JPH0785799B2 - Method for producing aerobic self-granulated product - Google Patents

Method for producing aerobic self-granulated product

Info

Publication number
JPH0785799B2
JPH0785799B2 JP12924691A JP12924691A JPH0785799B2 JP H0785799 B2 JPH0785799 B2 JP H0785799B2 JP 12924691 A JP12924691 A JP 12924691A JP 12924691 A JP12924691 A JP 12924691A JP H0785799 B2 JPH0785799 B2 JP H0785799B2
Authority
JP
Japan
Prior art keywords
activated sludge
aerobic
microorganisms
semi
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12924691A
Other languages
Japanese (ja)
Other versions
JPH04354596A (en
Inventor
重和 中野
晴男 高野
一久 吉國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP12924691A priority Critical patent/JPH0785799B2/en
Publication of JPH04354596A publication Critical patent/JPH04354596A/en
Publication of JPH0785799B2 publication Critical patent/JPH0785799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、好気性自己造粒物の
製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an aerobic self-granulated product.

【0002】[0002]

【従来の技術】有機性排水を効率的に処理する方法とし
てバイオテクノロジーの活用が盛んに研究開発されてい
るが、なかでも微生物の固定化は特定の菌体を選択利用
できることや高密度に微生物を保持できることから不可
欠な技術として注目されている。この微生物を高密度に
固定化させる方法としては、従来、以下のような方法が
ある。 担体結合法 この方法は、担体表面に物理化学的に微生物を付着させ
る方法で、一定時間固定化に適切な環境条件のもとで担
体材料と微生物を混合して形成する。 架橋法 この方法は、2個以上の官能基をもつ試薬を微生物に添
加して微生物を団粒状にする方法である。 包括固定化法 この方法は、微生物をゲルの格子内に包み込むか、又
は、ポリマーの皮膜によって被覆する方法である。微生
物と高分子樹脂を混合した後、重合反応等のゲル化反応
で固体状にする。そして、更にその表面に別の樹脂をコ
ーティングしたのちに内部の固定化樹脂を溶かしてポリ
マーの皮膜で微生物のカプセルを製造する。 自己固定化法 この方法は、嫌気的条件下で糸状増殖したメタノトリク
ス(Methanothrix)属メタン菌が絡み合う集塊機能を用い
て微生物を粒状にする方法である。
2. Description of the Related Art The use of biotechnology has been actively researched and developed as a method for efficiently treating organic wastewater. Among them, immobilization of microorganisms is that specific bacterial cells can be selectively utilized and high density of microorganisms can be used. Since it can hold the product, it is attracting attention as an indispensable technology. As a method for immobilizing this microorganism at a high density, conventionally, there is the following method. Carrier binding method This method is a method of physicochemically attaching a microorganism to the surface of a carrier, and is formed by mixing a carrier material and a microorganism under an environmental condition suitable for immobilization for a certain period of time. Crosslinking method This method is a method in which a reagent having two or more functional groups is added to a microorganism to aggregate the microorganism. Entrapment immobilization method This method is a method of enclosing a microorganism in a lattice of gel or coating it with a polymer film. After mixing the microorganisms and the polymer resin, they are solidified by a gelling reaction such as a polymerization reaction. Then, after further coating another resin on the surface, the immobilizing resin inside is melted to produce a capsule of microorganisms with a polymer film. Self-immobilization method This method is a method of granulating microorganisms by using an agglomeration function in which methane bacteria of the genus Methanothrix that grow filamentous under anaerobic conditions are intertwined.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記従来の
方法には以下のような欠点がある。すなわち、の方法
で形成された混合物は、その内部に生物反応を持たない
不活性な材料があるので、その混合物全体を有効に使用
できない。また、微生物に比べて密度が高い材料を担体
に用いると、充填床リアクターに入れて使用した場合に
は自重で変形しやすく、また、流動床リアクターに入れ
て使用した場合には流動エネルギーが大きく動力費がか
さむ。の方法は特殊な試薬を必要とするため製造コス
トが高くなる。の方法で製造された微生物のカプセル
は微生物密度が低いため、前処理として操作の困難な微
生物の高密度の濃縮が必要になる。の方法で生成され
たものは嫌気性微生物が粒状になったものであるため有
機物分解性能が低い。そこで、この発明の目的は、製造
コストが安くしかも有機性分解性能の高い自己造粒物の
製造方法を提供することにある。
However, the above-mentioned conventional method has the following drawbacks. That is, since the mixture formed by the method of (1) has an inert material having no biological reaction therein, the whole mixture cannot be effectively used. Also, if a material having a density higher than that of microorganisms is used as a carrier, it is easily deformed by its own weight when used in a packed bed reactor, and when it is used in a fluidized bed reactor, the fluid energy is large. Power costs are high. The method of (1) requires a special reagent, which increases the manufacturing cost. Since the microbial capsules produced by the above method have a low microbial density, it is necessary to pre-treat the microorganisms at a high density, which is difficult to operate. The anaerobic microorganisms formed by the method of 1) have a low organic matter decomposing ability because they are granular anaerobic microorganisms. Therefore, an object of the present invention is to provide a method for producing a self-granulated product having a low production cost and a high organic decomposition performance.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、第1の発明の好気性自己造粒物の製造方法は、容器
に入れた活性汚泥に空気を吹き込んで撹拌する工程と、
上記空気の吹き込みを停止して上記活性汚泥中の微生物
を沈降させる工程と、上記微生物が沈降した後の上澄み
液を除去する工程と、上記上澄み液を除去した活性汚泥
に上記微生物のための栄養分を溶かした溶液を加える工
程からなる半連続培養工程を所定期間繰り返し行って上
記活性汚泥中に好気性の糸状性細菌を発生させ、上記好
気性の糸状性細菌が発生した活性汚泥について上記と同
様の半連続培養工程を所定期間繰り返し行って上記好気
性の糸状性細菌と原生動物が絡まって粒状化した好気性
自己造粒物を発生させることを特徴としている。また、
第2の発明の好気性自己造粒物の製造方法は、容器に入
れた活性汚泥に空気を吹き込んで撹拌する工程と、上記
空気の吹き込みを停止して上記活性汚泥中の微生物を沈
降させる工程と、上記微生物が沈降した後の上澄み液を
除去する工程と、上記上澄み液を除去した活性汚泥に上
記微生物のための栄養分を溶かした溶液を加える工程か
らなる半連続培養工程を所定期間繰り返し行って上記活
性汚泥中に好気性の糸状性細菌を発生させる一方、上記
容器と別の容器に入れた活性汚泥について上記溶液の代
わりに上記溶液よりも栄養分の濃度の低い溶液を加える
上記半連続培養工程を所定期間繰り返し行ってその活性
汚泥中の固着性原生動物を増大させ、その固着性原生動
物が増大した活性汚泥中に板状部材を挿入してその板状
部材に上記固着性原生動物を含む活性汚泥を付着させ、
その板状部材に付着した活性汚泥をかき取って上記好気
性の糸状性細菌が発生している活性汚泥に混ぜ、その活
性汚泥について上記と同様の半連続培養工程を所定期間
繰り返し行って上記好気性の糸状性細菌と原生動物が絡
まって粒状化した好気性自己造粒物を発生させることを
特徴としている。
In order to achieve the above object, the method for producing an aerobic self-granulated product of the first invention comprises a step of blowing air into the activated sludge contained in a container and stirring the mixture.
A step of stopping the blowing of the air to settle the microorganisms in the activated sludge, a step of removing the supernatant after the microorganisms have settled, and the nutrients for the microorganisms in the activated sludge from which the supernatant was removed. The aerobic filamentous bacteria are generated in the activated sludge by repeating a semi-continuous culture step consisting of a step of adding a solution in which the aerobic filamentous bacteria are generated in the same manner as above. The semi-continuous culturing step is repeated for a predetermined period of time to generate an aerobic self-granulated product in which the aerobic filamentous bacteria and protozoa are entangled and granulated. Also,
The method for producing an aerobic self-granulated product of the second invention comprises a step of blowing air into the activated sludge contained in a container and stirring, and a step of stopping the blowing of the air to precipitate microorganisms in the activated sludge. And, a semi-continuous culture step consisting of a step of removing the supernatant after the microorganisms have settled and a step of adding a solution in which the nutrients for the microorganisms have been dissolved to the activated sludge from which the supernatant has been removed is repeatedly performed for a predetermined period of time. While generating aerobic filamentous bacteria in the activated sludge, while adding a solution having a lower nutrient concentration than the solution instead of the solution for the activated sludge placed in a container different from the container The process is repeated for a predetermined period of time to increase the sticky protozoa in the activated sludge, and the sticky protozoa is inserted into the activated sludge to increase the stickiness of the sticky protozoa. Deposited activated sludge containing live animals,
The activated sludge attached to the plate-shaped member is scraped off and mixed with the activated sludge in which the aerobic filamentous bacteria are generated, and the semi-continuous culture step similar to the above is repeated for the activated sludge for a predetermined period of time. It is characterized in that aerobic filamentous bacteria and protozoa are entangled to generate granulated aerobic self-granulated products.

【0005】[0005]

【実施例】以下、この発明を図示の実施例により詳細に
説明する。図1はこの発明の好気性自己造粒物の製造方
法の一実施例を示すフローチャートである。この製造方
法は、まず、下水処理場で採取したMLSS5500mg/
L程度の低密度の返送汚泥を容器に入れ(ステップS
1)、約2ケ月間半連続培養を行う(ステップS2)。こ
の半連続培養は以下からまでの工程を順次繰り返し
行う。 返送汚泥に空気を吹き込んで撹拌する。(この空気の
吹き込みは1L/5L/minの量で連続して約16時
間行う。) 空気の吹き込みを約8時間停止し、汚泥中の微生物を
沈降させる。 微生物が沈降した後、上澄み液を除去する。 その後、基質としてのスキムミルクを1.3g/Lの
割合で水に溶かした溶液を、除去した上澄み液とほぼ同
量だけ加える。上記半連続培養を約2ケ月間行うと、好
気性の糸状性細菌(スフェロチルス;Sphaelotilusなど)
が多量発生し、原生動物も混在した汚泥となる(ステッ
プS3)。そして、この糸状性細菌が多量に発生した汚
泥について更に上記と同様の半連続培養を約1週間行う
(ステップS4)と、図4に示すような好気性自己造粒物
が生成される(ステップS5)。この自己造粒物31は、
上記糸状性細菌32が絡みあってできたもので、その中
に原生動物33を包含している。このように、返送汚泥
を半連続培養するだけの簡単な方法で好気性の自己造粒
物を製造できるので、材料費や設備費が少なくてすみ、
製造コストを低くすることができる。
The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 is a flow chart showing an embodiment of the method for producing an aerobic self-granulated product of the present invention. This manufacturing method starts with MLSS 5500 mg /
Put low-density returned sludge of about L into the container (step S
1), semi-continuous culture is performed for about 2 months (step S2). In this semi-continuous culture, the following steps are sequentially repeated. Blow air into the returned sludge and stir it. (This air blowing is continuously performed at a rate of 1 L / 5 L / min for about 16 hours.) The air blowing is stopped for about 8 hours to allow the microorganisms in the sludge to settle. After the microorganisms have settled, the supernatant is removed. Then, a solution of skim milk as a substrate in water at a rate of 1.3 g / L is added in an amount substantially equal to that of the removed supernatant. When the above semi-continuous culture is performed for about 2 months, aerobic filamentous bacteria (Spherelotilus, etc.)
Is generated in large quantities, and the sludge is mixed with protozoa (step S3). Then, the sludge in which a large amount of this filamentous bacterium is generated is further subjected to the semi-continuous culture similar to the above for about one week.
(Step S4) and an aerobic self-granulated product as shown in FIG. 4 is generated (Step S5). This self-granulated material 31 is
The filamentous bacteria 32 are formed by being entangled with each other, and the protozoa 33 are included therein. In this way, the aerobic self-granulated product can be produced by a simple method of only semi-continuously culturing the returned sludge, so that the material cost and the equipment cost can be reduced,
Manufacturing costs can be reduced.

【0006】図2はこの発明の好気性自己造粒物の製造
方法のもう一つの実施例を示すフローチャートである。
この製造方法は、ステップS11からステップS13に
おいて、上記実施例におけるステップS1からステップ
S3と同様にして好気性の糸状性細菌を多量発生させ、
それを沈澱(ステップS14)させておく。一方、それと
は別に、別の容器に採取した上記と同じMLSS5500m
g/L程度の低密度汚泥(ステップS15)を1〜2週間
半連続培養する(ステップS15)。この半連続培養は上
記実施例における半連続培養よりもスキムミルク溶液の
濃度をうすく(例えば、0.1g/L程度)して行い、そ
れ以外の条件は上記実施例と同様に行う。この半連続培
養により汚泥中の固着性原生動物(エピスチルス属;Epi
stylis sp.などの繊毛虫類が多い)が増大する(ステップ
S17)。次に、図3に示すように容器21にセラミッ
クスなどの表面に小さな凹凸のある板22を10mm間
隔で吊り下げてその板の上に上記固着性原生動物を含む
活性汚泥23を付着させる(ステップS18)。次に、板
22を容器21から取り出して板上に付着した活性汚泥
23をかき取り、かき取った活性汚泥を上記好気性の糸
状性細菌が多量に発生している汚泥と混合(ステップS
20)したのち、ステップS12の半連続培養と同様の
半連続培養を約1週間行う(ステップS21)。そうする
ことにより、上記好気性の糸状性細菌と固着性原生動物
が絡まって図4と同様の好気性の自己造粒物ができる。
この製造方法も、上記実施例における製造方法と同様、
返送汚泥を半連続培養するだけの簡単なものであるの
で、材料費や設備費を少なくて済み、製造コストを低く
できる。
FIG. 2 is a flow chart showing another embodiment of the method for producing an aerobic self-granulated product of the present invention.
In this manufacturing method, in step S11 to step S13, a large amount of aerobic filamentous bacteria are generated in the same manner as in step S1 to step S3 in the above embodiment,
It is allowed to settle (step S14). On the other hand, apart from that, the same MLSS5500m sampled above in another container
Low density sludge of about g / L (step S15) is continuously cultured for 1 to 2 weeks (step S15). This semi-continuous culture is carried out at a thinner concentration of the skim milk solution (for example, about 0.1 g / L) than in the semi-continuous culture in the above-mentioned examples, and the other conditions are the same as in the above-mentioned examples. By this semi-continuous culture, the sticky protozoa in the sludge (Epistilus genus; Epi
The number of ciliates such as stylis sp.) increases (step S17). Next, as shown in FIG. 3, a plate 22 having small irregularities on the surface of ceramics or the like is hung in a container 21 at intervals of 10 mm, and the activated sludge 23 containing the sticky protozoa is attached to the plate 22 (step S18). Next, the plate 22 is taken out from the container 21, and the activated sludge 23 adhering to the plate is scraped, and the scraped activated sludge is mixed with the sludge in which a large amount of the aerobic filamentous bacteria are generated (step S
After 20), semi-continuous culture similar to the semi-continuous culture of step S12 is performed for about 1 week (step S21). By doing so, the aerobic filamentous bacteria and the sessile protozoa are entangled to form an aerobic self-granulated product similar to that shown in FIG.
This manufacturing method is also similar to the manufacturing method in the above embodiment.
Since it is as simple as culturing the returned sludge semi-continuously, the material cost and equipment cost can be reduced and the manufacturing cost can be reduced.

【0007】また、上記いずれの製造方法で製造された
自己造粒物も、全体が微生物であるので、担体結合法で
形成された混合物や包括固定化法で製造された微生物カ
プセルに比べて生物反応性がすぐれており、また、担体
結合法で形成された混合物に比べて密度が低いので流動
床リアクターに入れて使用した場合、動力費が安価にな
るという利点がある。またこの自己造粒物は、好気性の
糸状性細菌と原生動物とでできているので、従来の嫌気
性糸状細菌でできた自己造粒物よりも有機性分解性能が
高く、有機性排水の処理に非常に有効である。
Further, the self-granulated product produced by any of the above production methods is a microorganism as a whole, and therefore compared with a mixture formed by the carrier binding method or a microbial capsule produced by the entrapping immobilization method. Since it has excellent reactivity and has a lower density than the mixture formed by the carrier-bonding method, it has an advantage of low power cost when used in a fluidized bed reactor. In addition, since this self-granulated product is composed of aerobic filamentous bacteria and protozoa, it has a higher organic decomposition performance than the conventional self-granulated product of anaerobic filamentous bacteria, and the Very effective for processing.

【発明の効果】以上より明らかなように、第1の発明の
好気性自己造粒物の製造方法は、容器に入れた活性汚泥
を所定期間半連続培養して上記活性汚泥中に好気性の糸
状性細菌を発生させ、上記好気性の糸状性細菌が発生し
た活性汚泥について上記と同様の半連続培養を所定期間
行って上記好気性の糸状性細菌と原生動物が絡まって粒
状化した好気性自己造粒物を発生させるようにしている
ので、従来の微生物固定化法に比べて材料や設備が少な
くて済み、製造コストを低くすることができる。また、
第2の発明の好気性自己造粒物の製造方法は、容器に入
れた活性汚泥を所定期間半連続培養して上記活性汚泥中
に好気性の糸状性細菌を発生させる一方、上記容器と別
の容器に入れた活性汚泥について上記半連続培養に用い
る栄養分の溶液よりも濃度の低い栄養分の溶液を用いる
半連続培養を所定期間行ってその活性汚泥中の固着性原
生動物を増大させ、その固着性原生動物が増大した活性
汚泥中に板状部材を挿入してその板状部材に上記固着性
原生動物を含む活性汚泥を付着させ、その板状部材に付
着した活性汚泥をかき取って上記好気性の糸状性細菌が
発生している活性汚泥に混ぜ、その活性汚泥について上
記と同様の半連続培養工程を所定期間行って上記好気性
の糸状性細菌と固着性原生動物が絡まって粒状化した好
気性自己造粒物を発生させるようにしているので、上記
第1の発明の製造方法と同様、従来の微生物固定化法に
比べて材料や設備が少なくて済み、製造コストを低くす
ることができる。
As is apparent from the above, the method for producing an aerobic self-granulated product according to the first aspect of the present invention comprises continuously culturing the activated sludge contained in a container for a predetermined period of time for a predetermined period of time so that the activated sludge is aerobic. The filamentous bacteria are generated, and the aerobic filamentous bacteria and protozoa are entangled and granulated by performing the same semi-continuous culture as above for a predetermined period of time on the activated sludge in which the aerobic filamentous bacteria are generated. Since the self-granulated product is generated, the number of materials and equipment is smaller than that in the conventional microorganism immobilization method, and the manufacturing cost can be reduced. Also,
The method for producing an aerobic self-granulated product according to the second aspect of the present invention, wherein activated sludge contained in a container is semi-continuously cultured for a predetermined period of time to generate aerobic filamentous bacteria in the activated sludge, while separate from the container. For the activated sludge contained in the container, the semi-continuous culture using a nutrient solution having a concentration lower than that of the nutrient solution used for the semi-continuous culture is performed for a predetermined period to increase the number of sticky protozoa in the activated sludge and the sticking thereof. The plate-like member is inserted into the activated sludge in which the protozoa have increased, the activated sludge containing the sticky protozoa is adhered to the plate-like member, and the activated sludge adhering to the plate-like member is scraped off. Mixing with activated sludge in which aerobic filamentous bacteria are generated, the same semi-continuous culturing step as above is performed for a predetermined period of time on the activated sludge, and the aerobic filamentous bacteria and adherent protozoa are entangled and granulated. Aerobic self granulation Since so as to produce, similar to the production method of the first invention, require less material and equipment compared to traditional microbial immobilization method, it is possible to reduce the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の好気性自己造粒物の製造方法の一
実施例を示すフローチャートである。
FIG. 1 is a flow chart showing an embodiment of a method for producing an aerobic self-granulated product of the present invention.

【図2】 この発明の好気性自己造粒物の製造方法のも
う一つの実施例を示すフローチャートである。
FIG. 2 is a flowchart showing another embodiment of the method for producing an aerobic self-granulated product of the present invention.

【図3】 上記もう一つの実施例において固着性原生動
物を含む汚泥が板上に付着した状態を示す図である。
FIG. 3 is a diagram showing a state in which sludge containing sessile protozoa adheres to a plate in the above-mentioned another embodiment.

【図4】 上記製造方法により生成された好気性自己造
粒物の概略拡大図である。
FIG. 4 is a schematic enlarged view of an aerobic self-granulated product produced by the above production method.

【符号の説明】[Explanation of symbols]

21 容器 22 板 23 固着性原生動物を含む汚泥 31 好気性自己造粒物 32 好気性の糸状性細菌 33 原生動物 21 Containers 22 Plates 23 Sludge containing sessile protozoa 31 Aerobic self-granulates 32 Aerobic filamentous bacteria 33 Protozoa

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉國 一久 大阪府大阪市阿倍野区松崎町2丁目2番2 号 株式会社奥村組内 (56)参考文献 特開 平3−288597(JP,A) 特開 平3−238090(JP,A) 特開 平3−254895(JP,A) 特開 平4−176393(JP,A) 特開 昭51−11653(JP,A) 特開 平1−293191(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhisa Yoshikuni 2-2-2 Matsuzaki-cho, Abeno-ku, Osaka-shi, Osaka Prefecture Okumura-gumi Co., Ltd. (56) Reference JP-A-3-288597 (JP, A) JP JP-A-3-238090 (JP, A) JP-A-3-254895 (JP, A) JP-A-4-176393 (JP, A) JP-A-51-11653 (JP, A) JP-A-1-293191 (JP , A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 容器に入れた活性汚泥に空気を吹き込ん
で撹拌する工程と、上記空気の吹き込みを停止して上記
活性汚泥中の微生物を沈降させる工程と、上記微生物が
沈降した後の上澄み液を除去する工程と、上記上澄み液
を除去した活性汚泥に上記微生物のための栄養分を溶か
した溶液を加える工程からなる半連続培養工程を所定期
間繰り返し行って上記活性汚泥中に好気性の糸状性細菌
を発生させ、上記好気性の糸状性細菌が発生した活性汚
泥について上記と同様の半連続培養工程を所定期間繰り
返し行って上記好気性の糸状性細菌と原生動物が絡まっ
て粒状化した好気性自己造粒物を発生させる好気性自己
造粒物の製造方法。
1. A step of blowing air into the activated sludge contained in a container to stir the mixture, a step of stopping the blowing of the air to precipitate the microorganisms in the activated sludge, and a supernatant liquid after the microorganisms have settled. And a step of adding a solution in which the nutrients for the microorganisms have been dissolved to the activated sludge from which the supernatant has been removed, and a semi-continuous culturing step is repeated for a predetermined period of time to perform aerobic filamentous activity in the activated sludge. The aerobic, in which the aerobic filamentous bacteria and protozoa are entangled with each other by repeating the same semi-continuous culture step for a predetermined period for the activated sludge in which bacteria are generated and the aerobic filamentous bacteria are generated. A method for producing an aerobic self-granulated product, which produces a self-granulated product.
【請求項2】 容器に入れた活性汚泥に空気を吹き込ん
で撹拌する工程と、上記空気の吹き込みを停止して上記
活性汚泥中の微生物を沈降させる工程と、上記微生物が
沈降した後の上澄み液を除去する工程と、上記上澄み液
を除去した活性汚泥に上記微生物のための栄養分を溶か
した溶液を加える工程からなる半連続培養工程を所定期
間繰り返し行って上記活性汚泥中に好気性の糸状性細菌
を発生させる一方、上記容器と別の容器に入れた活性汚
泥について上記溶液の代わりに上記溶液よりも栄養分の
濃度の低い溶液を加える上記半連続培養工程を所定期間
繰り返し行ってその活性汚泥中の固着性原生動物を増大
させ、その固着性原生動物が増大した活性汚泥中に板状
部材を挿入してその板状部材に上記固着性原生動物を含
む活性汚泥を付着させ、その板状部材に付着した活性汚
泥をかき取って上記好気性の糸状性細菌が発生している
活性汚泥に混ぜ、その活性汚泥について上記と同様の半
連続培養工程を所定期間繰り返し行って上記好気性の糸
状性細菌と原生動物が絡まって粒状化した好気性自己造
粒物を発生させる好気性自己造粒物の製造方法。
2. A step of blowing air into the activated sludge contained in a container and stirring the mixture, a step of stopping the blowing of the air to precipitate the microorganisms in the activated sludge, and a supernatant liquid after the microorganisms have settled. And a step of adding a solution in which the nutrients for the microorganisms have been dissolved to the activated sludge from which the supernatant has been removed, and a semi-continuous culturing step is repeated for a predetermined period of time to perform aerobic filamentous activity in the activated sludge. While generating bacteria, in the activated sludge, the semi-continuous culture step of adding a solution having a lower concentration of nutrients than the solution instead of the solution for the activated sludge contained in a container different from the container is repeatedly performed for a predetermined period. Of the adherent protozoa, the plate-like member is inserted into the activated sludge in which the adherent protozoa is increased, and the activated sludge containing the adherent protozoa is attached to the plate-like member. Then, the activated sludge attached to the plate-shaped member is scraped off and mixed with the activated sludge in which the aerobic filamentous bacteria are generated, and the semi-continuous culture step similar to the above is repeated for the activated sludge for a predetermined period. A method for producing an aerobic self-granulated product, wherein the aerobic filamentous bacterium and a protozoa are entangled to generate a granulated aerobic self-granulated product.
JP12924691A 1991-05-31 1991-05-31 Method for producing aerobic self-granulated product Expired - Lifetime JPH0785799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12924691A JPH0785799B2 (en) 1991-05-31 1991-05-31 Method for producing aerobic self-granulated product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12924691A JPH0785799B2 (en) 1991-05-31 1991-05-31 Method for producing aerobic self-granulated product

Publications (2)

Publication Number Publication Date
JPH04354596A JPH04354596A (en) 1992-12-08
JPH0785799B2 true JPH0785799B2 (en) 1995-09-20

Family

ID=15004820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12924691A Expired - Lifetime JPH0785799B2 (en) 1991-05-31 1991-05-31 Method for producing aerobic self-granulated product

Country Status (1)

Country Link
JP (1) JPH0785799B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261385A (en) * 1992-01-22 1993-10-12 Sankyo Co Ltd Granulation method by aerobic biological treatment of organic waste water and aerobic biological treatment of organic waste water
JP4923348B2 (en) * 2001-07-26 2012-04-25 栗田工業株式会社 Biological denitrification method
JP2007136365A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Method for producing granular microbe sludge
JP4804888B2 (en) * 2005-11-18 2011-11-02 住友重機械工業株式会社 Granular microbial sludge generation method
JP2007275845A (en) * 2006-04-11 2007-10-25 Sumitomo Heavy Industries Environment Co Ltd Granular microorganism sludge preparation arrangement and granular microorganism sludge producing method
JP2008049283A (en) * 2006-08-25 2008-03-06 Japan Organo Co Ltd Water treatment apparatus
JP2008284427A (en) * 2007-05-15 2008-11-27 Sumitomo Heavy Industries Environment Co Ltd Apparatus and method for treating waste water
JP2011224569A (en) * 2011-07-20 2011-11-10 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
CN111233136B (en) * 2020-01-16 2021-12-31 郑州大学 Filamentous fungus granular sludge and culture method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716679B2 (en) * 1990-04-03 1995-03-01 荏原インフイルコ株式会社 Sludge concentration method

Also Published As

Publication number Publication date
JPH04354596A (en) 1992-12-08

Similar Documents

Publication Publication Date Title
NL7908138A (en) METHOD FOR PREPARING AND MAINTAINING BIOMASS ON CARRIER.
Hsia et al. PVA-alginate immobilized cells for anaerobic ammonium oxidation (anammox) process
JPH0785799B2 (en) Method for producing aerobic self-granulated product
CN105039300A (en) Preparation method of heterogeneous bacteria embedding particles
EP1767497B1 (en) Entrapping immobilization pellets, process for producing the same, and method for storing or transporting the same
Robinson Immobilized algal technology for wastewater treatment purposes
EP3577160A1 (en) Physical deposition of siliceous particles on plastic support to enhance surface properties
Pörtner et al. Design and operation of fixed-bed bioreactors for immobilized bacterial culture
JPH10327850A (en) Microelement/inorganic nutrient salt diffusion-type carrier for microbial cell culture
JP3835314B2 (en) Carrier packing and water treatment method using the same
US7297405B2 (en) Magnetic particles having core-shell structure
JP2006061097A (en) Method for producing immobilized microorganism, and immobilized microorganism produced by the method, and reactor using the immobilized microorganism
JPS59382A (en) Packing material adherering biomembane for waste water disposal
JPH03259083A (en) Immobilization of biocatalyst
JP2001246397A (en) Method for removing nitrogen in waste water
JPS61192389A (en) Biological treatment of water
US20240076221A1 (en) Hydrogels for the entrapment of bacteria
JPS61242692A (en) Biological treatment of water
JPS62279887A (en) Surface immobilized anaerobic bacteria granule and treatment of waste water using same
JPS63158194A (en) Biological treatment of organic sewage
JP3465419B2 (en) Wastewater treatment agent and wastewater treatment method
Dong et al. Synthesis and application of polyurethane Hydrogel carrier on nitrobacteria immobilization
CN1088756C (en) Method for preparing micro-organism fixation carrier
JPS6219083A (en) Immobilization of microorganism
Bhambri et al. Strategic approach for enhanced biological phosphate removal process