5231303 A JP 5231303A JP 23130393 A JP23130393 A JP 23130393A JP H0786034 A JPH0786034 A JP H0786034A
Authority
JP
Japan
Prior art keywords
magnetic
magnetoresistive material
layer
thickness
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5231303A
Other languages
Japanese (ja)
Inventor
Akimasa Sakuma
昭正 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP5231303A priority Critical patent/JPH0786034A/en
Publication of JPH0786034A publication Critical patent/JPH0786034A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To obtain a magnetoresistive material having a high rate of change in magnetic reluctance by a method wherein ferromagnetic layers have a composition, which is shown by Cr1-xTex, and the composition is specified. CONSTITUTION:An antiferromagnetic filun 2 for giving an exchange bias magnetic field is formed on an Si substrate 1 in a thickness of 4 to 10nm. This film 2 is formed of one kind of the substance or two kinds of the substances of Fe-Mn and NiO. Then, ferromagnetic films 3, which are formed in a thickness of 0.8 to 4 nun and have a composition which is shown by Cr1-xTex (0.5<=x<=0.8), are laminated on the film 2 holding a non-magnetic layer 4, which has a thickness of 0.5 to 3nm, between them. The layer 4 is formed of one kind of the substance or two kinds or more of the substances of Cr, Cu, Au, Ag, Al2O3f and NiO. Thereby, when a magnetoresistive material is used for a magnetism sensing part of an electromagnetic sensor, the improvement, of an regenerative output can be significantly attained in a magnetic field of 100 Oe or lower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁界センサに使用される
磁気抵抗材料にかかわり、特に磁気記録において再生ヘ
ッドとして使用される磁気抵抗効果型ヘッド(MRヘッ
ド)の磁気抵抗材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive material used for a magnetic field sensor, and more particularly to a magnetoresistive material for a magnetoresistive head (MR head) used as a reproducing head in magnetic recording.

【0002】[0002]

【従来の技術】近年磁気記録技術の進歩は著しく、家庭
用VTRの分野では小型、計量化のために、また磁気デ
ィスク装置の分野では小型、大容量化のために記録密度
の高密度化が進められている。特に磁気ディスク装置を
例にとると、記録密度を向上させるため記録再生分離型
ヘッドの開発が活発である。これらの記録再生分離型ヘ
ッドの再生ヘッドとしては通常MRヘッドが使用されて
いる。磁気ディスク装置の小型化のために媒体とヘッド
との相対速度が低下すると従来のインダクティブヘッド
では出力が低下するという欠点を有しているが、MRヘ
ッドは出力が相対速度に依存せず一定であるという特徴
を有するからである。
2. Description of the Related Art In recent years, magnetic recording technology has made remarkable progress. In the field of home VTRs, the recording density has been increased for the purpose of downsizing and weighing, and in the field of magnetic disk devices for downsizing and increasing the capacity. It is being advanced. Particularly in the case of a magnetic disk device as an example, development of a recording / reproducing separated type head is active in order to improve recording density. An MR head is usually used as the reproducing head of these recording / reproducing separated type heads. The conventional inductive head has a drawback that the output decreases when the relative speed between the medium and the head decreases due to downsizing of the magnetic disk device, but the MR head has a constant output that does not depend on the relative speed. This is because it has the characteristic of being present.

【0003】このMRヘッドの感磁部には通常パーマロ
イ単層膜が使用されている。パーマロイ膜は異方性磁界
が小さいため感度はよいが、磁気抵抗変化率は高々3%
と決して大きくはない。そのためパーマロイ単層膜を感
磁部に用いたMRヘッドは再生出力が必ずしも充分でな
いという欠点がある。一方、数原子層の非磁性層が異方
性磁界の異なる強磁性層に挟まれて積層されている磁気
抵抗材料が大きな磁気抵抗変化率を示すことは、Co/
Cu/FeNi(T.Shinjo and H.Yamamoto:J.Phys.So
c.Jpn.,Vol.59,(1990)p.3061)等において見いだされて
おり公知である。しかし、これらの材料においても磁気
抵抗変化率は10%未満で、且つこのような値を得るに
は100Oe以上の印加磁界が必要で、磁気ヘッドへの
応用が困難になるといった問題があった。
A permalloy single-layer film is usually used for the magnetic sensing portion of this MR head. Permalloy film has a small anisotropic magnetic field and thus has good sensitivity, but the magnetoresistance change rate is at most 3%.
And never big. Therefore, the MR head using the permalloy single layer film as the magnetic sensing portion has a drawback that the reproduction output is not always sufficient. On the other hand, the fact that a magnetoresistive material in which a non-magnetic layer of several atomic layers is sandwiched between ferromagnetic layers having different anisotropic magnetic fields exhibits a large magnetoresistive change rate means that Co /
Cu / FeNi (T. Shinjo and H. Yamamoto: J. Phys. So
c. Jpn., Vol.59, (1990) p.3061) and the like, and is publicly known. However, even in these materials, the magnetoresistance change rate is less than 10%, and an applied magnetic field of 100 Oe or more is required to obtain such a value, which makes it difficult to apply to a magnetic head.

【0004】[0004]

【発明が解決しようとする課題】したがって本発明の課
題は、強磁性層が非磁性層を挟んで積層されている磁気
抵抗材料を、よりMRヘッドの応用が容易な磁気抵抗材
料にするため、更に磁気抵抗変化率の高い材料を提供す
ることにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to make a magnetoresistive material in which ferromagnetic layers are laminated with a nonmagnetic layer sandwiched between them so that the MR head can be applied more easily. Another object is to provide a material having a high magnetoresistance change rate.

【0005】[0005]

【課題を解決するための手段】上記課題は、強磁性層が
非磁性層を挟んで積層されている磁気抵抗材料におい
て、強磁性層がCr1-XTeXで示される組成を有しその
組成範囲が 0.5≦x≦0.8 であることによって解決される。
SUMMARY OF THE INVENTION In the magnetoresistive material in which ferromagnetic layers are laminated with a non-magnetic layer in between, the ferromagnetic layer has a composition represented by Cr 1 -X Te X. This is solved by the composition range of 0.5 ≦ x ≦ 0.8.

【0006】[0006]

【作用】数原子層の非磁性層が異方性磁界の異なる強磁
性層に挟まれた積層膜が磁気抵抗効果を示すことは Sin
jo 等による文献(T.Shinjo and H.Yamamoto:J.Phys.So
c.Jpn.,Vol.59,(1990)p.3061)で既に公知である。これ
は、次のように理解される。積層膜に対し、ある方向に
磁界を印加したときに、2つの磁性膜の異方性磁界が異
なるために磁化が反転する磁界に差が生じ、ある範囲の
磁界においてこれら磁性層の磁化が反平行になる状態が
実現する。更に強い磁界の印加でこれら磁化は平行な状
態となるが、磁化が平行のときの電気抵抗は反平行のと
きより小さくなる。これが、積層膜における磁気抵抗効
果の一つとして知られており、Co/Cu/FeNiは
その代表的系である。しかし、これらの材料においては
抵抗変化率は10%未満であり、応用上更に大きな変化
率が望まれていた。
[Function] A laminated film in which a non-magnetic layer of several atomic layers is sandwiched between ferromagnetic layers having different anisotropic magnetic fields exhibits a magnetoresistive effect.
References by jo et al. (T. Shinjo and H. Yamamoto: J. Phys. So
c. Jpn., Vol. 59, (1990) p. 3061). This is understood as follows. When a magnetic field is applied to the laminated film in a certain direction, the anisotropic magnetic fields of the two magnetic films are different from each other, so that the magnetic fields at which the magnetizations are reversed are different from each other, and the magnetizations of these magnetic layers are reversed in a certain range of magnetic field. A parallel state is realized. When a stronger magnetic field is applied, these magnetizations become parallel, but the electric resistance when the magnetizations are parallel becomes smaller than when they are antiparallel. This is known as one of the magnetoresistive effects in the laminated film, and Co / Cu / FeNi is a typical system. However, in these materials, the resistance change rate is less than 10%, and a larger change rate is desired for application.

【0007】本発明による考えは、この磁気抵抗効果の
発生メカニズムに関する考察から導かれた。電気伝導を
担うのは多数派スピンと少数派スピンのフェルミ準位近
傍の電子であるが、2つの磁性層の磁化が平行の場合と
反平行の場合では何れか一方の磁性層の多数派スピンと
少数派スピンの電子状態密度が逆になる。従って、伝導
に際して電子が2つの磁性層を横切る場合、磁化が平行
の場合と反平行の場合とではそれぞれのスピンの電子が
各磁性層内で取り得るフェルミ準位近傍での状態数が異
なるためために電気抵抗に差が生じると考えられる。そ
こで、もし磁性層のフェルミ準位近傍の電子状態密度が
多数派スピンと少数派スピンで極端に異なる場合、即
ち、一方のスピンの状態密度はフェルミ準位近傍で有限
の値を持ち、他方のスピンの状態密度がフェルミ準位近
傍でほぼ0の場合、2つの磁性層が平行の場合にはフェ
ルミ準位近傍で有限の値を持つ方のスピンの電子は容易
に流れるが、反平行の場合には一方の磁性層で有限の状
態密度を持つスピンは他方の磁性層では0の状態密度と
なるため、何れのスピンの電子も流れなくなり、電気抵
抗は著しく大きくなることが期待される。
The idea according to the present invention was derived from the consideration of the mechanism of the magnetoresistive effect. It is the electrons near the Fermi level of the majority spin and the minority spin that are responsible for electrical conduction. However, when the magnetizations of the two magnetic layers are parallel and antiparallel, the majority spin of either magnetic layer is And the electron density of minority spin is reversed. Therefore, when electrons cross two magnetic layers during conduction, the number of states in the vicinity of the Fermi level that electrons of each spin can take in the cases of parallel magnetization and antiparallel magnetization is different. Therefore, it is considered that there is a difference in electric resistance. Therefore, if the electronic state density near the Fermi level of the magnetic layer is extremely different between the majority spin and the minority spin, that is, the density of states of one spin has a finite value near the Fermi level and the other spin has a finite value. When the spin density of states is almost 0 near the Fermi level, electrons with a finite spin near the Fermi level easily flow when the two magnetic layers are parallel, but when antiparallel. In particular, since spins having a finite density of states in one magnetic layer have a density of states of 0 in the other magnetic layer, it is expected that electrons of any spins will not flow and the electric resistance will remarkably increase.

【0008】NiAs構造を持つCr1-XTeXはこのよ
うな電子状態の条件を満たす材料であることが期待され
る。図1は J.Dijkstra(J.Phys.:Cond.Matt.,1(1989)9
141)によって計算されたCr3Te4及びCr2Te3
電子状態密度である。図1において、上半分は多数派
(上向き)スピン、下半分は少数派(下向き)スピン状
態を表す。また、EFはフェルミエネルギーを示す。多
数派スピンの状態密度はフェルミ準位近傍で有限の値を
持つが、少数派スピンの状態密度はフェルミ準位近傍で
ほぼ0になっているのがわかる。即ちこのような物質は
多数派スピンの電子は金属的な振る舞いを示すが、少数
派スピンの電子は絶縁体あるいは半導体的な振る舞いを
示すと考えられる。従って、このような材料を非磁性物
質を介して2つ組み合わせた場合、磁化が平行な場合は
金属的、反平行の場合は半導体的な特性を示すことが期
待されるのである。そこで、2つの磁性膜の一方にFe
MnあるいはNiO等の反強磁性膜を結合させて実効的
な磁気異方性を付与すると、磁気異方性の違いに起因し
て外部磁界の大きさによって磁化が平行になる場合と反
平行になる場合が実現される。即ち、この積層膜は外部
磁界の大きさ及び方向によって電気抵抗に著しい変化が
現れることが期待される。本発明者は上記の考えに基づ
きCr1-XTeX/Cu/Cr1-XTeX/FeMnの積層
膜を作製し磁気抵抗効果を測定したところ、0.5≦X
≦0.8において10%以上の抵抗変化率が得られるこ
とが確認された。
Cr 1-X Te x having a NiAs structure is expected to be a material satisfying such an electronic state condition. Figure 1 shows J. Dijkstra (J.Phys.:Cond.Matt.,1(1989)9
141) is the electronic density of states of Cr 3 Te 4 and Cr 2 Te 3 . In FIG. 1, the upper half represents a majority (upward) spin state, and the lower half represents a minority (downward) spin state. Further, E F represents Fermi energy. It can be seen that the density of states of the majority spin has a finite value near the Fermi level, but the density of states of the minority spin is almost 0 near the Fermi level. That is, in such a substance, electrons of majority spins behave like metal, but electrons of minority spins behave like insulator or semiconductor. Therefore, when two such materials are combined through a non-magnetic substance, it is expected that they exhibit metallic characteristics when the magnetizations are parallel, and semiconductor characteristics when the magnetizations are antiparallel. Therefore, Fe on one of the two magnetic films
When an antiferromagnetic film such as Mn or NiO is coupled to give effective magnetic anisotropy, the magnetization becomes parallel due to the difference in magnetic anisotropy depending on the magnitude of the external magnetic field. It will be realized. That is, it is expected that the laminated film will show a significant change in electric resistance depending on the magnitude and direction of the external magnetic field. The present inventor produced a laminated film of Cr 1-X Te x / Cu / Cr 1-x Te x / FeMn based on the above idea and measured the magnetoresistive effect.
It was confirmed that a resistance change rate of 10% or more was obtained when ≦ 0.8.

【0009】本発明磁気抵抗材料において、非磁性層と
してはCr、Cu、Au、Ag、Al23、およびNi
Oの1種または2種以上を用いることができる。これら
は磁性層であるCr1-XTeXを磁気的に遮断するのに優
れている材料だからである。特に、高い伝導性を有する
Cuが望ましい。また、反強磁性層としてはFeMnお
よびNiOの1種または2種をもちいることができる。
これらは室温以上のネール温度を有し、かつ数nmの薄
膜作製が可能だからである。特に、高いネール温度と伝
導性を有するFeMnが望ましい。なお、FeMnを用
いる場合にはMn30〜60wt.%とすればよい。3
0wt.%未満ではフェリ磁性であり、60wt.%を
越えると磁性層との交換結合が弱くなるからである。
In the magnetoresistive material of the present invention, the non-magnetic layer is made of Cr, Cu, Au, Ag, Al 2 O 3 , and Ni.
One or two or more types of O can be used. This is because these are excellent materials for magnetically blocking Cr 1 -X Te X , which is the magnetic layer. In particular, Cu having high conductivity is desirable. Further, as the antiferromagnetic layer, one or two kinds of FeMn and NiO can be used.
This is because these have a Neel temperature of room temperature or higher and can form a thin film of several nm. In particular, FeMn having a high Neel temperature and conductivity is desirable. When FeMn is used, Mn of 30 to 60 wt. %And it is sufficient. Three
0 wt. %, It is ferrimagnetic, and 60 wt. This is because if it exceeds%, the exchange coupling with the magnetic layer becomes weak.

【0010】次に、強磁性層の厚さは0.8〜4nm、
非磁性層の厚さは0.5〜3nmとする。強磁性層の厚
さが0.8nm未満では電気抵抗への膜界面の影響が強
くなりすぎ、また4nmを越えると反強磁性層との交換
結合の効果が弱くなるからである。また、非磁性層の厚
さが0.5nm未満では磁性層の磁気的絶縁が弱く、ま
た3nmを越えると非磁性層内での電子の散乱が大きく
なり磁気抵抗の効果を弱めるからである。反強磁性層を
構成するFeMnまたはNiOの厚さは4〜10nmと
する。4nm未満では交換結合の効果が不十分であり、
また10nmを越えると反磁性層内での電気抵抗が支配
的になるからである。
Next, the thickness of the ferromagnetic layer is 0.8-4 nm,
The thickness of the nonmagnetic layer is 0.5 to 3 nm. This is because if the thickness of the ferromagnetic layer is less than 0.8 nm, the effect of the film interface on the electric resistance becomes too strong, and if it exceeds 4 nm, the effect of exchange coupling with the antiferromagnetic layer becomes weak. Also, if the thickness of the non-magnetic layer is less than 0.5 nm, the magnetic insulation of the magnetic layer is weak, and if it exceeds 3 nm, the scattering of electrons in the non-magnetic layer becomes large and the effect of magnetoresistance is weakened. The thickness of FeMn or NiO forming the antiferromagnetic layer is 4 to 10 nm. If it is less than 4 nm, the effect of exchange coupling is insufficient,
Further, if it exceeds 10 nm, the electric resistance in the diamagnetic layer becomes dominant.

【0011】[0011]

【実施例】以下に本発明を実施例により説明する。 (実施例1)図2に示すように、Si基板上に交換バイ
アス磁界を付与するためのFe−%Mn反強磁性膜を5
nm形成し、そのうえに3nmのCr1-YTeY(Y=
0.55,0.6,0.65,0.7)強磁性膜を3n
mのCu非磁性層を中間に挟んで積層した。Fe−Mn
層と接触しているCr1-YTeY膜は交換バイアス磁界に
より最上層にあるCr1-YTeYより実効的な異方性磁界
が異なり、Cr1-YTeYの異方性磁界が1(KA/m)
(=12Oe)以下であるのに対し、Fe−Mnと接触
しているCr1-YTeYの異方性磁界は約7(KA/m)
(=88Oe)であった。そこで、これらの試料に7
(KA/m)の磁界を印加して、4端子法により磁気抵
抗変化率を測定し、その結果を表1にまとめた。表1か
ら明らかなように、Cr−Teを用いた本発明による構
造では従来の磁性膜を用いた積層膜より数倍の大きな磁
気抵抗変化率が得られている。
EXAMPLES The present invention will be described below with reference to examples. (Example 1) As shown in FIG. 2, 5% Fe-% Mn antiferromagnetic film for applying an exchange bias magnetic field was formed on a Si substrate.
nm of Cr 1-Y Te Y (Y =
0.55,0.6,0.65,0.7) 3n ferromagnetic film
The Cu non-magnetic layer of m was laminated in the middle. Fe-Mn
The Cr 1-Y Te Y film in contact with the layer has a different effective anisotropy field than Cr 1-Y Te Y in the uppermost layer due to the exchange bias magnetic field, and the anisotropic magnetic field of Cr 1-Y Te Y Is 1 (KA / m)
While it is (= 12 Oe) or less, the anisotropic magnetic field of Cr 1 -Y Te Y in contact with Fe-Mn is about 7 (KA / m).
(= 88 Oe). So, for these samples,
A magnetic field of (KA / m) was applied and the rate of change in magnetoresistance was measured by the 4-terminal method, and the results are summarized in Table 1. As is clear from Table 1, the structure according to the present invention using Cr-Te has a magnetoresistance change rate that is several times as large as that of the laminated film using the conventional magnetic film.

【0012】[0012]

【表1】 [Table 1]

【0013】(実施例2)表2に示す積層膜をSi基板
上に形成し、実施例1と同様に磁気抵抗変化率を測定し
た。なお、強磁性層は厚さ3nmのCr0.4Te0.6であ
る。結果を表2に示す。
Example 2 The laminated film shown in Table 2 was formed on a Si substrate, and the magnetoresistance change rate was measured in the same manner as in Example 1. The ferromagnetic layer is Cr 0.4 Te 0.6 having a thickness of 3 nm. The results are shown in Table 2.

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【発明の効果】本発明の磁気抵抗材料を磁界センサの感
磁部に用いると、100Oe以下の磁界で大幅に再生出
力の向上が達成される。
When the magnetoresistive material of the present invention is used in the magnetic sensing part of a magnetic field sensor, the reproduction output is significantly improved in a magnetic field of 100 Oe or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)Cr3Te4および(b)Cr2Te3の電
子状態密度の計算結果(J.Dijkstra(J.Phys.:Cond.Mat
t.,1(1989)9141)による)である。
FIG. 1 is a calculation result of electronic density of states of (a) Cr 3 Te 4 and (b) Cr 2 Te 3 (J. Dijkstra (J. Phys .: Cond. Mat.
t., 1 (1989) 9141)).

【図2】本発明の磁気抵抗材料の断面の構造を示す模式
図である。
FIG. 2 is a schematic diagram showing a cross-sectional structure of a magnetoresistive material of the present invention.

【符号の説明】[Explanation of symbols]

1 Si基板、2 厚さ5nmからなるFeMn反強磁
性膜、3 厚さ3nmのCr1-YTeYからなる強磁性
層、4 厚さ3nmのCuからなる非磁性層
1 Si substrate, 2 FeMn antiferromagnetic film having a thickness of 5 nm, 3 Ferromagnetic layer made of Cr 1 -Y Te Y having a thickness of 3 nm, 4 Nonmagnetic layer made of Cu having a thickness of 3 nm

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 43/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 43/10

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 強磁性層が非磁性層を挟んで積層されて
いる磁気抵抗材料において、強磁性層がCr1-XTeX
示される組成を有しその組成範囲が 0.5≦x≦0.8 であることを特徴とする磁気抵抗材料。
1. In a magnetoresistive material in which ferromagnetic layers are laminated with a nonmagnetic layer sandwiched between them, the ferromagnetic layer has a composition represented by Cr 1-X Te X and the composition range is 0.5 ≦ x. A magnetoresistive material, wherein ≦ 0.8.
【請求項2】 磁気抵抗材料において、非磁性層がC
r、Cu、Au、Ag、Al23、およびNiOの1種
または2種以上で構成される請求項1に記載の磁気抵抗
材料。
2. In the magnetoresistive material, the nonmagnetic layer is C
The magnetoresistive material according to claim 1, which is composed of one or more of r, Cu, Au, Ag, Al 2 O 3 , and NiO.
【請求項3】 強磁性層の一方に反強磁性層が積層され
ている請求項1または請求項2に記載の磁気抵抗材料。
3. The magnetoresistive material according to claim 1, wherein an antiferromagnetic layer is laminated on one of the ferromagnetic layers.
【請求項4】 反強磁性層がFeMnおよびNiOの1
種または2種で構成される請求項1〜請求項3のいずれ
かに記載の磁気抵抗材料。
4. The antiferromagnetic layer is made of FeMn and NiO.
The magnetoresistive material according to any one of claims 1 to 3, wherein the magnetoresistive material is composed of one kind or two kinds.
【請求項5】 強磁性層の厚さが0.8〜4nm、非磁
性層の厚さが0.5〜3nmである請求項1〜請求項4
のいずれかに記載の磁気抵抗材料。
5. The ferromagnetic layer has a thickness of 0.8 to 4 nm, and the nonmagnetic layer has a thickness of 0.5 to 3 nm.
The magnetoresistive material according to any one of 1.
【請求項6】 FeMn、NiOの厚さが4〜10nm
である請求項4に記載の磁気抵抗材料。
6. The thickness of FeMn and NiO is 4 to 10 nm.
The magnetoresistive material according to claim 4, wherein
【請求項7】 請求項1〜請求項6のいずれかに記載の
磁気抵抗材料を感磁部に用いた磁界センサ。
7. A magnetic field sensor using the magnetoresistive material according to claim 1 in a magnetic sensing part.
JP5231303A 1993-09-17 1993-09-17 Magnetoresistive material and electromagnetic sensor using the same Pending JPH0786034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5231303A JPH0786034A (en) 1993-09-17 1993-09-17 Magnetoresistive material and electromagnetic sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5231303A JPH0786034A (en) 1993-09-17 1993-09-17 Magnetoresistive material and electromagnetic sensor using the same

Publications (1)

Publication Number Publication Date
JPH0786034A true JPH0786034A (en) 1995-03-31

Family

ID=16921513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5231303A Pending JPH0786034A (en) 1993-09-17 1993-09-17 Magnetoresistive material and electromagnetic sensor using the same

Country Status (1)

Country Link
JP (1) JPH0786034A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249426A1 (en) 2001-04-13 2002-10-16 Shibuya Kogyo Co., Ltd Capping method and capping apparatus
US6874301B2 (en) 2000-03-06 2005-04-05 Shibuya Kogyo Co., Ltd. Capping method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6874301B2 (en) 2000-03-06 2005-04-05 Shibuya Kogyo Co., Ltd. Capping method and apparatus
EP1249426A1 (en) 2001-04-13 2002-10-16 Shibuya Kogyo Co., Ltd Capping method and capping apparatus

Similar Documents

Publication Publication Date Title
JP3293437B2 (en) Magnetoresistive element, magnetoresistive head and memory element
JP2690623B2 (en) Magnetoresistance effect element
CN100423313C (en) Magnetoresistive device with exchange-coupled structure having half-metallic ferromagnetic heusler alloy in the pinned layer
JP3574186B2 (en) Magnetoresistance effect element
JP3766565B2 (en) Magnetoresistive film and magnetoresistive head
KR100249976B1 (en) Magnetoresistive device and the method
JP3295152B2 (en) Magnetoresistance effect type weak magnetic field sensor
JP3255872B2 (en) Spin valve type thin film element and method of manufacturing the same
US6775109B2 (en) Magnetoresistive sensor with magnetostatic coupling of magnetic regions
JPH104012A (en) Magnetoresistance effect element, manufacture thereof and magnetic head manufactured thereby
US6083632A (en) Magnetoresistive effect film and method of manufacture thereof
JP3691898B2 (en) Magnetoresistive effect element, magnetic information reading method, and recording element
JPH11238924A (en) Spin-dependent transmission element electronic component using the same, and magnetic part
JPH10188235A (en) Magneto-resistive film and its production
JP2001217482A (en) Magnetic sensor and magnetic storage device using the same
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
US5668523A (en) Magnetoresistive sensor employing an exchange-bias enhancing layer
JP2001076479A (en) Magnetic memory element
JP3455055B2 (en) Magnetic element, magnetic head and magnetic storage device using the same
JPH0786034A (en) Magnetoresistive material and electromagnetic sensor using the same
JP3242279B2 (en) Giant magnetoresistive material film and method of adjusting magnetization of magnetoresistive material film
JP3634997B2 (en) Manufacturing method of magnetic head
JP3677107B2 (en) Magnetoresistive effect element
JP3243092B2 (en) Thin film magnetic head
JPH1079305A (en) Magnetic device