JPH0783849B2 - Coating device - Google Patents

Coating device

Info

Publication number
JPH0783849B2
JPH0783849B2 JP30579786A JP30579786A JPH0783849B2 JP H0783849 B2 JPH0783849 B2 JP H0783849B2 JP 30579786 A JP30579786 A JP 30579786A JP 30579786 A JP30579786 A JP 30579786A JP H0783849 B2 JPH0783849 B2 JP H0783849B2
Authority
JP
Japan
Prior art keywords
spraying
distance
sprayed
spray
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30579786A
Other languages
Japanese (ja)
Other versions
JPS63158148A (en
Inventor
均 山崎
祐治 福田
将人 公文
浩一 光畑
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP30579786A priority Critical patent/JPH0783849B2/en
Publication of JPS63158148A publication Critical patent/JPS63158148A/en
Publication of JPH0783849B2 publication Critical patent/JPH0783849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0006Spraying by means of explosions

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶射装置、特にガスの爆発ないし燃焼によって
発生する高エネルギーのガスにより溶射粉末を被溶射物
の表面に溶射して溶射皮膜を形成するコーティング装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a thermal spraying device, and in particular, a high-energy gas generated by the explosion or combustion of gas sprays thermal spraying powder onto the surface of a sprayed object to form a sprayed coating. Coating device.

〔従来の技術〕[Conventional technology]

一般に溶射方法は金属材料の表面に耐摩耗性、耐熱性、
耐食性を与えるための金属、合金あるいはセラミックス
の溶射皮膜を形成する方法として広く知られている。溶
射方法は、溶射材料を加熱する熱源の種類によってガス
方式と電気方式とに大別される。
Generally, the thermal spraying method is applied to the surface of metal materials such as wear resistance, heat resistance,
It is widely known as a method for forming a sprayed coating of metal, alloy or ceramics for imparting corrosion resistance. The thermal spraying method is roughly classified into a gas system and an electric system depending on the type of heat source for heating the thermal spray material.

ガス方式の内で、超高速の粒子を作り出し溶射を行う方
法として酸素−アセチレン(又はプロパン)の爆発力を
利用して皮膜を作成する方法がある。この代表的な方法
として、爆発溶射方法及び超高速強化ガス炎溶射方法が
ある。爆発溶射方法は米国特許第2714563号(1955.8.
2)、第2950867号(1960.8.30)第2964420号明細書に記
載の如く、一定量の酸素、アセチレン及び溶射粉末を燃
焼室に導入して点火装置で点火し爆発させ、この爆発に
よるエネルギーによって溶射粉末を被溶射物に衝突させ
溶射皮膜を形成させる方法である。この時のガス温度は
3,000〜4,000℃で、ガス流速は音速の10倍を越える衝撃
波が形成される。本方法における溶射粉末の粒子速度は
音速の2倍以上(約700m/秒)となる。超高速強化ガス
炎溶射は水素、プロパン等の燃料ガスと酸素を燃焼させ
ガスジェットを発生させ、このガスジェット中に溶射粉
末を送給して溶融ないし半溶融粒子となって溶射され溶
射皮膜を形成させる方法である。この時のガスジェット
の温度は約2800℃で、ガス流速は音速の約4倍で、溶射
粉末の粒子速度は爆発溶射とほぼ同程度である。
Among gas methods, there is a method of forming a film by utilizing the explosive force of oxygen-acetylene (or propane) as a method of producing ultra-high speed particles and performing thermal spraying. As typical methods of this, there are an explosion spraying method and an ultra-high speed enhanced gas flame spraying method. The explosive spraying method is described in U.S. Patent No. 2714563 (1955.8.
2), No. 2950867 (1960.8.30) No. 2964420, a certain amount of oxygen, acetylene and thermal spray powder are introduced into the combustion chamber and ignited by an igniter to explode. This is a method of forming a sprayed coating by causing the sprayed powder to collide with an object to be sprayed. The gas temperature at this time is
At 3,000-4,000 ℃, a shock wave with a gas velocity exceeding 10 times the speed of sound is formed. The particle velocity of the sprayed powder in this method is more than twice the speed of sound (about 700 m / sec). Ultra-high speed enhanced gas flame spraying produces a gas jet by burning a fuel gas such as hydrogen and propane with oxygen to generate a sprayed powder, which is then sprayed into molten or semi-molten particles to form a sprayed coating. It is a method of forming. At this time, the temperature of the gas jet is about 2800 ° C, the gas flow velocity is about 4 times the speed of sound, and the particle velocity of the sprayed powder is almost the same as that of explosive spraying.

上記したガスエネルギーを熱源とする溶射方法の特長は
溶射粉末の粒子速度が他の溶射方法(例えばプラズマ溶
射)より速いため、溶射皮膜と母材の密着強度が非常に
高くなることである。
The feature of the above-mentioned thermal spraying method using gas energy as a heat source is that the particle velocity of the thermal spraying powder is higher than that of other thermal spraying methods (for example, plasma thermal spraying), so that the adhesion strength between the thermal spray coating and the base material becomes very high.

この爆発溶射による溶射装置に関し、燃焼ガスの失火や
逆火を防止する点については、特公昭52−28453、特公
昭56−34390、特公昭57−56380、特開昭55−194066及び
特公昭60−56546号公報などが、また、溶射粉末の安定
供給に関しては、特公昭56−35950、特公昭60−56543及
び特公昭60−56545号公報などが、更に溶射皮膜厚さを
均一にする方法として特公昭60−56542及び特公昭60−5
6544号公報がある。しかし、本溶射装置と被溶射物との
間の溶射距離や溶射角度の点については何ら配慮されて
いなかった。
Regarding the spraying apparatus by the explosive spraying, the points of preventing combustion gas misfire and flashback are described in JP-B-52-28453, JP-B-56-34390, JP-B-57-56380, JP-A-55-194066 and JP-B-60460. For example, Japanese Patent Publication No. 56546, Japanese Patent Publication No. Sho 56-56543, Japanese Patent Publication No. Sho 60-56543 and Japanese Patent Publication No. Sho 60-56545 disclose methods for further uniformizing the thermal spray coating thickness. Japanese Patent Publication 60-56542 and Japanese Patent Publication 60-5
There is a 6544 publication. However, no consideration has been given to the points of the spraying distance and the spraying angle between the present spraying device and the object to be sprayed.

従来技術における爆発溶射装置の全体構成は第6図に示
すように、端部が封じ込められた筒状の溶射トーチ4
と、その溶射トーチ4に溶射粉末を供給する溶射粉末供
給系1と、アセチレンガス又はプロパンガスと酸素ガス
とを供給する燃焼ガス供給系2と、溶射トーチ4に供給
された燃焼ガスに点火する点火装置とからなっている。
ガスの爆発による高エネルギーにより溶射粉末が溶融な
いし半溶融状態となり、その爆発効果によって溶射トー
チ4の先端から高速で噴射されて被溶射物の表面に衝突
し溶射皮膜を形成する。
As shown in FIG. 6, the overall construction of the conventional explosive spraying apparatus is a cylindrical spraying torch 4 with its ends sealed.
A thermal spray powder supply system 1 for supplying thermal spray powder to the thermal spray torch 4, a combustion gas supply system 2 for supplying acetylene gas or propane gas and oxygen gas, and ignition of the combustion gas supplied to the thermal spray torch 4. It consists of an ignition device.
The high-energy produced by the explosion of the gas causes the thermal spray powder to be in a molten or semi-molten state, and due to the explosive effect, the thermal spray powder is sprayed at a high speed from the tip of the thermal spray torch 4 and collides with the surface of the thermal spray object to form a thermal spray coating.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前述の装置を用いて最適溶射条件を種々検討した結果、
溶射トーチ4の先端と被溶射物5との間の溶射距離(第
6図中のL)等が溶射皮膜の性状に大きく影響を及ぼし
ていることが明らかとなった。第7図は検討結果の一例
で、被溶射物5に溶射された溶射皮膜の厚さは溶射距離
Lが長くなる程溶射炎が広がり溶射粒子密度が低下する
ため薄くなるが、溶射皮膜の硬度はある一定の溶射距離
Lで最大値を示す。硬度が最大値を示す理由は、溶射距
離Lがある一定値より小さい場合、溶射粒子が移行中に
溶融する時間が不足して溶融粒子数がふえないため気孔
がふえ硬度が低下し、一方溶射距離Lがある一定値より
大きい場合は溶融した溶射粒子が移行中に冷却され凝固
するため溶融粒子数が減少しかつ粒子速度も低下するの
で気孔がふえ硬度が低下するためと考えられる。このこ
とは、溶射皮膜に対する必要条件にもよるが、最適な溶
射皮膜を得るためには溶射トーチ4と被溶射物5との間
の溶射距離Lを所望値に制御する必要があることを示し
ている。更に、第8図は、溶射方向と被溶射物5との角
度α即ち、溶射角度と溶射皮膜の厚さとの関連を検討し
た結果であるが、図から明らかなように、溶射角度αと
しては出来るだけ90゜すなわち直角であることが良いと
いうことがわかる。これは溶射角度αが90゜に近づく程
被溶射物5に衝突した粒子が飛散する率が減少するため
である。
As a result of various examinations of optimum spraying conditions using the above-mentioned apparatus,
It has been clarified that the spraying distance (L in FIG. 6) between the tip of the spraying torch 4 and the sprayed object 5 has a great influence on the properties of the sprayed coating. FIG. 7 shows an example of the examination result. The thickness of the sprayed coating sprayed on the sprayed object 5 becomes thinner as the spraying distance L becomes longer because the spraying flame spreads and the density of the sprayed particles decreases, but the hardness of the sprayed coating is increased. Indicates the maximum value at a certain spraying distance L. The reason why the hardness shows the maximum value is that when the spraying distance L is smaller than a certain value, the time during which the sprayed particles melt during the transfer is insufficient and the number of the melted particles does not increase, so that the pores decrease and the hardness decreases. It is considered that when the distance L is larger than a certain value, the melted spray particles are cooled and solidified during the transfer, so that the number of melted particles is decreased and the particle velocity is also decreased, so that the pores are covered and the hardness is decreased. This shows that it is necessary to control the spraying distance L between the spraying torch 4 and the sprayed object 5 to a desired value in order to obtain the optimum sprayed coating, although it depends on the necessary conditions for the sprayed coating. ing. Further, FIG. 8 is a result of studying the relationship between the angle α between the thermal spraying direction and the material 5 to be sprayed, that is, the relationship between the thermal spraying angle and the thickness of the thermal spray coating. It turns out that it is better to have 90 °, that is, a right angle. This is because as the spray angle α approaches 90 °, the rate of scattering of particles that collide with the sprayed object 5 decreases.

通常爆発溶射では1回の爆発溶射の度に被溶射物5を回
転中心のまわりにある角度づつ、各回の溶射皮膜を一部
重ねながら回転させているので、上述した溶射トーチ4
と被溶射物5との距離L及び溶射角度αは、被溶射物5
が平板でその表面が平滑な場合は、溶射前に溶射距離L
を溶射トーチ4または被溶射物固定治具を移動し、溶射
角度αは被溶射物固定治具にて調整しておけば溶射中に
溶射距離L及び溶射角度αが変化することがないので問
題はないが、被溶射物5の表面が凹凸のある場合、溶射
距離L及び溶射角度αが被溶射物5内で変化するが、従
来技術では溶射距離L及び溶射角度αを測定する装置が
具備されてなく、所望の溶射距離、溶射角度を得ること
ができない。
In normal explosive spraying, the object to be sprayed 5 is rotated by an angle around the center of rotation for each explosive spraying while partially overlapping the sprayed coating of each time.
The distance L between the object to be sprayed 5 and the spray angle α is
Is a flat plate and its surface is smooth, the spraying distance L before spraying
If the spraying torch 4 or the sprayed object fixing jig is moved and the spraying angle α is adjusted by the spraying object fixing jig, the spraying distance L and the spraying angle α do not change during the spraying, which is a problem. Although the thermal spraying distance L and the thermal spraying angle α change within the thermal spraying target 5 when the surface of the thermal spraying target 5 has irregularities, the conventional technique has a device for measuring the thermal spraying distance L and the thermal spray angle α. Therefore, the desired spraying distance and spraying angle cannot be obtained.

本発明の目的は上記問題点を削除した、被溶射物の表面
が凹凸のある場合でも各溶射毎に溶射距離ないし溶射角
度を所望値に制御するコーティング装置を提供すること
にある。
It is an object of the present invention to provide a coating apparatus which eliminates the above-mentioned problems and which controls the spraying distance or spraying angle to a desired value for each spraying even when the surface of the sprayed object has irregularities.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、溶射トーチからガスの爆発燃焼によっ
て発生する高エネルギーガスにより溶射粉末を被溶射物
の表面に溶射して溶射皮膜を形成するコーティング装置
において、溶射トーチと被溶射物の表面との溶射距離を
各爆発燃焼サイクルに同期させて測定する溶射距離検知
器と、該溶射距離検知器からの出力信号を入力し被溶射
物の位置を所望値に制御する制御信号を演算出力する演
算器とを設けたことにより達成される。
The object of the present invention is a coating device for forming a sprayed coating by spraying a sprayed powder on the surface of a sprayed object with a high-energy gas generated by explosive combustion of gas from the spraying torch, and the surface of the sprayed torch and the sprayed object. A spray distance detector for measuring the spray distance of each of them in synchronization with each explosion combustion cycle, and a calculation for outputting a control signal for inputting an output signal from the spray distance detector to control the position of the sprayed object to a desired value. It is achieved by providing a container.

〔作用〕[Action]

制御装置がコーティング装置と被溶射物表面との間の溶
射距離を測定し、制御装置がその測定値と溶射距離の所
望値との差を演算して、その演算結果から出された信号
により溶射距離を所望値に制御する。
The controller measures the spraying distance between the coating device and the surface of the material to be sprayed, the controller calculates the difference between the measured value and the desired value of the spraying distance, and the spraying is performed by the signal generated from the calculation result. Control the distance to the desired value.

更に、制御装置がコーティング装置と被溶射物表面との
間の溶射距離と、溶射方向と被溶射物表面とのなす溶射
角度とを測定し、制御装置が溶射距離及び溶射角度の夫
々の測定値と所望値との差を演算して、その演算結果か
ら出された信号により溶射距離と溶射角度の夫々の所望
値に制御する。
Further, the control device measures the spraying distance between the coating device and the surface of the sprayed object and the spraying angle formed by the spraying direction and the surface of the sprayed object, and the control device measures the sprayed distance and the sprayed angle. And the desired value are calculated, and the desired values of the spraying distance and the spraying angle are controlled by the signal generated from the calculation result.

〔実施例〕〔Example〕

本発明の実施例について図により説明する。 An embodiment of the present invention will be described with reference to the drawings.

第1実施例 第1図は本発明の実施例における、ガスの爆発エネルギ
ーを使用して溶射粉末を溶射するコーティング装置、即
ち爆発溶射装置の全体構成図を示す。従来技術で示され
る溶射粉末供給系1、燃焼ガス供給系2、点火装置3、
溶射トーチ4及び被溶射物5に加えて、本発明による溶
射距離Lと溶射角度αを最適値に制御する制御装置6が
取付けられた構成となっている。溶射距離の最適値は最
高硬度の得られるときの溶射距離であり、溶射角度の最
適値は最も厚い溶射皮膜の得られるときの溶射角度であ
る。
First Embodiment FIG. 1 shows an overall configuration diagram of a coating apparatus for spraying a spray powder by using explosion energy of gas, that is, an explosion spray apparatus in an embodiment of the present invention. A sprayed powder supply system 1, a combustion gas supply system 2, an ignition device 3, which are shown in the prior art,
In addition to the spraying torch 4 and the sprayed object 5, a controller 6 for controlling the spraying distance L and the spraying angle α according to the present invention to optimum values is attached. The optimum value of the spraying distance is the spraying distance when the maximum hardness is obtained, and the optimum value of the spraying angle is the spraying angle when the thickest sprayed coating is obtained.

被溶射物5の表面に接触して取付けられている加速度計
6aが衝撃波の周波数と強度の信号を演算器6bに入力する
と、演算器6bは入力された信号を演算処理して、その演
算処理結果を溶射角度調整駆動部6dと溶射距離調整駆動
部6cとに入力する構成となっている。入力された溶射角
度調整駆動部6dは被溶射物5の溶射角度を最適値に調整
し、溶射距離調整駆動部6cは支柱8で支えられている被
溶射物5、加速度計6a及び溶射角度調整駆動部6dの3者
を同時に溶射トーチ4に対し前後に移動し、溶射トーチ
4と被溶射物5の表面との間の溶射距離を最適値に調整
する機能を有する。
Accelerometer mounted in contact with the surface of the object 5 to be sprayed
When the signal of the frequency and intensity of the shock wave 6a is input to the calculator 6b, the calculator 6b performs a calculation process on the input signal, and the calculation result is the spray angle adjustment drive unit 6d and the spray distance adjustment drive unit 6c. It is configured to input to. The input spraying angle adjustment drive unit 6d adjusts the spraying angle of the sprayed object 5 to an optimum value, and the spraying distance adjustment drive unit 6c supports the sprayed object 5, which is supported by the column 8, the accelerometer 6a and the spray angle adjustment. It has a function of simultaneously moving the three members of the drive unit 6d back and forth with respect to the thermal spray torch 4 to adjust the thermal spray distance between the thermal spray torch 4 and the surface of the sprayed object 5 to an optimum value.

溶射距離L及び溶射角度αを最適値に制御する方法を第
4図により説明する。第4図は被溶射物5の裏面に加速
度計6aを取付けた場合の衝撃波の強度及び周波数と溶射
距離L及び溶射角度αとの関連を模式的に示した図であ
る。
A method of controlling the spraying distance L and the spraying angle α to optimum values will be described with reference to FIG. FIG. 4 is a diagram schematically showing the relationship between the intensity and frequency of the shock wave and the spray distance L and spray angle α when the accelerometer 6a is attached to the back surface of the sprayed object 5.

溶射距離L及び溶射角度αが最適値である場合に得られ
る曲線aに対し、曲線bのように溶射距離Lが最適値か
ら大きくなる場合は衝撃波の強度の減衰が大きくなるの
で強度のピーク値が低下し、逆に溶射距離Lが最適値よ
り小さい場合は前記強度の減衰が小さいので前記ピーク
値が高くなる。また曲線cのように溶射角度αが最適値
90゜からずれると被溶射物5に加わる溶射粒子の衝突の
エネルギーが低下し、そのエネルギーに対応している周
波数が低下するので、衝撃波の強度のピークを示す周波
数が減少する。従ってこの衝撃波の強度のピーク値の差
と、強度のピークを示す周波数の差を演算することによ
り、夫々溶射距離Lと溶射角度αが最適値になっている
か否かの判定が可能となる。
In contrast to the curve a obtained when the spraying distance L and the spraying angle α are optimum values, when the spraying distance L is larger than the optimum value as shown by the curve b, the attenuation of the strength of the shock wave increases, so the peak value of the strength. When the spraying distance L is smaller than the optimum value, on the contrary, the attenuation of the strength is small and the peak value becomes high. Also, as shown by the curve c, the spray angle α is the optimum value
When the angle deviates from 90 °, the energy of collision of the spray particles applied to the sprayed object 5 decreases, and the frequency corresponding to the energy decreases, so that the frequency at which the peak of the shock wave intensity decreases. Therefore, by calculating the difference between the peak value of the intensity of the shock wave and the frequency indicating the peak of the intensity, it is possible to determine whether the spraying distance L and the spraying angle α are the optimum values.

即ち、上記の測定値を入力された演算器6bは、溶射距離
L及び溶射角度αが最適値の場合の曲線aの強度のピー
ク値と溶射距離Lが最適値より大きい場合の曲線bの強
度のピーク値との差、即ち衝撃波の強度の差を演算する
ことにより溶射距離Lを最適値にするのに必要な調整量
の信号を発し、曲線aの最適値の場合のピークを示す周
波数と曲線cの最適値90゜からずれた場合に強度のピー
クを示す周波数との差、即ち衝撃波の周波数の差を演算
することにより溶射角度αを最適値にするのに必要な調
整量の信号を発する。上記のように演算器6bから溶射距
離Lの最適値に対する信号を受けた溶射距離調整駆動部
6cは、その信号に見合った距離だけ被溶射物5を移動さ
せ溶射距離Lの最適値に制御する。また、溶射角度αの
最適値に対する信号を受けた溶射角度調整駆動部6dは、
その信号に見合った角度だけ被溶射物5を移動させ溶射
角度αの最適値に制御する。
That is, the calculator 6b, to which the above-mentioned measured values are input, determines the peak value of the intensity of the curve a when the spraying distance L and the spraying angle α are optimum values and the intensity of the curve b when the spraying distance L is larger than the optimum values. Of the shock wave intensity, that is, the difference in the intensity of the shock wave is calculated to generate the signal of the adjustment amount necessary for making the spraying distance L the optimum value, and the frequency indicating the peak of the optimum value of the curve a is obtained. By calculating the difference from the frequency at which the intensity peaks when the curve c deviates from the optimum value of 90 °, that is, the difference in the frequency of the shock wave, the signal of the adjustment amount necessary for setting the spray angle α to the optimum value is obtained. Emit. As described above, the spraying distance adjustment drive unit receives a signal for the optimum value of the spraying distance L from the calculator 6b.
6c moves the sprayed object 5 by a distance corresponding to the signal and controls the sprayed distance L to an optimum value. Further, the spraying angle adjustment drive unit 6d, which has received a signal for the optimum value of the spraying angle α,
The object 5 to be sprayed is moved by an angle corresponding to the signal to control the spray angle α to an optimum value.

第3図は本コーティング装置による爆発時期、加速度計
6aによる信号検出時期及び溶射角度、溶射距離調整駆動
部6d,6cの移動時期を示したもので、通常爆発溶射を行
うコーティング装置の場合、1秒間に数回の爆発により
溶射粉末を溶融ないし半溶融粒子にして被溶射物5に溶
射する。従って、被溶射物5の衝撃波を加速度計6aで検
出する時期は爆発時期とほぼ同期させてある。この検出
された衝撃波の周波数分布や強度から、溶射角度調整駆
動部6d及び溶射距離調整駆動部6cを駆動させる。この駆
動時期は爆発していない時期に不連続または爆発時期に
関係なく連続的な移動のいずれでもよく、連続的な移動
の場合は衝撃波の信号によりその移動速度を制御するの
が良い。この駆動方法は通常用いられているモータ駆動
やその他従来から採用されている方法等いかなる手法で
もよい。
Figure 3 shows the explosion timing and accelerometer of this coating device.
It shows the signal detection timing and spraying angle by 6a, and the spraying distance adjustment drive parts 6d and 6c moving time. In the case of a coating device that normally performs explosive spraying, the sprayed powder is melted or half-baked by several explosions per second. It is made into molten particles and sprayed onto the material 5 to be sprayed. Therefore, the time at which the shock wave of the sprayed material 5 is detected by the accelerometer 6a is almost synchronized with the time of explosion. The spray angle adjustment drive unit 6d and the spray distance adjustment drive unit 6c are driven based on the detected frequency distribution and intensity of the shock wave. The driving time may be discontinuous when the explosion does not occur or continuous movement regardless of the explosion time. In the case of continuous movement, it is preferable to control the moving speed by a shock wave signal. This driving method may be any method such as a commonly used motor driving method or any other conventionally used method.

第2実施例 本発明の他の実施例を第2図に示す。この場合被溶射物
5と溶射トーチ4との間の溶射距離Lのみが変化し、溶
射角度αが変化しない場合で、この場合には、第1図で
示した加速度計6aの代りに第2図で示すように、溶射ト
ーチ4の先端部に溶射トーチ4と被溶射物5との間の溶
射距離Lを直接測定する距離センサ7aを設置している。
この距離センサ7aとしては、通常の超音波によるもの、
可視光線、赤外線、レーザ光線などの光によるものいず
れでも採用可能であるが、速度の速い光によるものが応
答性の点で優れている。第5図は本コーティング装置に
よりこの距離センサ7aを用いた場合の爆発時期、距離セ
ンサ7aの作動時期、溶射距離調整駆動部7cの移動時期を
示したもので、第3図に示した加速度計の場合と異な
り、爆発時の光による障害、誤動作を防ぐため、距離セ
ンサ7aの作動時期は爆発していない時期にしている。
Second Embodiment Another embodiment of the present invention is shown in FIG. In this case, only the spraying distance L between the sprayed object 5 and the spraying torch 4 changes, and the spraying angle α does not change. In this case, instead of the accelerometer 6a shown in FIG. As shown in the figure, a distance sensor 7a for directly measuring the spraying distance L between the spraying torch 4 and the sprayed object 5 is installed at the tip of the spraying torch 4.
As the distance sensor 7a, a normal ultrasonic wave,
Any of light such as visible light, infrared light, and laser light can be used, but light of high speed is excellent in responsiveness. FIG. 5 shows the explosion timing, the operation timing of the distance sensor 7a, and the movement timing of the spraying distance adjusting drive unit 7c when the distance sensor 7a is used by the coating apparatus. The accelerometer shown in FIG. Unlike the above case, the distance sensor 7a is operated at a non-explosion time in order to prevent damage and malfunction due to light at the time of explosion.

上記の実施例の説明においては溶射距離及び溶射角度を
最適値とした場合について述べて来たが、溶射皮膜の所
望の硬度、気孔、厚さに対応して、溶射距離及び溶射角
度を設定することも本発明の技術的範囲に属するもので
あることに注記する。
In the description of the above embodiments, the case where the spraying distance and the spraying angle are set to the optimum values has been described, but the spraying distance and the spraying angle are set in accordance with the desired hardness, pores and thickness of the sprayed coating. Note that this is also within the technical scope of the present invention.

〔発明の効果〕〔The invention's effect〕

本発明によるコーティグ装置の制御装置が、コーティン
グ装置と被溶射物との間の溶射距離を測定し、次いで該
溶射距離を所望値に制御するので、前記被溶射物の表面
が凹凸のある場合でも各溶射毎に前記溶射距離の所望値
が保持され、更に、本発明によるコーティング装置の制
御装置が前記溶射距離と、溶射方向と被溶射物表面との
なす溶射角度とを測定し、次いで前記溶射距離と前記溶
射角度とを夫々の所望値に制御するので、前記被溶射物
の表面が凹凸のある場合でも各溶射毎に前記溶射距離と
前記溶射角度との夫々の所望値が保持される。
The control device of the coating device according to the present invention measures the spraying distance between the coating device and the sprayed object, and then controls the spraying distance to a desired value, so that even if the surface of the sprayed object is uneven. The desired value of the spraying distance is held for each spraying, and the controller of the coating apparatus according to the present invention further measures the spraying distance and the spraying angle formed by the spraying direction and the surface of the sprayed object, and then the spraying. Since the distance and the spray angle are controlled to their respective desired values, the desired values of the spray distance and the spray angle are held for each spray even when the surface of the sprayed object has irregularities.

従って、溶射粉末はガスの高エネルギーにより溶融ない
し半溶融状態となって十分な粘着性を有する溶射粒子と
なり、かつ爆風効果により被溶射物へまた溶射粒子間同
志もよく圧着するので、前記溶射距離及び、又は溶射角
度の所望値で溶射することにより所望の厚み、気孔及び
硬度の溶射皮膜が得られ、その結果耐摩耗性、耐熱性及
び耐食性を大巾に向上させることができる。
Therefore, the thermal spraying powder becomes a molten or semi-molten state due to the high energy of the gas to become a thermal spraying particle having sufficient adhesiveness, and due to the blast effect, the thermal spraying powder also press-bonds well between the thermal spraying particles and the thermal spraying distance. And or, by spraying at a desired value of the spray angle, a sprayed coating having a desired thickness, pores and hardness can be obtained, and as a result, wear resistance, heat resistance and corrosion resistance can be greatly improved.

更に、前記溶射距離、溶射角度の測定と、夫々の所望値
への調整が迅速にかつ正確に行なわれるので、溶射施工
時のミスが無くなって品質が向上するとともに製品の信
頼性が向上し、そのため溶射施工後の検査時間の短縮が
はかれる。
Furthermore, since the spraying distance, the measurement of the spraying angle, and the adjustment to each desired value are performed quickly and accurately, the mistakes at the time of spraying work are eliminated and the quality is improved and the reliability of the product is improved, Therefore, the inspection time after thermal spraying can be shortened.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例における加速度計を用いる
場合のコーティング装置の全体構成図であり、第2図は
本発明の第2実施例における距離センサを用いる場合の
コーティング装置の全体構成図であり、第3図は第1図
に示すコーティング装置における溶射距離、溶射角度を
最適値へ制御する時期を示す説明図であり、第4図は第
1図に示すコーティング装置における衝撃波の強度及び
周波数の分布と、溶射距離及び溶射角度との関連を模式
的に示した説明図であり、第5図は第1図に示すコーテ
ィング装置において溶射距離を最適値へ制御する時期を
示す説明図であり、第6図は従来のコーティング装置の
全体構成図であり、第7図は従来のコーティング装置に
よる溶射距離と溶射皮膜の厚さ及び硬度との関係を示す
図であり、第8図は従来のコーティング装置による溶射
角度と溶射皮膜の厚さとの関係をあらわす図である。 5……被溶射物、6,7……制御装置。
FIG. 1 is an overall configuration diagram of a coating apparatus when using an accelerometer in the first embodiment of the present invention, and FIG. 2 is an overall configuration of a coating apparatus when using a distance sensor in the second embodiment of the present invention. FIG. 3 is an explanatory view showing the timing of controlling the spraying distance and spraying angle to the optimum values in the coating apparatus shown in FIG. 1, and FIG. 4 is the shock wave intensity in the coating apparatus shown in FIG. FIG. 5 is an explanatory view schematically showing the relationship between the frequency distribution and the spraying distance and the spraying angle, and FIG. 5 is an explanatory view showing the timing of controlling the spraying distance to the optimum value in the coating apparatus shown in FIG. FIG. 6 is an overall configuration diagram of a conventional coating apparatus, and FIG. 7 is a diagram showing a relationship between a spraying distance and a thickness and hardness of a sprayed coating by the conventional coating apparatus, and FIG. It is a diagram representing the relationship between the thickness of the thermal spray angle and spray coating by conventional coating apparatus. 5 ... Thermal spray target, 6, 7 ... Control device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 光畑 浩一 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (56)参考文献 日本溶射協会編「溶射便覧」(昭39−5 −31)日刊工業新聞社P.59〜60,P. 135〜138 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koichi Mitsuhata Koichi Mitsuhata 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Ltd. Kure Factory (56) References “Spraying Handbook” edited by Japan Thermal Spray Society (Sho 39-5-31) ) Nikkan Kogyo Shimbun P. 59 ~ 60, P. 135 ~ 138

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】溶射トーチからガスの爆発燃焼によって発
生する高エネルギーガスにより溶射粉末を被溶射物の表
面に溶射して溶射皮膜を形成するコーティング装置にお
いて、 前記溶射トーチと前記被溶射物の表面との溶射距離を各
爆発燃焼サイクルに同期させて測定する溶射距離検知器
と、該溶射距離検知器からの出力信号を入力し前記被溶
射物の位置を所望値に制御する制御信号を演算出力する
演算器とを設けたことを特徴とするコーティング装置。
1. A coating apparatus for forming a sprayed coating by spraying a sprayed powder on the surface of a sprayed object by a high-energy gas generated by explosive combustion of gas from the spraying torch, wherein the spray torch and the surface of the sprayed object are formed. And a spraying distance detector that measures the spraying distance with each explosion combustion cycle, and an output signal from the spraying distance detector is input, and a control signal for controlling the position of the sprayed object to a desired value is calculated and output. A coating device provided with a computing unit for
【請求項2】前記溶射距離検知器が前記被溶射物に取り
付けられ爆発燃焼時に加速度を検知する加速度計であ
り、前記演算器が該加速度計の出力信号を入力し前記被
溶射物の距離制御信号及び溶射角制御信号を演算出力す
る演算器であることを特徴とする特許請求の範囲第1項
に記載のコーティング装置。
2. The spray distance detector is an accelerometer attached to the spray object to detect acceleration during explosive combustion, and the arithmetic unit inputs an output signal of the accelerometer to control the distance of the spray object. The coating device according to claim 1, wherein the coating device is a calculator that calculates and outputs a signal and a spray angle control signal.
【請求項3】前記溶射距離検知器が非爆発燃焼時に光ま
たは超音波により溶射距離を検知する距離センサであ
り、前記演算器が該距離センサの出力信号を入力し前記
被溶射物の距離制御信号を演算出力する演算器であるこ
とを特徴とする特許請求の範囲第1項に記載のコーティ
ング装置。
3. The spray distance detector is a distance sensor that detects the spray distance by light or ultrasonic waves during non-explosive combustion, and the arithmetic unit inputs the output signal of the distance sensor to control the distance of the sprayed object. The coating apparatus according to claim 1, wherein the coating apparatus is an arithmetic unit that arithmetically outputs a signal.
JP30579786A 1986-12-22 1986-12-22 Coating device Expired - Fee Related JPH0783849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30579786A JPH0783849B2 (en) 1986-12-22 1986-12-22 Coating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30579786A JPH0783849B2 (en) 1986-12-22 1986-12-22 Coating device

Publications (2)

Publication Number Publication Date
JPS63158148A JPS63158148A (en) 1988-07-01
JPH0783849B2 true JPH0783849B2 (en) 1995-09-13

Family

ID=17949472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30579786A Expired - Fee Related JPH0783849B2 (en) 1986-12-22 1986-12-22 Coating device

Country Status (1)

Country Link
JP (1) JPH0783849B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276589A (en) * 1990-03-27 1991-12-06 Tokyo Electron Ltd Manufacture of heater
EP1669747A1 (en) 2004-12-09 2006-06-14 ETH Zürich Formation of highly porous gas-sensing layers by deposition of nanoparticles produced by flame spray pyrolysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本溶射協会編「溶射便覧」(昭39−5−31)日刊工業新聞社P.59〜60,P.135〜138

Also Published As

Publication number Publication date
JPS63158148A (en) 1988-07-01

Similar Documents

Publication Publication Date Title
US4269868A (en) Application of metallic coatings to metallic substrates
US5410405A (en) Method and apparatus for measuring surface movement of a solid object that is subjected to external vibrations
JP3037404B2 (en) Method and apparatus for measuring through hole size
JPH0783849B2 (en) Coating device
JPH09111435A (en) Method for monitoring and controlling process for forming film by thermal spraying
SE9203018D0 (en) CERAMIC WELDING METHOD AND APPARATUS
Vardelle et al. Plasma spray processes: diagnostics and control?
US5544195A (en) High-bandwidth continuous-flow arc furnace
ATE105596T1 (en) PROCESS AND APPARATUS FOR HIGH-SPEED FLAME SPRAYING OF HIGH-MELTING WIRE AND POWDER-FORM ADDITIONAL MATERIALS FOR COATING SURFACES.
US5340615A (en) Method to produce non-stressed flame spray coating and bodies
JP4425131B2 (en) High-temperature powder welding equipment using feedback control
US3231416A (en) Zirconia-boron ablation coating
JP4215914B2 (en) Bonding force measuring method and apparatus
JPS642187B2 (en)
Hashmi et al. Residual stresses in structures coated by a high velocity oxy-fuel technique
JPH02131159A (en) Explosive flame spraying device
JP2614077B2 (en) Explosion spray equipment
SU768819A1 (en) Method of torch guniting of metallurgical set lining
Varacalle et al. Modeling and diagnostics of the Praxair HVAF combustion spray process
RU2119851C1 (en) Method for intensive treatment of article
Grünenwald et al. Laser process adapted powder delivery system
Hussary Fluid dynamics investigations of wire arc spraying process
SU1759559A1 (en) Method of producing wear-resistant composite coat
JPS61143573A (en) Method and device for automatic control of plating deposition
SU551053A1 (en) Powder detonation plant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees