JPH0783731A - Volumenometer - Google Patents

Volumenometer

Info

Publication number
JPH0783731A
JPH0783731A JP23175593A JP23175593A JPH0783731A JP H0783731 A JPH0783731 A JP H0783731A JP 23175593 A JP23175593 A JP 23175593A JP 23175593 A JP23175593 A JP 23175593A JP H0783731 A JPH0783731 A JP H0783731A
Authority
JP
Japan
Prior art keywords
container
volume
acoustic
acoustic resonator
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23175593A
Other languages
Japanese (ja)
Inventor
Masanori Imanishi
正則 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP23175593A priority Critical patent/JPH0783731A/en
Publication of JPH0783731A publication Critical patent/JPH0783731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To provide an acoustic volumenometer which is constituted so that the influence of parasitic oscillation generated in a container to be measured can be eliminated and can measure the volume of a container with high accuracy even when the container has a special structure. CONSTITUTION:In an acoustic resonator which is constituted by connecting a first container 1 which is an object to be measured to one end of an acoustic tube 3 and second container 2 to the other end of the tube 3, a sound source 5 and microphone 4 are fitted to the inside of the second container 2. The volumenometer is constituted in such a way that the influence of parasitic vibrations generated in the container to be measured can be eliminated by drawing the volume of the container 1 by detecting the resonance frequency of a main acoustic resonator and that of the container 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、音響共振器の共振周
波数を測定して被測定物容器の容積を求める音響式の容
積計に関し、特に被測定物容器の内部に発生する振動の
影響を受けない、したがって複雑特殊構造の容器の計測
に適する容積計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acoustic volume meter for measuring the resonance frequency of an acoustic resonator to determine the volume of a container under test, and more particularly to the effect of vibration generated inside the container under test. The present invention relates to a volume meter which is suitable for measuring a container which does not receive and therefore has a complicated special structure.

【0002】[0002]

【従来の技術】従来の容積計としては、特開昭63−1
13315号公報のようなものがある。特開昭63−1
13315号公報の内容は、音響管の一端に第一の容器
を、他端に第二の容器を接続して得られる主音響共振器
に、補助音響共振器を音響的に結合するか、あるいは上
記音響管を補助音響共振器として兼用することにより構
成される音響系において、上記主音響共振器の共振周波
数と上記補助音響共振器の共振周波数との比より、温度
や湿度の変化(音速の変化)によって生ずる共振周波数
変化の影響を補正し、上記第一の容器の容積を求めると
いうものである。
2. Description of the Related Art A conventional volume meter is disclosed in Japanese Patent Laid-Open No. 63-1.
There is one such as Japanese Patent No. 13315. JP 63-1
No. 13315 discloses that an auxiliary acoustic resonator is acoustically coupled to a main acoustic resonator obtained by connecting a first container to one end of an acoustic tube and a second container to the other end, or In an acoustic system configured by also using the acoustic tube also as an auxiliary acoustic resonator, a change in temperature or humidity (of the sound velocity) is obtained based on the ratio between the resonance frequency of the main acoustic resonator and the resonance frequency of the auxiliary acoustic resonator. The change of the resonance frequency caused by the change is corrected, and the volume of the first container is obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
容積計にあっては、温度補償のため測定している補助音
響共振器の共振周波数が、容器内に発生する寄生共振の
影響を受け変化してしまうため、正確な温度補償が行な
われず測定誤差が生じてしまう、という問題があった。
また、上記共振周波数の変化は、マイクロホン、補助音
響共振器、音源、音響管の取付位置にも影響されるの
で、設計上の制約が多くなってしまうという問題もあっ
た。本発明は、このような従来の問題点に着目してなさ
れたもので、音源、マイクロホンの取り付け個所と利用
すべき共振とを適切に選択することによって、上記問題
を解決することを目的としている。
However, in the conventional volume meter, the resonance frequency of the auxiliary acoustic resonator, which is being measured for temperature compensation, changes due to the influence of parasitic resonance generated in the container. Therefore, there is a problem that accurate temperature compensation is not performed and a measurement error occurs.
Further, since the change in the resonance frequency is also influenced by the mounting positions of the microphone, the auxiliary acoustic resonator, the sound source, and the acoustic tube, there is also a problem that there are many restrictions in design. The present invention has been made in view of such conventional problems, and an object thereof is to solve the above problems by appropriately selecting a sound source, a mounting position of a microphone, and a resonance to be used. .

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め本発明においては、特許請求範囲に記載するように構
成されている。すなわち本発明の音響式容積計は、音響
管の一端に被測定物となる第一の容器を接続し、他端に
第二の容器を接続して構成される主音響共振器と、上記
第一の容器以外の箇所(第二の容器内部)に設置され音
響的に結合された少なくとも1つの音源およびマイクロ
ホンと、上記主音響共振器の共振周波数と上記第二の容
器の内部に発生する定在波の共振周波数とを測定する手
段と、上記2つの共振周波数より上記被測定物となる第
一の容器の容積を求める演算制御手段とを具備してい
る。
To achieve the above object, the present invention is constructed as described in the claims. That is, the acoustic volume meter of the present invention comprises a main acoustic resonator configured by connecting a first container as an object to be measured to one end of an acoustic tube and a second container to the other end, At least one acoustic source and a microphone acoustically coupled to each other installed in a place other than the one container (inside the second container), a resonance frequency of the main acoustic resonator, and a constant generated inside the second container. It is provided with a means for measuring the resonance frequency of the standing wave and a calculation control means for obtaining the volume of the first container to be the object to be measured from the two resonance frequencies.

【0005】[0005]

【作用】上記のように本発明の音響式容積計においては
被測定物となる第一の容器外に設置された(第二の容器
内部に設置された)音源、マイクロホンにより主音響共
振器の共振周波数と第二の容器内部に発生した定在波の
共振周波数を検出するように構成されている。上記2つ
の共振周波数の比をとることにより音速を消去して被測
定物容器(第一の容器)の容積を求めるが、第一の容器
の共振の影響をほとんど除去できるので、特殊構造の被
測定物容器にたいしても精度の高い測定を行なうことが
できる。
As described above, in the acoustic volume meter of the present invention, the sound source installed outside the first container (installed inside the second container), which is the object to be measured, and the microphone It is configured to detect the resonance frequency and the resonance frequency of the standing wave generated inside the second container. The sound velocity is erased by obtaining the ratio of the two resonance frequencies to obtain the volume of the DUT container (first container). However, since the influence of the resonance of the first container can be almost eliminated, an object with a special structure is It is possible to perform highly accurate measurement even on the object container.

【0006】[0006]

【実施例】以下、この発明を図面に基づいて説明する。
図1は、この発明の一実施例を示す図である。まず構成
を説明すると、長さL、内部断面積Sの音響管3の両端
にはネジ3a、3bが加工されており、その一端に既知
の容積V2の第二の容器2を接続し、他端に蓋6を接続
してヘルムホルツ共鳴器が構成されている。ここで上記
の容器2は、直径d、深さh(d≫h)の円柱状である
とする。上記ヘルムホルツ共鳴器にはさらに容積V1
被測定物となる第一の容器1が接続され、主音響共振器
を構成する。図に明示されているように、主音響共振器
は音響管3の両端に空洞が接続され、外部に対し閉じ
た、外乱の浸入を防ぐ音響系を構成している。5は音源
で、上記主音響共振器の内部の空気を音響的に駆動す
る。4はマイクロホンで、上記主音響共振器の内部の音
圧を検出する。次に、演算制御部7の構成を説明する。
10は発振器であり、この出力信号Es(t)は、音源
用アンプ13を介し音源5を駆動するとともに、FFT
アナライザ8に入力するように接続されているる。11
はマイクロホン用アンプであり、ここでマイクロホン4
の出力信号Em(t)は適当なレベルに増幅され、FF
Tアナライザ8に接続される。9はCPUであり、FF
Tアナライザ8、発振器10、メモリ12のすべての動
作を制御し、また、測定値を用いて所定の演算を行な
い、その結果を出力装置14(例えば表示装置、プリン
タなど)に出力する。15は測定スイッチであり、CP
U9へ測定動作の開始(ON)/停止(OFF)を指示
するスイッチである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing an embodiment of the present invention. First, explaining the configuration, length L, a screw 3a at both ends of the acoustic pipe 3 of the internal cross-sectional area S, 3b are machined to connect the second container 2 of known volume V 2 at one end thereof, A lid 6 is connected to the other end to form a Helmholtz resonator. Here, the container 2 is assumed to have a cylindrical shape with a diameter d and a depth h (d >> h). The Helmholtz resonator is further connected to a first container 1 having a volume V 1 and serving as an object to be measured, and constitutes a main acoustic resonator. As clearly shown in the figure, the main acoustic resonator has a cavity connected to both ends of the acoustic tube 3 and constitutes an acoustic system which is closed to the outside and prevents the intrusion of disturbance. A sound source 5 acoustically drives the air inside the main acoustic resonator. A microphone 4 detects the sound pressure inside the main acoustic resonator. Next, the configuration of the arithmetic control unit 7 will be described.
Reference numeral 10 denotes an oscillator, and the output signal Es (t) drives the sound source 5 via the sound source amplifier 13 and also outputs the FFT.
It is connected so as to input to the analyzer 8. 11
Is a microphone amplifier, and here is the microphone 4
Output signal Em (t) is amplified to an appropriate level and FF
It is connected to the T analyzer 8. 9 is a CPU, FF
It controls all the operations of the T analyzer 8, the oscillator 10, and the memory 12, performs a predetermined calculation using the measured values, and outputs the result to the output device 14 (for example, a display device, a printer, etc.). 15 is a measurement switch, CP
This is a switch for instructing U9 to start (ON) / stop (OFF) the measurement operation.

【0007】次に作用を説明する。演算制御部7におけ
る上記主音響共振器の共振周波数と上記第二の容器2内
に発生する定在波の共振周波数の測定、および第一の容
器1の容積を導出する演算は、図2のフロ−チャ−トに
示す手順で求められる。図2のS1〜S7は各共振周波
数の測定手順を示す。測定スイッチ15がONされる
と、CPU9は測定動作に入る。CPU9の指令によ
り、発振器10は周波数特性の平坦な信号、例えば正弦
波合成波やホワイトノイズといった信号Es(t)を発
振し、音源用アンプ13を介し音源5を駆動する。これ
を入力とし、上記主音響共振器には下記(数1)式の周
波数の共振が発生する。 f1=(c/2π)√{S(V1+V2)/(LV12)} …(数1) (c:音速、S:音響管の内部断面積、L:音響管の長
さ、V1:容器1の容積、V2:容器2の容積) さらに、第二の容器2の内部に諸々の定在波が発生し、
その共振周波数は(数2)式で表わされる。 f2=α(c/πd) …(数2) (α:高調波を決定する定数、d:第二の容器の直径) このf2の中で1次周方向モ−ドの共振周波数が最低周
波数で、圧力振動は図3に示すように、点線を節として
円周状に発生する。この最低周波数の共振周波数は次式
で近似できる。 f2=c/(πd) …(数3) 上記第二の容器2の内部に定在波を強く発生させて、こ
れを検出するには、図3に示した圧力振動の節(点線
部:圧力0)以外のところに音源4およびマイクロホン
5を取り付ける必要がある。つまり、蓋3の圧力振動の
節となる中心付近に音源を取付けても定在波は発生しに
くく、たとえ定在波が発生していても、マイクロホンを
圧力振動の節となる蓋3の中心付近に取り付けると、検
出が困難となることを考慮しなければならない。このと
きの上記主音響共振器の内部の音圧はマイクロホン4で
検出され、さらにこのマイクロホン出力信号Em(t)
は、マイクロホン用アンプ11を介しFFTアナライザ
8に入力される。FFTアナライザ8はCPU9の指令
により、音源への入力信号Es(t)とマイクロホン出
力信号Em(t)から伝達関数を演算し求める。CPU
9は、この演算が終了すると発振器8の発振を停止させ
る。ここまでのFFTアナライザ8、発振器10の動作
は、CPU9からの信号に同期して行なわれている。F
FTアナライザ8で求めた伝達関数は、図4のように各
共振点において、振幅特性|H|ではピーク、位相特性
∠Hでは反転する特性となる。これらの周波数は、音響
管3や第二の容器2の寸法などによって変化するが、こ
れらの寸法があらかじめわかっていれば、上記(数1)
式、(数3)式を用いて、あらかじめ周波数を予想する
ことが可能である。よって図4のような伝達関数におい
て、仮に他の共振が存在しても、上記主音響共振器と第
二の容器2の共振を特定することは容易に行なうことが
できる。また、図4の2つの共振周波数は測定に影響が
ない程度に離れている必要があるが、音響管3、第二の
容器2の寸法を変更し、2つの共振周波数が適当な値に
なるよう調整すればよい。CPU9は、この伝達関数デ
ータを取り込み、振幅特性のピーク周波数値または、あ
らかじめ実験等で求めておいた共振点での位相φと上記
位相特性との交点の周波数値から、各共振周波数f1
2を求める。演算結果はメモリ12に記憶される。
Next, the operation will be described. The calculation of the resonance frequency of the main acoustic resonator and the resonance frequency of the standing wave generated in the second container 2 in the calculation control unit 7 and the calculation for deriving the volume of the first container 1 are shown in FIG. It is calculated by the procedure shown in the flow chart. S1 to S7 in FIG. 2 show the measurement procedure of each resonance frequency. When the measurement switch 15 is turned on, the CPU 9 starts the measurement operation. In response to a command from the CPU 9, the oscillator 10 oscillates a signal having flat frequency characteristics, for example, a signal Es (t) such as a sine wave composite wave or white noise, and drives the sound source 5 via the sound source amplifier 13. By inputting this, resonance of the frequency of the following (Formula 1) is generated in the main acoustic resonator. f 1 = (c / 2π) √ {S (V 1 + V 2 ) / (LV 1 V 2 )} (Equation 1) (c: sound velocity, S: internal cross-sectional area of acoustic tube, L: length of acoustic tube Now, V 1 : the volume of the container 1, V 2 : the volume of the container 2) Furthermore, various standing waves are generated inside the second container 2,
The resonance frequency is expressed by the equation (2). f 2 = α (c / πd) (Equation 2) (α: constant that determines harmonics, d: diameter of second container) In this f 2 , the resonance frequency of the primary circumferential direction mode is At the lowest frequency, pressure oscillations occur circumferentially around the dotted line as a node, as shown in FIG. The resonance frequency of this lowest frequency can be approximated by the following equation. f 2 = c / (πd) (Equation 3) In order to detect the strong standing wave generated inside the second container 2, the pressure oscillation node (dotted line part) shown in FIG. : It is necessary to attach the sound source 4 and the microphone 5 to places other than the pressure 0). That is, even if a sound source is attached near the center of the lid 3 where the pressure vibration occurs, a standing wave is unlikely to be generated. It must be taken into consideration that if it is installed in the vicinity, it will be difficult to detect. The sound pressure inside the main acoustic resonator at this time is detected by the microphone 4, and the microphone output signal Em (t) is further detected.
Is input to the FFT analyzer 8 via the microphone amplifier 11. The FFT analyzer 8 calculates and obtains a transfer function from the input signal Es (t) to the sound source and the microphone output signal Em (t) according to a command from the CPU 9. CPU
9 stops the oscillation of the oscillator 8 when this calculation is completed. The operations of the FFT analyzer 8 and the oscillator 10 up to this point are performed in synchronization with the signal from the CPU 9. F
As shown in FIG. 4, the transfer function obtained by the FT analyzer 8 has a peak at the amplitude characteristic | H | and a phase inversion at the phase characteristic ∠H at each resonance point. These frequencies vary depending on the dimensions of the acoustic tube 3 and the second container 2, etc., but if these dimensions are known in advance, the above (Equation 1)
It is possible to predict the frequency in advance using the equation (Equation 3). Therefore, in the transfer function as shown in FIG. 4, even if another resonance exists, the resonance between the main acoustic resonator and the second container 2 can be easily specified. Further, the two resonance frequencies in FIG. 4 need to be separated from each other so as not to affect the measurement, but the dimensions of the acoustic tube 3 and the second container 2 are changed so that the two resonance frequencies become appropriate values. To adjust. The CPU 9 takes in the transfer function data, and based on the peak frequency value of the amplitude characteristic or the frequency value of the intersection point of the phase φ at the resonance point and the phase characteristic previously obtained by experiments or the like, the resonance frequency f 1 ,
Find f 2 . The calculation result is stored in the memory 12.

【0008】次に図2のS8〜S9に示す被測定物容器
1の容積V1を求める演算手順について説明する。(数
1)式、(数3)式の比をとると下記(数4)式が得ら
れ、容積V1が求められる。 V1=1/〔{(f1/f22/k}−(1/V2)〕 …(数4) ただし、k=d2S/(22L)。しかし(数1)式〜
(数3)式は理想的な条件下での理論式であり、これら
から導出した(数4)式を用いて演算すると、測定誤差
が発生する可能性がある。実際の計算式は、容積、寸法
が既知の容器を用いて較正実験を行ない、そこで実験的
に定めた定数を用いた近似式であってもよい。CPU9
は(数4)式、もしくは実験的に定数を定めた近似式に
より被測定物容器1の容積V1を求め、その結果を出力
装置14に出力する。なお、本実施例においては、図3
のような円筒空洞共鳴を用いて、その共振周波数f2
よって温度補償を行なうものであるが、本実施例は上記
の構成に限定されるものではない。例えば、図6に示す
ように、第二の容器2がh≫dのような円筒空洞の場合
には、両端閉止の音響管とみなせるので、この容器2内
の空洞には下記(数5)式で示される周波数f2(およ
びその整数倍の周波数)の共振(定在波)が発生する。 f2=C/2h …(数5) したがって、上記(数5)式と前記(数1)式から音速
Cを消去して容積V1を求めてもよい。さらに、上記共
振周波数の測定方法、容積計算式および第二の容器2の
形状は、本実施例に限定されるものではない。
Next, a calculation procedure for obtaining the volume V 1 of the object container 1 shown in S8 to S9 of FIG. 2 will be described. By taking the ratio of the equations (1) and (3), the following equation (4) is obtained, and the volume V 1 is obtained. V 1 = 1 / [{(f 1 / f 2 ) 2 / k}-(1 / V 2 )] (Equation 4) where k = d 2 S / (2 2 L). However, equation (1)
The formula (3) is a theoretical formula under ideal conditions, and if the formula (4) derived from these is used for calculation, a measurement error may occur. The actual calculation formula may be an approximate formula using a constant experimentally determined by performing a calibration experiment using a container whose volume and dimensions are known. CPU9
Calculates the volume V 1 of the DUT 1 by the equation (4) or an approximate expression that experimentally defines a constant, and outputs the result to the output device 14. In addition, in the present embodiment, FIG.
The temperature compensation is performed by using the resonance frequency f 2 of the cylindrical cavity resonance as described above, but the present embodiment is not limited to the above configuration. For example, as shown in FIG. 6, when the second container 2 is a cylindrical cavity such as h >> d, it can be regarded as an acoustic tube whose both ends are closed. Resonance (standing wave) having a frequency f 2 (and a frequency that is an integral multiple thereof) represented by the formula occurs. f 2 = C / 2h (Equation 5) Therefore, the volume V 1 may be obtained by eliminating the sound velocity C from the above Equation (5) and the above Equation (1). Furthermore, the method of measuring the resonance frequency, the volume calculation formula, and the shape of the second container 2 are not limited to the present embodiment.

【0009】図5には、他の実施例を示す。本実施例
は、自動車などのエンジンの燃焼室の容積を、アッセン
ブリ状態のままで測定するもので、図5はその概略図で
ある。ただしエンジンは、停止した状態である。まず構
成を説明すると、16はブロック、17はシリンダ、1
8はシリンダヘッド、19はヘッドカバーである。20
はピストン、21はコンロッドであり、ピストン20は
上死点で停止した状態である。ゆえにバルブ(図示せ
ず)は全閉状態であり、燃焼室22は外部に対し閉じた
空間となる。上記のエンジンに、両端にネジ3a、3b
が加工された長さL、内部断面積Sなる音響管3の一端
に既知の容積V2の容器2を接続し構成されるヘルムホ
ルツ共鳴器を、点火プラグ用穴23から挿入し、ネジ3
aによってシリンダヘッド18と接続する。よって、容
器2、音響管3および燃焼室22が、第1の実施例と同
様な主音響共振器(管の両端に空洞が接続された外部に
対し閉じた音響系)を構成する。演算制御部7における
上記主音響共振器の共振周波数および上記容器2内に発
生する定在波周波数の測定手段および容積計算式は、第
1の実施例と同じであるので省略する。このように、被
測定物ではない第二の容器2に音源5、マイクロホン4
を取り付ける構成としたため、本実施例のような特殊な
構造をした被測定物に対しても、改造なしで測定するこ
とが可能である。
FIG. 5 shows another embodiment. In this embodiment, the volume of a combustion chamber of an engine of an automobile or the like is measured in an assembled state, and FIG. 5 is a schematic diagram thereof. However, the engine is in a stopped state. First, the structure will be described. 16 is a block, 17 is a cylinder, 1
Reference numeral 8 is a cylinder head, and 19 is a head cover. 20
Is a piston, 21 is a connecting rod, and the piston 20 is stopped at the top dead center. Therefore, the valve (not shown) is in a fully closed state, and the combustion chamber 22 becomes a space closed to the outside. The above engine has screws 3a and 3b at both ends.
A Helmholtz resonator constituted by connecting a container 2 having a known volume V 2 to one end of an acoustic tube 3 having a processed length L and an internal cross-sectional area S is inserted from a spark plug hole 23, and a screw 3
It is connected to the cylinder head 18 by a. Therefore, the container 2, the acoustic tube 3, and the combustion chamber 22 form a main acoustic resonator (an acoustic system closed to the outside in which cavities are connected to both ends of the tube) similar to the first embodiment. The means for measuring the resonance frequency of the main acoustic resonator and the frequency of the standing wave generated in the container 2 and the volume calculation formula in the arithmetic and control unit 7 are the same as those in the first embodiment, and will be omitted. In this way, the sound source 5 and the microphone 4 are placed in the second container 2 which is not the DUT.
Since it is configured to be attached, it is possible to measure an object to be measured having a special structure as in this embodiment without modification.

【0010】[0010]

【発明の効果】以上説明してきたように、この発明によ
れば、音源5、マイクロホン4を被測定物としての第一
の容器1以外の箇所(第二の容器2の内部)に取り付
け、第二の容器2の内部に発生する定在波の共振を利用
して温度補償を行なう、という構成とした。このため、
被測定物である容器1の共振の影響を受けずに温度補償
が行なえるので測定精度が向上し、かつ、マイクロホン
4、音源5、音響管3の寸法や取付け位置における設計
上の自由度が増す、という効果が得られる。
As described above, according to the present invention, the sound source 5 and the microphone 4 are attached to a portion (inside the second container 2) other than the first container 1 as the DUT, and The temperature compensation is performed by utilizing the resonance of the standing wave generated inside the second container 2. For this reason,
Since the temperature compensation can be performed without being affected by the resonance of the container 1 which is the object to be measured, the measurement accuracy is improved, and the dimensions of the microphone 4, the sound source 5, and the acoustic tube 3 and the degree of freedom in designing the mounting position are improved. The effect is to increase.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の音響式容積計の実施例を示す音響共振
器の断面図と演算制御回路のブロック図。
FIG. 1 is a sectional view of an acoustic resonator and a block diagram of a calculation control circuit showing an embodiment of an acoustic volume meter of the present invention.

【図2】図1の実施例における容器容積測定手順を示す
フロ−チャ−ト。
2 is a flow chart showing a procedure for measuring the volume of a container in the embodiment of FIG.

【図3】容器の内部に発生する1次周方向モ−ドの空洞
共鳴を示す図。
FIG. 3 is a diagram showing cavity resonance in a primary circumferential mode generated inside a container.

【図4】伝達関数特性図。FIG. 4 is a transfer function characteristic diagram.

【図5】本発明の他の実施例を示す音響共振器の断面
図。
FIG. 5 is a sectional view of an acoustic resonator showing another embodiment of the present invention.

【図6】図1の実施例における他の構成を示す音響共振
器の断面図。
6 is a sectional view of an acoustic resonator showing another configuration in the embodiment of FIG.

【符号の説明】[Explanation of symbols]

1…容器(V1:被測定物) 12…メモリ 2…容器(V2) 13…音源用アン
プ 3…音響管 14…出力装置 3a…ネジ 15…測定スイッ
チ 3b…ネジ 16…ブロック 4…マイクロホン 17…シリンダ 5…音源 18…シリンダヘ
ッド 6…蓋 19…ヘッドカバ
ー 7…演算制御部 20…ピストン 8…FFTアナライザ 21…コンロッド 9…CPU 22…燃焼室 10…発振器 23…点火プラ
グ用穴 11…マイクロホン用アンプ
DESCRIPTION OF SYMBOLS 1 ... Container (V1: measured object) 12 ... Memory 2 ... Container (V2) 13 ... Sound source amplifier 3 ... Acoustic tube 14 ... Output device 3a ... Screw 15 ... Measurement switch 3b ... Screw 16 ... Block 4 ... Microphone 17 ... Cylinder 5 ... Sound source 18 ... Cylinder head 6 ... Lid 19 ... Head cover 7 ... Arithmetic control unit 20 ... Piston 8 ... FFT analyzer 21 ... Connecting rod 9 ... CPU 22 ... Combustion chamber 10 ... Oscillator 23 ... Spark plug hole 11 ... Microphone amplifier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】音響管の一端に被測定物となる第一の容器
を接続し、他端に第二の容器を接続して構成される主音
響共振器と、 上記第一の容器以外の箇所に設置され音響的に結合され
た少なくとも1つの音源およびマイクロホンと、 上記主音響共振器の共振周波数と上記第二の容器の内部
に発生する定在波の共振周波数とを測定する手段と、 上記2つの共振周波数より上記被測定物となる第一の容
器の容積を求める演算制御手段と、 を具備することを特徴とする容積計。
1. A main acoustic resonator constituted by connecting a first container as an object to be measured to one end of an acoustic tube and connecting a second container to the other end, and a main acoustic resonator other than the first container. At least one sound source and a microphone acoustically coupled to each other, means for measuring the resonance frequency of the main acoustic resonator and the resonance frequency of the standing wave generated inside the second container; A volume control device, comprising: arithmetic control means for obtaining the volume of the first container, which is the object to be measured, from the two resonance frequencies.
JP23175593A 1993-09-17 1993-09-17 Volumenometer Pending JPH0783731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23175593A JPH0783731A (en) 1993-09-17 1993-09-17 Volumenometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23175593A JPH0783731A (en) 1993-09-17 1993-09-17 Volumenometer

Publications (1)

Publication Number Publication Date
JPH0783731A true JPH0783731A (en) 1995-03-31

Family

ID=16928531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23175593A Pending JPH0783731A (en) 1993-09-17 1993-09-17 Volumenometer

Country Status (1)

Country Link
JP (1) JPH0783731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050306A1 (en) * 2018-09-07 2020-03-12 国立大学法人京都大学 Volume measuring device and volume measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050306A1 (en) * 2018-09-07 2020-03-12 国立大学法人京都大学 Volume measuring device and volume measuring method
JPWO2020050306A1 (en) * 2018-09-07 2021-10-21 国立大学法人京都大学 Volume measuring device and volume measuring method

Similar Documents

Publication Publication Date Title
US4811595A (en) System for monitoring fluent material within a container
US5571239A (en) Noise control apparatus for internal combustion engine
JPH06510870A (en) Method and device for damping acoustic vibrations in a medium
US4495818A (en) Cylindrical vibrator type pressure transducer
JPH0783731A (en) Volumenometer
JPH0735646A (en) Apparatus for measuring characteristic of leaf spring
US6550335B2 (en) Device for testing internal pressure of a gas reservoir of an airbag inflator
JPH0783727A (en) Volumenometer
US5054316A (en) Volumetric measuring apparatus
JPH0783730A (en) Volumenometer
JPS6117286B2 (en)
JPH10254457A (en) Reducing method of noise within vehicle compartment and device therefor
JP3141651B2 (en) Engine measuring device
US5052225A (en) Acoustic gyroscope
JPH08128877A (en) Engine measuring device
RU199339U1 (en) Frequency pressure sensor
JP2894126B2 (en) Acoustic volumetric meter
JPH0559927A (en) Noise reduction device
JP2897630B2 (en) Volumetric meter
JPH04296635A (en) Temperature correcting method of density sensor in vibratory gas density meter
RU2282162C1 (en) Method of compensating additive temperature error of pickup with vibrating member
JPH0626449A (en) Active type pulsation pressure absorber
JPS6125024A (en) Measuring method of liquid level
JPH05195746A (en) Noise reduction device
SU1696924A2 (en) Piezoelectric pressure transducer monitoring device