JPH0783817B2 - Volatile organic compound absorbent and method for recovering the same - Google Patents

Volatile organic compound absorbent and method for recovering the same

Info

Publication number
JPH0783817B2
JPH0783817B2 JP3084728A JP8472891A JPH0783817B2 JP H0783817 B2 JPH0783817 B2 JP H0783817B2 JP 3084728 A JP3084728 A JP 3084728A JP 8472891 A JP8472891 A JP 8472891A JP H0783817 B2 JPH0783817 B2 JP H0783817B2
Authority
JP
Japan
Prior art keywords
absorbent
volatile organic
organic compound
present
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3084728A
Other languages
Japanese (ja)
Other versions
JPH0568841A (en
Inventor
高 逸見
勉 甲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP3084728A priority Critical patent/JPH0783817B2/en
Publication of JPH0568841A publication Critical patent/JPH0568841A/en
Publication of JPH0783817B2 publication Critical patent/JPH0783817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Gas Separation By Absorption (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、揮発性有機化合物含有
ガスから揮発性有機化合物を回収する際に使用される吸
収剤、及び該揮発性有機化合物を有効に回収する方法に
関する。
TECHNICAL FIELD The present invention relates to an absorbent used for recovering a volatile organic compound from a gas containing a volatile organic compound, and a method for effectively recovering the volatile organic compound.

【0002】[0002]

【従来の技術】ガソリン等の低沸点石油製品、ベンゼ
ン,トルエン等の芳香族炭化水素、メチルエチルケトン
等の含酸素化合物を貯蔵、充填、移送する際に、揮発性
有機化合物の蒸気が発生し、これがそのまま大気中に放
散される。この揮発性有機化合物の蒸気は、大気汚染の
大きな要因となることから、放散の規制が強化されてい
る。この規制の強化に対処するために、従来、各種の回
収技術が提案されている。例えば、特公昭52−397
85号公報では、揮発性炭化水素を含むガスを、大気圧
〜2Kg/cm2の圧力下で、あるいは加圧冷却等の前
処理をした珪酸エステル類,リン酸エステル類,脂肪酸
エステル類の1種以上からなる吸収剤と接触させる方法
を、同54−11154号公報では、常温における粘度
が100cStで、常圧における沸点が250℃以上の
アルキルベンゼンを吸収液として循環使用することによ
り、上記のガスから揮発性有機化合物を除去する方法
を、同58−22503号公報では、炭化水素蒸気含有
ガスと向流接触させて該ガス中の炭化水素蒸気を吸収し
た吸収剤を、減圧度の異なる複数の容器中で2段以上に
フラッシュ蒸発させて、該吸収剤から炭化水素蒸気を分
離回収する方法を、夫々提案している。
2. Description of the Related Art When storing, filling and transferring low boiling point petroleum products such as gasoline, aromatic hydrocarbons such as benzene and toluene, and oxygen-containing compounds such as methyl ethyl ketone, vapors of volatile organic compounds are generated. It is released into the atmosphere as it is. Since the vapor of the volatile organic compound becomes a major factor of air pollution, the regulation of emission is being strengthened. In order to deal with the tightening of this regulation, various recovery technologies have been proposed in the past. For example, Japanese Patent Publication Sho 52-397
In Japanese Patent Publication No. 85, a volatile hydrocarbon-containing gas is subjected to pretreatment such as atmospheric pressure to 2 Kg / cm 2 or under pressure cooling or the like, which is one of silicic acid esters, phosphoric acid esters, and fatty acid esters. The method of contacting with an absorbent composed of at least one species is disclosed in JP-A No. 54-11154, in which the above gas is obtained by circulating and using an alkylbenzene having a viscosity at room temperature of 100 cSt and a boiling point at atmospheric pressure of 250 ° C. or more as an absorbent. No. 58-22503 discloses a method of removing volatile organic compounds from hydrocarbons containing a hydrocarbon vapor-containing gas in a countercurrent contact to absorb the hydrocarbon vapor in the gas, and a plurality of absorbents having different degrees of reduced pressure are used. Each of them proposes a method of flash vaporizing in two or more stages in a container to separate and recover hydrocarbon vapor from the absorbent.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記のよう
な従来の回収技術の開発当時においては、減圧度を高め
るために大容量の真空ポンプを必要とし、工業的規模で
実施する上で、コスト的あるいは技術的に困難な面があ
り、これを補うべく、減圧度が余り高くない条件下でも
揮発性成分の離脱が可能な吸収剤の開発、あるいは減圧
度が余り高くない条件下での効率的な揮発性成分の離脱
方法の開発が進められていた。これに対し、現在では、
1Torr程度の高い減圧度をも容易に得ることができ
るようになっている。また、揮発性成分の離脱効率(す
なわ、吸収剤の再生効率)は、言うまでもなく減圧度を
高める程、良好になる。しかし、上記のような従来の吸
収剤では、減圧度を高め過ぎると、吸収剤が沸騰してし
まうと言う問題があり、一方、沸騰を防止しようとすれ
ば吸収剤の粘度が一般に高くなり、吸収効率の低下、吸
収塔の圧力損失の増大、向流接触させるときのフラッデ
ィングの発生等を招くと言う難点があった。沸騰を防止
するために、従来は、例えば図2に示すように、揮発性
成分の離脱塔(吸収剤の再生塔)101と真空ポンプ1
02との間にスピルバックライン100を設け、吐出ガ
スの一部をサクション側へ戻してサクション側の圧力を
所定の圧力にする等により、該離脱塔の圧力を吸収剤が
沸騰しない程度の圧力に制御する必要があった。
At the time of development of the conventional recovery technique as described above, a large-capacity vacuum pump was required to increase the degree of pressure reduction, and it was costly to implement it on an industrial scale. There is a technically or technically difficult aspect, and in order to compensate for this, development of an absorbent that can release volatile components even under conditions where the pressure is not too high, or efficiency under conditions where the pressure is not too high The development of a method for removing a typical volatile component was in progress. On the other hand, at present,
It is possible to easily obtain a high degree of reduced pressure of about 1 Torr. Further, it goes without saying that the removal efficiency of the volatile components (that is, the regeneration efficiency of the absorbent) becomes better as the degree of pressure reduction is increased. However, in the conventional absorbent as described above, if the degree of reduced pressure is too high, there is a problem that the absorbent will boil, on the other hand, if you try to prevent boiling, the viscosity of the absorbent is generally high, There are drawbacks such as a decrease in absorption efficiency, an increase in pressure loss in the absorption tower, and occurrence of flooding during countercurrent contact. In order to prevent boiling, conventionally, for example, as shown in FIG. 2, a volatile component separation tower (absorbent regeneration tower) 101 and a vacuum pump 1 are used.
02, a spill back line 100 is provided, and a part of the discharge gas is returned to the suction side to bring the pressure on the suction side to a predetermined pressure. Had to control.

【0004】本発明は、以上の諸点を考慮してなされた
もので、1Torr程度の高い減圧度下でも沸騰しない
優れた揮発性成分の吸収及び離脱能力を有する吸収剤
と、スピルバックライン等の設備を要することなく揮発
性成分を高効率で回収する方法とを提案することを目的
とする。
The present invention has been made in consideration of the above points, and an absorbent having an excellent ability to absorb and release volatile components which does not boil even under a high decompression degree of about 1 Torr, and a spill back line and the like. It is an object of the present invention to propose a method for recovering volatile components with high efficiency without requiring equipment.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記目的
を達成するために、研究を重ねた結果、この種の吸収剤
は、一般に、吸収能力に優れたものは離脱性能に難点が
あり、逆に吸収能力に劣るものは離脱性能に優れている
と言われていたが、精製鉱油のなかに、吸収能力に優
れ、しかも離脱性能にも優れたものが存在していること
を見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted extensive research to achieve the above object, and as a result, as for this type of absorbent, generally, those having excellent absorption capacity have difficulty in releasing performance. However, conversely, it was said that those with inferior absorption capacity had excellent release performance, but it was found that there are some refined mineral oils that have excellent absorption capacity and release performance. The present invention has been completed.

【0006】本発明の吸収剤は、上記の知見に基づくも
ので、常圧における沸点が約260〜360℃、40℃
における粘度が約3〜10cStであり、平均分子量が
約200〜500、飽和炭化水素分が約40〜90wt
%の精製鉱油からなることを特徴とする。また、本発明
の回収方法も、上記の知見に基づくもので、揮発性有機
化合物を含むガスと吸収剤とを接触させて揮発性有機化
合物を回収する方法において、常圧における沸点が約2
60〜360℃、40℃における粘度が約3〜10cS
tであり、平均分子量が約200〜500、飽和炭化水
素分が約40〜90wt%の精製鉱油を吸収剤として揮
発性有機化合物を吸収させ、当該吸収剤を約1〜20T
orrの条件下において揮発性有機化合物を脱離させ、
もって当該吸収剤を循環使用することを特徴とする。
The absorbent of the present invention is based on the above findings and has a boiling point at atmospheric pressure of about 260 to 360 ° C and 40 ° C.
Has a viscosity of about 3 to 10 cSt, an average molecular weight of about 200 to 500, and a saturated hydrocarbon content of about 40 to 90 wt.
% Refined mineral oil. Further, the recovery method of the present invention is also based on the above findings, and in the method of recovering the volatile organic compound by bringing the gas containing the volatile organic compound into contact with the absorbent, the boiling point at atmospheric pressure is about 2
Viscosity at 60 to 360 ° C and 40 ° C is about 3 to 10 cS
t, an average molecular weight of about 200 to 500, and a saturated hydrocarbon content of about 40 to 90 wt% refined mineral oil as an absorbent to absorb a volatile organic compound, and the absorbent is about 1 to 20 T.
desorbing volatile organic compounds under orr conditions,
Therefore, the absorbent is characterized in that it is recycled.

【0007】先ず、本発明吸収剤について詳述する。本
発明吸収剤は、常圧における沸点が約260〜360
℃、好ましくは約280〜320℃、40℃における粘
度が約3〜10cSt、好ましくは約3〜5cStであ
って、平均分子量は約200〜500、好ましくは約3
00〜400で、しかも飽和炭化水素分が約40〜90
wt%、好ましくは約50〜70wt%の性状を有する
精製鉱油であり、炭化水素,メチルエチルケトン等の含
酸素化合物を溶解する能力が大で、水に不溶性であ。
First, the absorbent of the present invention will be described in detail. The absorbent of the present invention has a boiling point of about 260 to 360 at normal pressure.
C., preferably about 280 to 320.degree. C., viscosity at 40.degree. C. is about 3 to 10 cSt, preferably about 3 to 5 cSt, and average molecular weight is about 200 to 500, preferably about 3.
00-400 and saturated hydrocarbon content of about 40-90
It is a refined mineral oil having a property of wt%, preferably about 50 to 70 wt%, has a large ability to dissolve oxygen-containing compounds such as hydrocarbons and methyl ethyl ketone, and is insoluble in water.

【0008】本発明吸収剤の沸点及び粘度を上記の範囲
内のものとするのは、沸点及び粘度がこの範囲内にあれ
ば、約1〜20Torr程度の高い減圧度下での揮発性
有機化合物の離脱時において、本発明吸収剤が、揮発性
有機化合物と共沸を起こすことなく、従って回収される
揮発性有機化合物中に混入することなく、揮発性有機化
合物を高純度で回収できるからである。なお、粘度につ
いては、余り高過ぎると吸収効率の低下が著しくなり、
また吸収塔の圧力損失が大きくなるのみならず、揮発性
有機化合物を含むガスと向流接触させる際にフラッディ
ングを起こす虞れがあり、本発明吸収剤の移送動力にも
悪影響を与えるので好ましくない。
The boiling point and the viscosity of the absorbent of the present invention are set within the above-mentioned ranges, as long as the boiling point and the viscosity are within this range, the volatile organic compound under a high reduced pressure of about 1 to 20 Torr. The volatile organic compound of the present invention can be recovered with high purity without azeotroping with the volatile organic compound at the time of the removal of the volatile organic compound, and therefore without being mixed in the recovered volatile organic compound. is there. Regarding the viscosity, if it is too high, the absorption efficiency will decrease significantly,
Further, not only is the pressure loss of the absorption tower increased, but flooding may occur when the gas containing the volatile organic compound is brought into countercurrent contact, which adversely affects the transfer power of the absorbent of the present invention, which is not preferable. .

【0009】また、本発明吸収剤の平均分子量及び飽和
炭化水素分を上記の範囲内のものとするのは、次の理由
による。揮発性有機化合物と吸収剤とが平衡状態にある
とき、常圧下での揮発性有機化合物の液相濃度を高める
には飽和炭化水素分が高い方がよく、また減圧下での揮
発性有機化合物の液相濃度を低めるには飽和炭化水素分
が低い方がよい。すなわち、揮発性有機化合物を吸収す
る時(常圧下)には、飽和炭化水素分が高い方が高い吸
収能力を示し、揮発性有機化合物を離脱する時(減圧
下)には、飽和炭化水素分が低い方が高い離脱性能を示
すことを意味する。これらの点から、揮発性有機化合物
の吸収剤として最適な飽和炭化水素分量を検討した結
果、約40〜90wt%、好ましくは約50〜70wt
%であるとの結論を得たものである。そして、平均分子
量は、揮発性有機化合物を吸収する時には該揮発性有機
化合物に近い方が高い吸収能力を示し、揮発性有機化合
物を離脱する時には該揮発性有機化合物より高い方が高
い離脱性能を示す。これらの点から、揮発性有機化合物
の吸収剤として最適な平均分子量を検討した結果、約2
00〜500、好ましくは約300〜400であるとの
結論を得たものである。
The reason why the average molecular weight and the saturated hydrocarbon content of the absorbent of the present invention are within the above ranges is as follows. When the volatile organic compound and the absorbent are in an equilibrium state, it is better to have a higher saturated hydrocarbon content in order to increase the liquid phase concentration of the volatile organic compound under normal pressure, and also for the volatile organic compound under reduced pressure. In order to reduce the liquid phase concentration of, it is preferable that the saturated hydrocarbon content is low. That is, when absorbing a volatile organic compound (under normal pressure), a higher saturated hydrocarbon content indicates higher absorption capacity, and when desorbing a volatile organic compound (under reduced pressure), a saturated hydrocarbon content is higher. A lower value means a higher release performance. From these points, as a result of examining the optimum saturated hydrocarbon content as an absorbent for volatile organic compounds, about 40 to 90 wt%, preferably about 50 to 70 wt%
It was concluded that it is%. The average molecular weight of the volatile organic compound is higher when the volatile organic compound is absorbed, and the average molecular weight is higher than the volatile organic compound when the volatile organic compound is released. Show. From these points, as a result of examining the optimum average molecular weight as an absorbent for volatile organic compounds, about 2
It has been concluded that it is from 00 to 500, preferably from about 300 to 400.

【0010】本発明吸収剤における飽和炭化水素は、通
常の精製鉱油に含まれる飽和炭化水素であってよく、例
えば直鎖系や環状系等が挙げられる。また、本発明吸収
剤では、以上の飽和炭化水素と共に、ナフテン系,オレ
フィン系,アロマ系の炭化水素成分が含まれていてもよ
い。但し、エステル等の含酸素化合物の含有は好ましく
ない。何故なら、エステル等の含酸素化合物を含有する
吸収剤は、揮発性有機化合物の離脱性能には優れる反
面、吸収能力は低い上、エステル等の含酸素化合物は水
に対する乳化特性をもつため、該含酸素化合物を含有す
る吸収剤は、循環使用中に水分を混入し易いからであ
る。
The saturated hydrocarbon in the absorbent of the present invention may be a saturated hydrocarbon contained in ordinary refined mineral oil, and examples thereof include a straight chain type and a cyclic type. Further, the absorbent of the present invention may contain a naphthene-based, olefin-based, or aroma-based hydrocarbon component in addition to the above saturated hydrocarbon. However, the inclusion of oxygen-containing compounds such as esters is not preferred. The reason is that an absorbent containing an oxygen-containing compound such as an ester has excellent desorption performance of a volatile organic compound, but has a low absorption capacity, and the oxygen-containing compound such as an ester has an emulsifying property in water. This is because the absorbent containing the oxygen-containing compound easily mixes water during cyclic use.

【0011】本発明吸収剤である上記の性状を有する精
製鉱油は、従来から知られている鉱油の精製法によって
得ることができる。例えば、石油精製油を本発明の極め
て狭い沸点範囲で分留した後、必要であれば水素添加処
理によって飽和炭化水素成分量を調整すればよい。
The refined mineral oil having the above properties, which is the absorbent of the present invention, can be obtained by a conventionally known method for refining mineral oil. For example, refined petroleum oil may be fractionally distilled in the extremely narrow boiling point range of the present invention, and if necessary, the amount of saturated hydrocarbon components may be adjusted by hydrogenation treatment.

【0012】以上詳述した本発明吸収剤は、特に低沸点
石油製品、例えば、その約90%が飽和炭化水素であっ
て本発明吸収剤と相性が良いガソリンベーパーの回収等
に好ましく使用できる。
The absorbent of the present invention described in detail above can be preferably used particularly for recovering petroleum products having a low boiling point, for example, gasoline vapor having about 90% of saturated hydrocarbons and having good compatibility with the absorbent of the present invention.

【0013】次に、本発明の回収方法について、本発明
方法の一実施態様例を示す図1に基づいて詳述する。図
1において、タンクローリー車1から排出される揮発性
有機化合物と空気との混合ガスは、排気管2を通って吸
収塔3に導入される。吸収塔3は、内部に充填物が充填
されており、上部から降下する特定性状の精製鉱油から
なる吸収剤(例えば上述の本発明吸収剤、以下単に吸収
剤と称する)と上昇する上記の混合ガスとが充分に向流
接触するようになっている。吸収塔3において、上記の
混合ガス中の揮発性有機化合物のみが吸収剤に吸収さ
れ、空気は吸収塔3の頂部からフレームアレスタ9を通
って大気に放散される。一方、吸収塔3で揮発性有機化
合物を吸収した吸収剤は、再生塔4に導入される。再生
塔4は、真空ポンプ6によって吸引されて、約1〜20
Torr、好ましくは約1〜10Torrの減圧下に保
持されている。再生塔4において、吸収剤に吸収されて
いる揮発性有機化合物の殆どが離脱される。離脱した揮
発性有機化合物は、真空ポンプ6により吸引され、クー
ラ7に導かれて冷却される。冷却された揮発性有機化合
物は、ドレンセパレータ8に入り、凝縮分と未凝縮分と
に分離される。なお、従来は、再生塔4の減圧度を一定
に保持するために、ドレンセパレータ8の頂部に上昇し
滞留している揮発性有機化合物の蒸気を、図2に示した
ようにして再生塔4の頂部にスピルバックさせて真空制
御を行っていたが、本発明の回収方法では、この真空制
御が不要となり、真空ポンプ6の制御システムコストと
運転コストの低減を図ることができる。再生塔4で揮発
性有機化合物を離脱した吸収剤は、再び吸収塔3の頂部
に返送されて循環使用される。ドレンセパレータ8で凝
縮分と未凝縮分とに分離された揮発性有機化合物は、未
凝縮分が回収塔5の上部から、凝縮分がほぼ中央部から
塔内に導入され、未凝縮分は塔内を上昇し、凝縮分は塔
内を降下する。そして、未凝縮分は回収塔5の上部から
降下されるガソリン等の回収液と向流接触し、凝縮分は
並流接触して、それらの殆どがガソリン等の回収液に吸
収されて回収される。この工程で回収されなかった揮発
性有機化合物(未凝縮分)は、回収塔5の頂部から排出
され、吸収塔3に導入されて再度、上記の吸収工程に付
される。
Next, the recovery method of the present invention will be described in detail with reference to FIG. 1 showing an embodiment of the method of the present invention. In FIG. 1, a mixed gas of a volatile organic compound and air discharged from a tank truck 1 is introduced into an absorption tower 3 through an exhaust pipe 2. The absorption tower 3 is filled with a filling material inside, and is composed of a refined mineral oil having a specific property that descends from the upper portion (for example, the above-described absorbent of the present invention, hereinafter simply referred to as an absorbent) and the above-described mixture that rises. There is sufficient countercurrent contact with the gas. In the absorption tower 3, only the volatile organic compound in the mixed gas is absorbed by the absorbent, and the air is diffused from the top of the absorption tower 3 to the atmosphere through the flame arrester 9. On the other hand, the absorbent having absorbed the volatile organic compound in the absorption tower 3 is introduced into the regeneration tower 4. The regeneration tower 4 is sucked by the vacuum pump 6 to about 1 to 20.
It is maintained under a reduced pressure of Torr, preferably about 1-10 Torr. In the regeneration tower 4, most of the volatile organic compounds absorbed by the absorbent are released. The released volatile organic compound is sucked by the vacuum pump 6, guided to the cooler 7, and cooled. The cooled volatile organic compound enters the drain separator 8 and is separated into a condensed part and an uncondensed part. Conventionally, in order to keep the pressure reduction degree of the regeneration tower 4 constant, the vapor of the volatile organic compound rising and staying at the top of the drain separator 8 is regenerated as shown in FIG. The vacuum control was performed by spilling back to the top of the vacuum pump. However, in the recovery method of the present invention, this vacuum control is unnecessary, and the control system cost and operating cost of the vacuum pump 6 can be reduced. The absorbent that has desorbed the volatile organic compounds in the regeneration tower 4 is returned to the top of the absorption tower 3 and is recycled. As for the volatile organic compound separated into the condensed component and the uncondensed component by the drain separator 8, the uncondensed component is introduced into the column from the upper part of the recovery column 5 and the condensed component is introduced into the column from substantially the central part. The inside rises and the condensed part falls inside the tower. Then, the uncondensed part comes into countercurrent contact with the recovered liquid such as gasoline dropped from the upper part of the recovery tower 5, and the condensed part comes into parallel flow contact, and most of them are absorbed and recovered by the recovered liquid such as gasoline. It Volatile organic compounds (uncondensed components) that have not been recovered in this step are discharged from the top of the recovery tower 5, introduced into the absorption tower 3, and again subjected to the above absorption step.

【0014】[0014]

【作用】本発明吸収剤は、約1〜20Torr程度の高
い減圧下でも沸騰しない。このため、揮発性有機化合物
を吸収した後の本発明吸収剤を上記程度の高い減圧下で
の離脱操作に付しても、離脱する揮発性有機化合物と共
沸することはない。よって、本発明吸収剤によれば、高
い離脱効果を発現する高い減圧下での離脱操作を、離脱
される揮発性有機化合物の純度を高くして、行うことが
できる。しかも、本発明吸収剤は、平均分子量や組成を
最適の範囲にすることにより、揮発性有機化合物に対す
る吸収能力も高く、上記の優れた離脱性能と相俟って、
従来の吸収剤よりも揮発性有機化合物の吸収剤として優
れている。また、本発明の回収方法では、上記の作用を
有する本発明吸収剤と同じ性状の精製鉱油を吸収剤とし
て、揮発性有機化合物の離脱操作を約1〜20Torr
の高い減圧下で行うため、高効率での離脱操作が可能と
なる上、高純度での揮発性有機化合物の回収が可能とな
る。
The absorbent of the present invention does not boil even under a high reduced pressure of about 1 to 20 Torr. For this reason, even if the absorbent of the present invention after absorbing the volatile organic compound is subjected to a releasing operation under a high reduced pressure as described above, it does not azeotrope with the volatile organic compound to be released. Therefore, according to the absorbent of the present invention, it is possible to perform the desorption operation under a high reduced pressure that exhibits a high desorption effect, while increasing the purity of the volatile organic compound to be desorbed. Moreover, the absorbent of the present invention has a high absorption capacity for volatile organic compounds by adjusting the average molecular weight and composition to the optimum range, and in combination with the above excellent release performance,
It is superior as a volatile organic compound absorbent to conventional absorbents. Further, in the recovery method of the present invention, the operation of removing the volatile organic compound is performed at about 1 to 20 Torr by using the refined mineral oil having the same properties as the absorbent of the present invention having the above-mentioned action as the absorbent.
Since it is carried out under a highly reduced pressure, it is possible to perform a highly efficient removal operation, and it is possible to recover the volatile organic compound with high purity.

【0015】[0015]

【実施例】本発明吸収剤として表1の1に示す性状の精
製鉱油(飽和炭化水素分50wt%)を使用し、また比
較吸収剤として表1の2に示す性状で約1〜20Tor
rでも沸騰しない従来の吸収剤であるエステル含有鉱油
(精製鉱油50vol%にアジピン酸ジオクチル50v
ol%を混合したもの)及び本発明範囲外の精製鉱油と
を使用し、これらの吸収剤を夫々250g入れた常圧下
の35℃の密閉容器に、揮発性有機化合物としてn−ペ
ンタンを11vol%含む窒素(以下、混合ガス)を、
0.9リットル/分の割合で、バブリングさせながら導
入して吸収操作を行い、n−ペンタンの供給量(g)に
対する本発明吸収剤と比較吸収剤の吸収速度(g/分)
を測定した。この結果を、本発明吸収剤については表2
の1に、比較吸収剤については表2の2に夫々示した。
なお、n−ペンタンの供給量(g)は、混合ガスの供給
量から把握した。
EXAMPLES As the absorbent of the present invention, refined mineral oil having the properties shown in 1 of Table 1 (saturated hydrocarbon content of 50 wt%) was used, and as a comparative absorbent, the properties shown in 2 of Table 1 were about 1 to 20 Torr.
A conventional ester-containing mineral oil that does not boil even at r (refined mineral oil 50 vol% to dioctyl adipate 50 v
and a refined mineral oil outside the scope of the present invention, and 250 g of each of these absorbents are placed in a closed container at 35 ° C. under normal pressure and 11 vol% of n-pentane as a volatile organic compound. Nitrogen containing (hereinafter, mixed gas)
At a rate of 0.9 liter / minute, the absorbent was introduced while bubbling to perform an absorption operation, and the absorption rates (g / minute) of the absorbent of the present invention and the comparative absorbent with respect to the supply amount (g) of n-pentane.
Was measured. The results are shown in Table 2 for the absorbent of the present invention.
No. 1 and No. 1 of the comparative absorbent are shown in Table 2-2.
The supply amount (g) of n-pentane was grasped from the supply amount of mixed gas.

【0016】また、上記の吸収操作を、上記の各密閉容
器の入口と出口における混合ガス中のn−ペンタン濃度
が同一となるまで続行し、各吸収剤中のn−ペンタン濃
度(液相濃度)と各混合ガス中のn−ペンタン濃度(気
相ガス濃度)とから夫々の気液平衡値を求めた。この結
果を、本発明吸収剤については表3の1に、比較吸収剤
については表3に夫々示した。なお、入口における混合
ガスのn−ペンタン濃度は、ほぼ10vol%,20v
ol%,30vol%の3種類とし、出口の混合ガス中
のn−ペンタン濃度は、ガスクロマトグラフ(TCD)
で測定した。
Further, the above absorption operation is continued until the n-pentane concentration in the mixed gas at the inlet and the outlet of each of the above-mentioned closed containers becomes the same, and the n-pentane concentration in each absorbent (liquid phase concentration ) And the n-pentane concentration (gas phase gas concentration) in each mixed gas, the respective vapor-liquid equilibrium values were obtained. The results are shown in Table 3-1 for the absorbent of the present invention and in Table 3 for the comparative absorbent. The n-pentane concentration of the mixed gas at the inlet is approximately 10 vol%, 20 v
The concentration of n-pentane in the mixed gas at the outlet is determined by gas chromatograph (TCD).
It was measured at.

【0017】更に、約29℃の温度条件下で各吸収剤2
50g中に液状のn−ペンタンを10gを溶解させ、こ
れを夫々密閉容器に入れ、35℃に保って、常圧から所
定の圧力まで減圧し、当該減圧下で5分間保持した後、
各吸収剤中のn−ペンタン濃度と各密閉容器の圧力とか
ら気液平衡値と離脱率を求めた。この結果を、表4に示
した。
In addition, each absorbent 2 under the temperature condition of about 29.degree.
After dissolving 10 g of liquid n-pentane in 50 g, placing each in a closed container, keeping the temperature at 35 ° C., reducing the pressure from normal pressure to a predetermined pressure, and maintaining the pressure reduction for 5 minutes,
The vapor-liquid equilibrium value and the separation rate were determined from the n-pentane concentration in each absorbent and the pressure in each closed container. The results are shown in Table 4.

【0018】[0018]

【表1】の1 [Table 1] 1

【表1】の2 [Table 1] 2

【0019】[0019]

【表2】の1 [Table 2] 1

【表2】の2 2 of [Table 2]

【0020】[0020]

【表3】の1 [Table 3] 1

【表3】の2 2 of [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】表4から明らかなように、本発明吸収剤に
よれば、従来の吸収剤(エステル含有鉱油)及び本発明
範囲外の精製鉱油のいずれの比較吸収剤よりも、吸収剤
中へのガスの保持効率(すなわち、吸収効率)が高いこ
とが判る。また、離脱性能については、離脱時の減圧度
が本発明方法の範囲内の1〜20Torrから外れた3
0Torrの場合には、比較吸収剤のうち従来のエステ
ル含有鉱油が、本発明吸収剤よりも僅かに優れた離脱性
能を示すが、本発明方法の範囲内の1〜20Torrの
減圧度下においては、本発明吸収剤がいずれの比較吸収
剤よりも優れた離脱性能を示すことが判る。
As is apparent from Table 4, the absorbent of the present invention was found to be more absorbent in the absorbent than the conventional absorbents (ester-containing mineral oils) and refined mineral oils outside the scope of the present invention. It can be seen that the gas retention efficiency (that is, absorption efficiency) is high. Regarding the release performance, the degree of pressure reduction during release was out of the range of 1 to 20 Torr within the range of the method of the present invention.
In the case of 0 Torr, the conventional ester-containing mineral oil among the comparative absorbents shows slightly better release performance than the absorbent of the present invention, but under the reduced pressure of 1 to 20 Torr within the range of the method of the present invention. It can be seen that the absorbent of the present invention exhibits better release performance than any of the comparative absorbents.

【0023】[0023]

【発明の効果】以上詳述したように、本発明吸収剤によ
れば、従来の吸収剤を使用した場合には不可能であった
減圧下でも揮発性有機化合物との共沸現象を生じること
なく離脱操作を行うことができるばかりでなく、揮発性
有機化合物に対する吸収能力も高いため、揮発性有機化
合物の回収用の吸収剤として極めて優れたものである。
また、本発明の回収方法によれば、減圧下での脱離操作
を行うため、高効率での回収操作を実現できる。
As described in detail above, according to the absorbent of the present invention, an azeotropic phenomenon with a volatile organic compound occurs even under reduced pressure, which is impossible when the conventional absorbent is used. Not only can the removal operation be performed without any action, but since it has a high absorption capacity for volatile organic compounds, it is extremely excellent as an absorbent for recovering volatile organic compounds.
Further, according to the recovery method of the present invention, since the desorption operation is performed under reduced pressure, the recovery operation with high efficiency can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の回収方法の一実施態様を示す図であ
る。
FIG. 1 is a diagram showing an embodiment of a recovery method of the present invention.

【図2】従来の回収方法における再生塔の圧力制御方法
の一例を示す図である。
FIG. 2 is a diagram showing an example of a pressure control method for a regeneration tower in a conventional recovery method.

【符号の説明】 1 タンクローリー車 2 排気管 3 吸収塔 4 再生塔 5 回収塔 6 真空ポンプ 7 クーラ 8 ドレンセパレータ 9 フレームアレスタ[Explanation of symbols] 1 tank truck 2 exhaust pipe 3 absorption tower 4 regeneration tower 5 recovery tower 6 vacuum pump 7 cooler 8 drain separator 9 flame arrester

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 常圧における沸点が260〜360℃、
40℃における粘度が3〜10cStであり、平均分子
量が200〜500、飽和炭化水素分が40〜90wt
%の精製鉱油からなることを特徴とする揮発性有機化合
物の吸収剤。
1. The boiling point at atmospheric pressure is 260 to 360 ° C.,
Viscosity at 40 ° C is 3 to 10 cSt, average molecular weight is 200 to 500, and saturated hydrocarbon content is 40 to 90 wt.
% Absorbent of volatile organic compounds, characterized in that it consists of 100% of refined mineral oil.
【請求項2】 揮発性有機化合物を含むガスと吸収剤と
を接触させて揮発性有機化合物を回収する方法におい
て、常圧における沸点が260〜360℃、40℃にお
ける粘度が3〜10cStであり、平均分子量が200
〜500、飽和炭化水素分が40〜90wt%の精製鉱
油を吸収剤として揮発性有機化合物を吸収させ、当該吸
収剤を1〜20Torrの条件下において揮発性有機化
合物を脱離させ、もって当該吸収剤を循環使用すること
を特徴とする揮発性有機化合物の回収方法。
2. A method for recovering a volatile organic compound by bringing a gas containing a volatile organic compound into contact with an absorbent, wherein the boiling point at atmospheric pressure is 260 to 360 ° C. and the viscosity at 40 ° C. is 3 to 10 cSt. , The average molecular weight is 200
.About.500, a saturated hydrocarbon content is 40 to 90 wt% of refined mineral oil as an absorbent to absorb a volatile organic compound, and the absorbent is desorbed under the condition of 1 to 20 Torr to remove the volatile organic compound. A method for recovering a volatile organic compound, which comprises recycling the agent.
JP3084728A 1991-03-25 1991-03-25 Volatile organic compound absorbent and method for recovering the same Expired - Fee Related JPH0783817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3084728A JPH0783817B2 (en) 1991-03-25 1991-03-25 Volatile organic compound absorbent and method for recovering the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3084728A JPH0783817B2 (en) 1991-03-25 1991-03-25 Volatile organic compound absorbent and method for recovering the same

Publications (2)

Publication Number Publication Date
JPH0568841A JPH0568841A (en) 1993-03-23
JPH0783817B2 true JPH0783817B2 (en) 1995-09-13

Family

ID=13838751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3084728A Expired - Fee Related JPH0783817B2 (en) 1991-03-25 1991-03-25 Volatile organic compound absorbent and method for recovering the same

Country Status (1)

Country Link
JP (1) JPH0783817B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017610B2 (en) 2008-04-25 2015-04-28 Roche Diagnostics Hematology, Inc. Method of determining a complete blood count and a white blood cell differential count
US9083857B2 (en) 2008-04-25 2015-07-14 Roche Diagnostics Hematology, Inc. Systems and methods for analyzing body fluids

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548632A (en) * 1977-06-23 1979-01-23 Shiraishi Kogyo Kaisha Ltd Calcium carbonate pigment and method of making same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017610B2 (en) 2008-04-25 2015-04-28 Roche Diagnostics Hematology, Inc. Method of determining a complete blood count and a white blood cell differential count
US9083857B2 (en) 2008-04-25 2015-07-14 Roche Diagnostics Hematology, Inc. Systems and methods for analyzing body fluids
US9217695B2 (en) 2008-04-25 2015-12-22 Roche Diagnostics Hematology, Inc. Method for determining a complete blood count on a white blood cell differential count
US9602777B2 (en) 2008-04-25 2017-03-21 Roche Diagnostics Hematology, Inc. Systems and methods for analyzing body fluids

Also Published As

Publication number Publication date
JPH0568841A (en) 1993-03-23

Similar Documents

Publication Publication Date Title
US4102983A (en) Method of purifying a gas containing volatile organic materials
US5345771A (en) Process for recovering condensable compounds from inert gas-condensable compound vapor mixtures
US5154735A (en) Process for recovering hydrocarbons from air-hydrocarbon vapor mixtures
EP0046472B1 (en) Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures
US4331456A (en) Process for recovering hydrocarbons with air-hydrocarbon vapor mixtures
US4261716A (en) Apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures
JP4264594B2 (en) Method for dehydration and separation of liquid hydrocarbons from natural gas using solvent mixtures
EP2559466B1 (en) Improved extractive distillation processes using water-soluble extractive solvents
CN1218711A (en) Process for removal of CO2 and sulphur compounds from industrial gases
US4436707A (en) Method for the removal of acidic gases such as carbon dioxide from gaseous mixtures
EP1372824B1 (en) Process for dehydrating gas
US3471370A (en) Method for regenerating glycolamine absorbing solutions
US4962238A (en) Removal of glycols from a polyalkylene glycol dialkyl ether solution
US5330563A (en) Process for separating a volatile organic compound from a gas
CN1102644C (en) Treating method for hydrogen sulfide and sulfur dioxide containing gas, comprising a desulfurizing step by cooling gaseous effluent
RU2135545C1 (en) Method and plant for stabilizing natural crude oil on borehole exit
JPH0783817B2 (en) Volatile organic compound absorbent and method for recovering the same
JP3396783B2 (en) Method for separating gas mixtures by absorption
CA1134121A (en) Vapor recovery
CA2021702C (en) Improved process for recovering hydrocarbons from air-hydrocarbon vapor mixtures
CN106669215A (en) Absorption and adsorption treatment method of high-concentration benzene gas
JPH04156914A (en) Absorbent for volatile organic compound
JP3008064B2 (en) Solvent gas absorbing liquid composition and method for recovering solvent gas using the same
EP0027805A1 (en) Improved process for removal and recovery of vinyl chloride monomer from vent gas stream in polyvinyl chloride plant.
EP0364671B1 (en) Apparatus and process for drying liquid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees