JPH0785724A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition

Info

Publication number
JPH0785724A
JPH0785724A JP5188778A JP18877893A JPH0785724A JP H0785724 A JPH0785724 A JP H0785724A JP 5188778 A JP5188778 A JP 5188778A JP 18877893 A JP18877893 A JP 18877893A JP H0785724 A JPH0785724 A JP H0785724A
Authority
JP
Japan
Prior art keywords
mol
dielectric
temperature
dielectric constant
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5188778A
Other languages
Japanese (ja)
Inventor
Sakiko Iwamoto
本 咲 子 岩
Harunobu Sano
野 晴 信 佐
Yukio Hamachi
地 幸 生 浜
Kunisaburo Tomono
野 国 三 郎 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP5188778A priority Critical patent/JPH0785724A/en
Priority to EP94110102A priority patent/EP0631996B1/en
Priority to DE69412717T priority patent/DE69412717T2/en
Priority to SG1996001841A priority patent/SG45241A1/en
Priority to US08/268,819 priority patent/US5439857A/en
Publication of JPH0785724A publication Critical patent/JPH0785724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a dielectric ceramic composition having a baking temperature of 1000 deg.C or lower by preparing ceramic having a dielectric constant of 10000 or higher and small DC voltage dependency, where a changing rate of an electrostatic capacitance with respect to a temperature satisfies an E characteristic (DELTAC/C20 ranges from +20% to -55%) of the JIS standard. CONSTITUTION:A dielectric ceramic composition is composed of (Mg1/3Nb2/3)O3, PbTiO3, Pb(Ni1/3Nb2/3)O3 and Pb(Zn1/2W1/2)O3, a blending ratio (mol%) of which ranges within 4.0-93.0:1.5-35.0:1.5-51.0:1.0-34.0. Furthermore, the composition includes 0.05-8.0 parts by weight of W calculated in terms of WO3 as an auxiliary component with respect to 100mol% of a main component where part of Pb is substituted with 0.1-10mol% of at least one kind selected from Ba, Ca and Sr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は誘電体磁器組成物に関
し、特にたとえば積層セラミックコンデンサなどの材料
として用いられる誘電体磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition, and more particularly to a dielectric ceramic composition used as a material for, for example, a laminated ceramic capacitor.

【0002】[0002]

【従来の技術】従来から、高誘電率磁器コンデンサ材料
として、BaTiO3 を主体とし、これにシフタとして
BaSnO3 ,CaZrO3 ,SrTiO3 などを添加
した材料が使用されてきた。これらの材料は、室温での
誘電率が2000〜15000と高い。
2. Description of the Related Art Conventionally, a material having BaTiO 3 as a main component and BaSnO 3 , CaZrO 3 , SrTiO 3 or the like as a shifter has been used as a material for a high dielectric constant porcelain capacitor. These materials have a high dielectric constant of 2000 to 15000 at room temperature.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
従来の材料は、焼結温度がいずれも1300℃〜140
0℃と高いという欠点を有していた。そのため、これら
の材料は焼成コストが高くつく。また、磁器積層コンデ
ンサにおいては、生の磁器シートの上に電極を予め形成
したものを複数枚重ねてから焼成される。そのため、電
極材料は、1300℃以上の高温で溶融したり、酸化し
たり、誘電体と反応したりすることのないPtやPdな
どの高融点の貴金属類を用いなければならなかった。
However, the above conventional materials have sintering temperatures of 1300 ° C. to 140 ° C. in all cases.
It had the drawback of being as high as 0 ° C. Therefore, the firing cost of these materials is high. Further, in a porcelain multilayer capacitor, a plurality of preformed electrodes are stacked on a raw porcelain sheet and then fired. Therefore, the electrode material has to be a noble metal having a high melting point such as Pt or Pd that does not melt, oxidize, or react with the dielectric at a high temperature of 1300 ° C. or higher.

【0004】しかし、これらの貴金属を内部電極とする
積層セラミックコンデンサでは、生産コストに占める電
極材料費の割合が大きいため、全体のコストを低減する
ことに限度があった。
However, in the monolithic ceramic capacitor using these noble metals as the internal electrodes, the cost of the electrode material in the production cost is large, so that there is a limit in reducing the total cost.

【0005】このため、BaTiO3 を主体とする高誘
電率系の磁器組成物にB,Bi,Pbなどの酸化物より
なるガラス成分を添加し、焼成温度を1300〜135
0℃から1100〜1150℃に低下させた積層セラミ
ックコンデンサが開発されている。この積層セラミック
コンデンサは、低温焼結可能なため、比較的安価なAg
−Pd系合金を内部電極として用いることができる。
Therefore, a glass component made of an oxide such as B, Bi, or Pb is added to a high dielectric constant porcelain composition mainly composed of BaTiO 3 , and the firing temperature is set to 1300 to 135.
A monolithic ceramic capacitor whose temperature is lowered from 0 ° C to 1100 to 1150 ° C has been developed. Since this monolithic ceramic capacitor can be sintered at low temperature, it is relatively inexpensive Ag.
A -Pd-based alloy can be used as the internal electrode.

【0006】しかし、この積層セラミックコンデンサで
は、ガラス成分を添加することによって、BaTiO3
母体組成の本来有する誘電率が低下してしまうという欠
点があった。そのため、積層セラミックコンデンサの寸
法が、逆に大きくなってしまい、電極材料のコストの低
下を打ち消してしまう。
However, in this laminated ceramic capacitor, BaTiO 3 is added by adding a glass component.
There is a drawback that the original dielectric constant of the matrix composition is lowered. As a result, the size of the monolithic ceramic capacitor becomes large on the contrary, and the cost reduction of the electrode material is canceled.

【0007】また、BaTiO3 系磁器組成物を用いた
コンデンサでは、その静電容量が直流バイアス電界の影
響を受ける。たとえば1mmあたり5kvの高圧直流電
圧を印加すると、静電容量値が30〜80%も低下して
しまう。
Further, in a capacitor using a BaTiO 3 system porcelain composition, its capacitance is affected by a DC bias electric field. For example, when a high-voltage DC voltage of 5 kv per mm is applied, the capacitance value is reduced by 30 to 80%.

【0008】これらの問題点を解決すべく、低温で焼結
可能な鉛を主体とした鉛複合ペロブスカイト組成物の研
究がなされている。鉛複合ペロブスカイト誘電体磁器組
成物においては、比誘電率10000以上、焼成温度1
050℃以下という組成が既に知られている。しかし、
これらの組成物は、温度に対する静電容量の変化率が大
きいという欠点があった。
In order to solve these problems, a lead composite perovskite composition mainly composed of lead which can be sintered at a low temperature has been studied. The lead composite perovskite dielectric ceramic composition has a relative dielectric constant of 10,000 or more and a firing temperature of 1
A composition of 050 ° C. or lower is already known. But,
These compositions have the drawback that the rate of change in capacitance with temperature is large.

【0009】それゆえに、この発明の主たる目的は、誘
電率が10000以上を示し、直流電圧依存性が小さ
く、温度に対する静電容量の変化率がJIS規格のE特
性(ΔC/C20=+20%〜−55%)を満足する磁器
を得ることができ、焼成温度が1000℃以下である、
誘電体磁器組成物を提供することである。
Therefore, the main object of the present invention is to show a dielectric constant of 10,000 or more, a small DC voltage dependence, and a rate of change in capacitance with temperature according to the JIS standard E characteristic (ΔC / C 20 = + 20%). ~ -55%) can be obtained, and the firing temperature is 1000 ° C or lower.
A dielectric porcelain composition is provided.

【0010】[0010]

【課題を解決するための手段】この発明は、Pb(Mg
1/3 Nb2/3 )O3 と、,PbTiO3 と、Pb(Ni
1/3 Nb2/3 )O3 と、Pb(Zn1/2 1/2 )O3
の配合比が、Pb(Mg1/3 Nb2/3 )O3 4.0〜
93.0モル%と、PbTiO3 1.5〜35.0モ
ル%と、Pb(Ni1/3 Nb2/3 )O3 1.5〜5
1.0モル%と、Pb(Zn1/2 1/2 )O3 1.0
〜34.0モル%との範囲内にあり、Pbの一部を0.
1〜10モル%のBa,CaおよびSrの少なくとも1
種類で置換した主成分100モル%に対し、副成分とし
て、主成分を100重量部として、WをWO3 に換算し
て0.05〜8.0重量部含有する、誘電体磁器組成物
である。
The present invention is based on Pb (Mg
1/3 Nb 2/3 ) O 3 , PbTiO 3 and Pb (Ni
The compounding ratio of 1/3 Nb 2/3 ) O 3 and Pb (Zn 1/2 W 1/2 ) O 3 is Pb (Mg 1/3 Nb 2/3 ) O 3 4.0-
93.0 mol%, PbTiO 3 1.5-35.0 mol%, Pb (Ni 1/3 Nb 2/3 ) O 3 1.5-5
1.0 mol% and Pb (Zn 1/2 W 1/2 ) O 3 1.0
.About.34.0 mol%, and a part of Pb is less than 0.
1 to 10 mol% of at least one of Ba, Ca and Sr
A dielectric ceramic composition containing 100 parts by weight of a main component as an accessory component and 0.05 to 8.0 parts by weight of W in terms of WO 3 with respect to 100 mol% of the main component substituted by types. is there.

【0011】また、副成分として、主成分を100重量
部として、MnをMnO2 に換算して0.5重量部以下
含有するのが好ましい。
Further, it is preferable that the main component is 100 parts by weight, and Mn is converted into MnO 2 in an amount of 0.5 parts by weight or less.

【0012】[0012]

【発明の効果】この発明に係る誘電体磁器組成物によっ
て得られる磁器は、誘電率が10000以上で、誘電損
失が2.0%以下であり、室温での比抵抗が1012Ω・
cm以上である。また、得られる磁器は、静電容量の温
度変化率が−25℃〜+85℃の温度範囲でJIS規格
のE特性(−25℃〜+85℃においてΔC/C20=+
20%〜−55%)を満たし、電圧依存性および機械的
強度に優れ、信頼性が高い。さらに、この発明に係る誘
電体磁器組成物は、1000℃以下の低温で焼成可能で
ある。
The porcelain obtained by the dielectric porcelain composition according to the present invention has a dielectric constant of 10,000 or more, a dielectric loss of 2.0% or less, and a specific resistance at room temperature of 10 12 Ω.
cm or more. Further, the obtained porcelain has a JIS standard E characteristic (ΔC / C 20 = + at −25 ° C. to + 85 ° C.) in a temperature range of −25 ° C. to + 85 ° C.
20% to −55%), excellent voltage dependence and mechanical strength, and high reliability. Furthermore, the dielectric ceramic composition according to the present invention can be fired at a low temperature of 1000 ° C. or lower.

【0013】したがって、この発明に係る誘電体磁器組
成物は、一般の磁器コンデンサのみならず、積層セラミ
ックコンデンサの誘電材料として使用可能である。特
に、焼成温度が低いことから、積層セラミックコンデン
サを製造する場合に、内部電極としてAg−Pd合金を
用いることができ、小型かつ大容量のものを工業的に生
産することができる。
Therefore, the dielectric ceramic composition according to the present invention can be used as a dielectric material for not only general ceramic capacitors but also laminated ceramic capacitors. In particular, since the firing temperature is low, when manufacturing a monolithic ceramic capacitor, an Ag-Pd alloy can be used as an internal electrode, and a small size and large capacity can be industrially produced.

【0014】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。
The above-mentioned objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments with reference to the drawings.

【0015】[0015]

【実施例】【Example】

実施例1 まず、出発原料として、純度99.9%以上のPbO,
NiO,Nb2 5 ,TiO2 ,ZnO,WO3 ,Mg
O,BaCO3 ,SrCO3 ,CaCO3 およびMnO
2 を準備した。これらの原料を、表1に示す組成比の誘
電体磁器組成物が得られるように秤量し、秤量物を得
た。
Example 1 First, as a starting material, PbO having a purity of 99.9% or more,
NiO, Nb 2 O 5 , TiO 2 , ZnO, WO 3 , Mg
O, BaCO 3 , SrCO 3 , CaCO 3 and MnO
Prepared 2 . These raw materials were weighed so that a dielectric ceramic composition having a composition ratio shown in Table 1 was obtained to obtain a weighed product.

【0016】[0016]

【表1】 [Table 1]

【0017】これらの秤量物を100gずつ、ポリエチ
レン製ポットにめのう玉石とともに入れ、10時間湿式
混合して、混合物スラリを得た。この混合物スラリを脱
水し、乾燥して、アルミナ質匣に入れ、650℃〜80
0℃で2時間保持して、仮焼し、仮焼粉末(1次反応粉
末)を得た。この仮焼粉末を予め粗粉砕し、バインダと
してポリビニルアルコールを3重量%加えて、再び湿式
混合を行って、スラリを得た。このスラリを乾燥した
後、60メッシュの篩を通して、成形用整粒とした。さ
らに、オイルプレスによって2000kg/cm2 の圧
力で、直径1.0cm,厚み1.0mmの円板状に成形
加工し、円板を得た。
100 g of each of these weighed materials was put into a polyethylene pot together with agate stones and wet-mixed for 10 hours to obtain a mixture slurry. This mixture slurry is dehydrated, dried, put in an alumina jar, and heated at 650 ° C to 80 ° C.
It was kept at 0 ° C. for 2 hours and calcined to obtain a calcined powder (primary reaction powder). The calcined powder was coarsely pulverized in advance, 3% by weight of polyvinyl alcohol was added as a binder, and wet mixing was performed again to obtain a slurry. After this slurry was dried, it was passed through a 60-mesh sieve to obtain sized particles for molding. Further, it was formed into a disc having a diameter of 1.0 cm and a thickness of 1.0 mm by an oil press at a pressure of 2000 kg / cm 2 , to obtain a disc.

【0018】得られた円板をジルコニア粉末を敷粉とし
たアルミナ質の匣に入れて、400℃で4時間加熱し
て、有機バインダを燃焼させた後、表2に示す焼成温度
で2時間焼成して、磁器円板を得た。得られた磁器円板
の両面に、ホウ珪酸鉛ガラススリットを含む銀ペースト
を塗布し、750℃で10分間焼き付けて電極を形成
し、測定用の試料とした。
The obtained disk was placed in an alumina-based urn containing zirconia powder as a bed powder, heated at 400 ° C. for 4 hours to burn the organic binder, and then at a firing temperature shown in Table 2 for 2 hours. It baked and the porcelain disk was obtained. Silver paste containing lead borosilicate glass slits was applied to both surfaces of the obtained porcelain disk and baked at 750 ° C. for 10 minutes to form electrodes, which were used as measurement samples.

【0019】各試料につき、静電容量(C)および誘電
損失(tanδ)を、温度25℃,1KHz,1Vrm
sの条件で測定した。また、絶縁抵抗(IR)は、直流
500Vで2分間印加したときの値を測定した。さら
に、試料の厚み,電極の直径寸法を測定し、誘電率
(ε)および比抵抗(ρ)を計算した。
The capacitance (C) and dielectric loss (tan δ) of each sample were measured at a temperature of 25 ° C., 1 KHz, 1 Vrm.
It was measured under the condition of s. The insulation resistance (IR) was measured by applying a DC voltage of 500 V for 2 minutes. Furthermore, the thickness of the sample and the diameter of the electrode were measured, and the dielectric constant (ε) and the specific resistance (ρ) were calculated.

【0020】これらの試験結果を、各試料の焼成温度と
ともに表2に示す。
The test results are shown in Table 2 together with the firing temperature of each sample.

【0021】[0021]

【表2】 [Table 2]

【0022】この発明において主成分および副成分の範
囲を上述のように限定する理由は次の通りである。
The reason for limiting the ranges of the main component and the subcomponents in the present invention as described above is as follows.

【0023】まず、主成分の範囲の限定理由について説
明する。
First, the reason for limiting the range of the main component will be described.

【0024】Pb(Mg1/3 Nb2/3 )O3 について、
その範囲を4.0〜93.0モル%としたのは、試料番
号1のように、4.0モル%未満では、誘電率が100
00未満になるとともに、誘電損失が2.0%を超え
る。また、試料番号10のように、93.0モル%を超
えると、誘電率は高くなるが、温度特性がE特性を満足
しない。
Regarding Pb (Mg 1/3 Nb 2/3 ) O 3 ,
The range is set to 4.0 to 93.0 mol% because the dielectric constant is 100 when the content is less than 4.0 mol% as in Sample No. 1.
When it is less than 00, the dielectric loss exceeds 2.0%. Further, as in Sample No. 10, when it exceeds 93.0 mol%, the dielectric constant increases, but the temperature characteristics do not satisfy the E characteristics.

【0025】PbTiO3 について、その範囲を1.5
〜35.0モル%としたのは、試料番号5のように、
1.5モル%未満では、誘電率の低下が著しくなり、誘
電率が10000未満になる。また、試料番号6のよう
に、35.0モル%を超えると、誘電率が低く、誘電損
失が2.0%を超える。
For PbTiO 3 , the range is 1.5
~ 35.0 mol% is, as in Sample No. 5,
If it is less than 1.5 mol%, the dielectric constant is significantly lowered, and the dielectric constant is less than 10,000. When it exceeds 35.0 mol% as in Sample No. 6, the dielectric constant is low and the dielectric loss exceeds 2.0%.

【0026】Pb(Ni1/3 Nb2/3 )O3 について、
その範囲を1.5〜51.0モル%としたのは、試料番
号12のように、1.5モル%未満では、誘電率は高く
なるが、温度特性がE特性を満足しない。また、試料番
号16のように、51.0モル%を超えると、誘電率が
10000未満になる。
Regarding Pb (Ni 1/3 Nb 2/3 ) O 3 ,
The reason why the range is set to 1.5 to 51.0 mol% is that, as in Sample No. 12, when the content is less than 1.5 mol%, the dielectric constant becomes high, but the temperature characteristic does not satisfy the E characteristic. Further, as in Sample No. 16, when it exceeds 51.0 mol%, the dielectric constant becomes less than 10,000.

【0027】Pb(Zn1/2 1/2 )O3 について、そ
の範囲を1.0〜34.0モル%としたのは、試料番号
17のように、1.0モル%未満では、焼結温度が10
00℃を超え、誘電率が10000未満になる。また、
試料番号18のように、34.0モル%を超えると、焼
結温度は低下するが、誘電率が10000未満になると
ともに、比抵抗も室温で1012Ω・cmに達しなくな
る。
The range of Pb (Zn 1/2 W 1/2 ) O 3 was set to 1.0 to 34.0 mol%. Sintering temperature is 10
Exceeding 00 ° C, the dielectric constant becomes less than 10,000. Also,
When it exceeds 34.0 mol% as in Sample No. 18, the sintering temperature decreases, but the dielectric constant becomes less than 10,000 and the specific resistance does not reach 10 12 Ω · cm at room temperature.

【0028】Pbの一部を0.1〜10モル%のBa,
Ca,Srの少なくとも1種類で置換することによっ
て、低誘電率のパイロクロア相の生成が抑えられる。そ
して、高誘電率で、高い絶縁抵抗を示し、容量の温度変
化率が小さく、機械的強度の優れた誘電体磁器組成物を
得ることができる。しかし、試料番号25のように、
0.1モル%未満では、誘電損失が2.0%を超える。
また、試料番号26,27および28のように、10.
0モル%を超えると、焼結温度が1000℃を超え、温
度特性がE特性を満足せず、誘電率が10000未満に
なる。
Part of Pb is 0.1-10 mol% of Ba,
By substituting at least one of Ca and Sr, generation of a low dielectric constant pyrochlore phase is suppressed. Then, it is possible to obtain a dielectric ceramic composition having a high dielectric constant, a high insulation resistance, a small rate of change in capacitance with temperature, and an excellent mechanical strength. However, like sample number 25,
If it is less than 0.1 mol%, the dielectric loss exceeds 2.0%.
Also, as in sample numbers 26, 27 and 28, 10.
When it exceeds 0 mol%, the sintering temperature exceeds 1000 ° C., the temperature characteristics do not satisfy the E characteristics, and the dielectric constant becomes less than 10,000.

【0029】次に、副成分の範囲の限定理由について説
明する。
Next, the reason for limiting the range of subcomponents will be described.

【0030】WをWO3 に換算して0.05〜8.0重
量部としたのは、試料番号19のように、0.05重量
部未満では、誘電率が10000未満になる。また、試
料番号20のように、8.0重量部を超えると、誘電率
は高くなるが、温度特性がE特性を満足せず、比抵抗も
1012Ω・cmに達しなくなる。
The reason why W is 0.05 to 8.0 parts by weight in terms of WO 3 is that the dielectric constant is less than 10,000 when the content is less than 0.05 parts by weight as in Sample No. 19. Further, as in Sample No. 20, when it exceeds 8.0 parts by weight, the dielectric constant becomes high, but the temperature characteristic does not satisfy the E characteristic and the specific resistance does not reach 10 12 Ω · cm.

【0031】MnをMnO2 に換算して0.5重量部以
下としたのは、この範囲で室温および高温でのIRがい
ずれも1012Ω・cmと高くなるからであり、試料番号
24のように、0.5重量部を超えると、比抵抗が室温
で1012Ω・cmに達しなくなる。
The reason why Mn is converted to MnO 2 to be 0.5 parts by weight or less is that the IR at room temperature and high temperature is as high as 10 12 Ω · cm in this range, and the sample number 24 is As described above, when the amount exceeds 0.5 parts by weight, the specific resistance does not reach 10 12 Ω · cm at room temperature.

【0032】表2から明らかなように、本発明に係る誘
電体磁器組成物は、誘電率がいずれも10000以上と
高い。しかも、高誘電率にもかかわらず、静電容量の温
度変化率がE特性を満たしている。また、誘電損失も
2.0%以下と低く、焼成温度も1000℃以下と、低
温での焼成が可能である。
As is apparent from Table 2, the dielectric ceramic composition according to the present invention has a high dielectric constant of 10,000 or more. Moreover, despite the high dielectric constant, the temperature change rate of the capacitance satisfies the E characteristic. Moreover, the dielectric loss is as low as 2.0% or less, and the firing temperature is 1000 ° C. or less, which enables firing at a low temperature.

【0033】実施例2 実施例1において調製した誘電体セラミック原料のうち
試料番号11および試料番号25を用いて、積層チップ
を作製した。これらの誘電体セラミック原料にポリビニ
ルブチラール系バインダおよびエタノールなどの有機バ
インダを加えてからボールミルで湿式混合して、セラミ
ックスラリを調整した。そののち、セラミックスラリを
ドクターブレード法によってシート状に成形して、厚み
20μmの矩形のセラミックグリーンシートを得た。次
に、得られたセラミックグリーンシート上にAgを主成
分とする導電ペーストを印刷して、内部電極を構成する
ための導電ペースト層を形成した。
Example 2 A laminated chip was prepared using sample numbers 11 and 25 of the dielectric ceramic raw materials prepared in example 1. A polyvinyl butyral-based binder and an organic binder such as ethanol were added to these dielectric ceramic raw materials and wet-mixed with a ball mill to prepare a ceramic slurry. After that, the ceramic slurry was formed into a sheet by the doctor blade method to obtain a rectangular ceramic green sheet having a thickness of 20 μm. Next, a conductive paste containing Ag as a main component was printed on the obtained ceramic green sheet to form a conductive paste layer for forming internal electrodes.

【0034】そして、導電ペースト層が形成されたセラ
ミックグリーンシートを、導電ペースト層の引き出され
ている側が互い違いとなるように複数枚積層して、積層
体を得た。
Then, a plurality of ceramic green sheets having the conductive paste layer formed thereon were laminated so that the drawn out sides of the conductive paste layers were staggered to obtain a laminated body.

【0035】それから、得られた積層体を大気中におい
て、表3に示す温度で2時間焼成して、セラミック焼成
体を得た。得られたセラミック焼成体の両端面にAg電
極を塗布し、大気中で750℃の温度で焼き付け、内部
電極に電気的に接続された外部電極を形成して、試料と
なる積層コンデンサを得た。
Then, the obtained laminated body was fired in the atmosphere at the temperature shown in Table 3 for 2 hours to obtain a ceramic fired body. An Ag electrode was applied to both end faces of the obtained ceramic fired body, and baked at a temperature of 750 ° C. in the atmosphere to form an external electrode electrically connected to the internal electrode to obtain a sample multilayer capacitor. .

【0036】[0036]

【表3】 [Table 3]

【0037】試料となる積層コンデンサの外径寸法は、
幅が1.6mmで、長さが3.2mmで、厚みが1.2
mmであり、内部電極間の誘電体セラミック層の厚みが
13μmであった。また、有効な誘電体セラミック層の
総数は10層であり、1層あたりの対向面積は2.1m
2 であった。
The outer diameter of the sample multilayer capacitor is
The width is 1.6 mm, the length is 3.2 mm, and the thickness is 1.2.
mm, and the thickness of the dielectric ceramic layer between the internal electrodes was 13 μm. The total number of effective dielectric ceramic layers is 10, and the facing area per layer is 2.1 m.
It was m 2 .

【0038】静電容量(C)および誘電損失(tan
δ)を測定するために、自動ブリッジ式測定機を用い
て、各試料の積層コンデンサに1kHz、1Vrmsの
電圧を印加した。次に、絶縁抵抗(R)を測定するため
に、絶縁抵抗計を用いて25Vの電圧を2分間印加し
た。そして、静電容量(C)と絶縁抵抗(R)との積、
すなわちCR積を求めた。さらに、温度80℃、湿度9
5%の雰囲気中で1000時間の耐湿試験を行って、そ
の試験前後の絶縁抵抗(R)を測定した。
Capacitance (C) and dielectric loss (tan)
In order to measure δ), a voltage of 1 kHz and 1 Vrms was applied to the multilayer capacitor of each sample using an automatic bridge type measuring machine. Next, in order to measure the insulation resistance (R), a voltage of 25 V was applied for 2 minutes using an insulation resistance meter. Then, the product of the capacitance (C) and the insulation resistance (R),
That is, the CR product was obtained. Furthermore, temperature 80 ℃, humidity 9
A humidity resistance test was conducted for 1000 hours in a 5% atmosphere, and the insulation resistance (R) before and after the test was measured.

【0039】また、抗折強度については、図1に示す抗
折強度測定装置10を用いて測定した。図1において、
12は試料である被試験積層磁器コンデンサであり、1
4は試料保持台である。試料保持台14上に置かれた積
層磁器コンデンサ12は、加圧ピン16によって加圧さ
れる。そして、加圧された圧力が、置き針付きテンショ
ンゲージ18によって表示される。この測定に際して、
試料保持台14の治具の間隔は2mmとした。
The bending strength was measured using a bending strength measuring device 10 shown in FIG. In FIG.
Reference numeral 12 is a sample multilayer ceramic capacitor to be tested,
4 is a sample holder. The laminated ceramic capacitor 12 placed on the sample holder 14 is pressed by the pressing pin 16. Then, the applied pressure is displayed by the tension gauge with a stylus 18. In this measurement,
The distance between the jigs on the sample holder 14 was 2 mm.

【0040】また、1kHz、1Vrmsの電圧を印加
した上に、直流電流を25V重畳したときの静電容量の
変化率を測定した。
Further, the rate of change in capacitance was measured when a DC current of 25 V was applied on top of applying a voltage of 1 kHz and 1 Vrms.

【0041】以上の結果を表3に示す。The above results are shown in Table 3.

【0042】表3から明らかなように、本発明に係る誘
電体磁器組成物を用いた磁器は、従来と比較して、抗折
強度も高く、直流電流を重畳したときの静電容量の変化
率も小さく、耐湿試験においても絶縁抵抗の劣化がみら
れない。このように、本発明に係る誘電体磁器組成物を
用いれば、信頼性の高い積層コンデンサを得ることがで
きる。
As is clear from Table 3, the porcelain using the dielectric porcelain composition according to the present invention has a higher bending strength as compared with the conventional one, and the change in the capacitance when a direct current is superposed. The rate is small, and the insulation resistance is not deteriorated even in the humidity resistance test. As described above, by using the dielectric ceramic composition according to the present invention, a highly reliable multilayer capacitor can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】試料の抗折強度を測定するための抗折強度測定
装置を示す図解図である。
FIG. 1 is an illustrative view showing a bending strength measuring device for measuring a bending strength of a sample.

【符号の説明】[Explanation of symbols]

10 抗折強度測定装置 12 積層磁器コンデンサ 14 試料保持台 16 加圧ピン 18 置き針付テンションゲージ 10 Bending strength measuring device 12 Laminated porcelain capacitor 14 Sample holder 16 Pressing pin 18 Tension gauge with needle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伴 野 国 三 郎 京都府長岡京市天神2丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunizaburo Banno 2-26-10 Tenjin Tenjin, Nagaokakyo-shi, Kyoto Murata Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Pb(Mg1/3 Nb2/3 )O3 ,PbT
iO3 ,Pb(Ni1/3 Nb2/3 )O3 およびPb(Z
1/2 1/2 )O3 の配合比が、 Pb(Mg1/3 Nb2/3 )O3 4.0〜93.0モル
%、 PbTiO3 1.5〜35.0モル%、 Pb(Ni1/3 Nb2/3 )O3 1.5〜51.0モル
%、およびPb(Zn1/2 1/2 )O3 1.0〜3
4.0モル% の範囲内にあり、Pbの一部を0.1〜10モル%のB
a,CaおよびSrの少なくとも1種類で置換した主成
分100モル%に対し、 副成分として、前記主成分を100重量部として、Wを
WO3 に換算して0.05〜8.0重量部含有する、誘
電体磁器組成物。
1. Pb (Mg 1/3 Nb 2/3 ) O 3 , PbT
iO 3 , Pb (Ni 1/3 Nb 2/3 ) O 3 and Pb (Z
The compounding ratio of n 1/2 W 1/2 ) O 3 is as follows: Pb (Mg 1/3 Nb 2/3 ) O 3 4.0-93.0 mol%, PbTiO 3 1.5-35.0 mol% , Pb (Ni 1/3 Nb 2/3 ) O 3 1.5 to 51.0 mol%, and Pb (Zn 1/2 W 1/2 ) O 3 1.0 to 3
It is in the range of 4.0 mol% and a part of Pb is 0.1 to 10 mol% of B.
0.05 to 8.0 parts by weight when W is converted to WO 3 with 100 parts by weight of the main component as a sub-component based on 100 mol% of the main component substituted with at least one of a, Ca and Sr. A dielectric ceramic composition containing.
【請求項2】 副成分として、前記主成分を100重量
部として、MnをMnO2 に換算して0.5重量部以下
含有する、請求項1の誘電体磁器組成物。
2. The dielectric ceramic composition according to claim 1, which contains 0.5 parts by weight or less of Mn as MnO 2 with 100 parts by weight of the main component as an auxiliary component.
JP5188778A 1993-06-30 1993-06-30 Dielectric ceramic composition Pending JPH0785724A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5188778A JPH0785724A (en) 1993-06-30 1993-06-30 Dielectric ceramic composition
EP94110102A EP0631996B1 (en) 1993-06-30 1994-06-29 Dielectric ceramic composition
DE69412717T DE69412717T2 (en) 1993-06-30 1994-06-29 Dielectric ceramic composition
SG1996001841A SG45241A1 (en) 1993-06-30 1994-06-29 Dielectric ceramic composition
US08/268,819 US5439857A (en) 1993-06-30 1994-06-30 Dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5188778A JPH0785724A (en) 1993-06-30 1993-06-30 Dielectric ceramic composition

Publications (1)

Publication Number Publication Date
JPH0785724A true JPH0785724A (en) 1995-03-31

Family

ID=16229630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5188778A Pending JPH0785724A (en) 1993-06-30 1993-06-30 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPH0785724A (en)

Similar Documents

Publication Publication Date Title
JP4345071B2 (en) Multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor
JPS61250905A (en) Dielectric ceramic composition and manufacture thereof
JPH0925162A (en) Nonreducing dielectric porcelain composition and laminated ceramic capacitor using the same
US5202814A (en) Nonreducing dielectric ceramic composition
JP3467813B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JPH0261434B2 (en)
JP3362408B2 (en) Dielectric porcelain composition
JPH0785724A (en) Dielectric ceramic composition
JPH0785723A (en) Dielectric ceramic composition
EP0631996B1 (en) Dielectric ceramic composition
JP3316717B2 (en) Multilayer ceramic capacitors
JP2789110B2 (en) High dielectric constant porcelain composition
JP2803227B2 (en) Multilayer electronic components
JP3263990B2 (en) Dielectric porcelain composition
JPH0785725A (en) Dielectric ceramic composition
JP2821768B2 (en) Multilayer ceramic capacitors
JP3438334B2 (en) Non-reducing dielectric porcelain composition
JP3603842B2 (en) Non-reducing dielectric ceramic composition
JP3064571B2 (en) Dielectric porcelain composition
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JP3336194B2 (en) Dielectric porcelain
JPS6230151B2 (en)
JPH05266711A (en) Dielectric ceramic composition
JPH04368709A (en) Nonreducing dielectric porcelain composition material
JP3064572B2 (en) Dielectric porcelain composition