JPH0783530A - Water and lithium bromide absorption refrigerator - Google Patents

Water and lithium bromide absorption refrigerator

Info

Publication number
JPH0783530A
JPH0783530A JP24604193A JP24604193A JPH0783530A JP H0783530 A JPH0783530 A JP H0783530A JP 24604193 A JP24604193 A JP 24604193A JP 24604193 A JP24604193 A JP 24604193A JP H0783530 A JPH0783530 A JP H0783530A
Authority
JP
Japan
Prior art keywords
absorber
lithium bromide
water
evaporator
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24604193A
Other languages
Japanese (ja)
Inventor
Taiji Sakai
耐事 坂井
Shinichi Yoshida
信一 吉田
Mitsuru Ishikawa
満 石川
Yukio Hayakawa
由紀夫 早川
Shinji Kakizaki
真二 柿崎
Noboru Kawaguchi
昇 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Toyo Radiator Co Ltd
Original Assignee
Honda Motor Co Ltd
Toyo Radiator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Toyo Radiator Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP24604193A priority Critical patent/JPH0783530A/en
Publication of JPH0783530A publication Critical patent/JPH0783530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To obtain a water and lithium bromide absorption refrigerator which can obtain low temperature cold water and has a high heat quantity ratio. CONSTITUTION:The water and lithium bromide absorption refrigerator has an evaporator 1, an absorber 2, a regenerator 3 and a condenser 4, and comprises a vapor ejector having a diffuser 20 for communicating an upper space of the evaporator 1 with an upper space of the absorber 2 and a vapor nozzle 22 arranged to the evaporator 1 side from its throttle 21 in the diffuser 20 toward the absorber 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水・臭化リチウム吸収
冷凍機において、蒸発器内の圧力を低い水準に維持させ
たまま、吸収器内の溶液濃度をできるだけ低下させて、
冷凍器の熱量比(圧縮冷凍器の成績係数に相当するも
の)を高くした水・臭化リチウム吸収冷凍機に関するも
のである。
BACKGROUND OF THE INVENTION The present invention relates to a water / lithium bromide absorption refrigerator in which the solution concentration in the absorber is lowered as much as possible while maintaining the pressure in the evaporator at a low level.
The present invention relates to a water / lithium bromide absorption refrigerator in which the heat quantity ratio of the refrigerator (corresponding to the coefficient of performance of the compression refrigerator) is increased.

【0002】[0002]

【従来技術】冷房に用いられる従来の水・臭化リチウム
冷凍機は、図4に図示されるように、蒸発器1、吸収器
2、再生器3および凝縮器4より構成され、蒸発器1に
は蒸発器1と冷却ユニット5とを接続する冷水配管6に
ポンプ7が介装されており、蒸発器1で得られた冷水は
ポンプ7で蒸発器1と冷却ユニット5とを循環し、冷却
ユニット5にて外気と熱交換されて冷風が得られるよう
になっている。
2. Description of the Related Art A conventional water / lithium bromide refrigerator used for cooling is composed of an evaporator 1, an absorber 2, a regenerator 3 and a condenser 4, as shown in FIG. Is provided with a pump 7 in a cold water pipe 6 connecting the evaporator 1 and the cooling unit 5, and the cold water obtained in the evaporator 1 is circulated between the evaporator 1 and the cooling unit 5 by the pump 7. Cooling air is obtained by exchanging heat with the outside air in the cooling unit 5.

【0003】また吸収器2には、吸収器2内の臭化リチ
ウム水溶液を循環させて吸収器2内で噴霧させる臭化リ
チウム水溶液配管8にポンプ9が介装され、吸収器2内
の臭化リチウム水溶液を冷却する空冷装置10が付設され
ている。
Further, in the absorber 2, a pump 9 is installed in a lithium bromide aqueous solution pipe 8 for circulating the lithium bromide aqueous solution in the absorber 2 and spraying it in the absorber 2, so that the odor in the absorber 2 is An air cooling device 10 for cooling the lithium fluoride aqueous solution is attached.

【0004】さらに吸収器2から再生器3を経由して再
び吸収器2に臭化リチウム水溶液を循環させる臭化リチ
ウム水溶液循環配管11中にポンプ12と流量制御弁13と溶
液熱交換器14とが介装されており、吸収器2を出た低温
の稀臭化リチウム水溶液が再生器3を出た高温の濃臭化
リチウム水溶液と熱交換されるようになっている。
Further, a pump 12, a flow control valve 13, a solution heat exchanger 14 are provided in a lithium bromide aqueous solution circulation pipe 11 for circulating the lithium bromide aqueous solution from the absorber 2 to the absorber 2 again via the regenerator 3. The low-temperature dilute lithium bromide aqueous solution leaving the absorber 2 is heat-exchanged with the high-temperature concentrated lithium bromide aqueous solution exiting the regenerator 3.

【0005】さらにまた再生器3内には臭化リチウム水
溶液を加熱させて、水蒸気を発生させる加熱装置15が設
けられている。
Furthermore, in the regenerator 3, there is provided a heating device 15 for heating the aqueous solution of lithium bromide to generate steam.

【0006】しかも再生器3と上部が連通する凝縮器4
には、再生器3で蒸発した水蒸気を凝縮させるための空
冷装置16が設けられている。
Moreover, the condenser 4 is connected to the regenerator 3 at the upper portion thereof.
Is provided with an air cooling device 16 for condensing the water vapor evaporated in the regenerator 3.

【0007】図4に図示の水・臭化リチウム冷凍機にお
いて、吸収器2および再生器3を循環する臭化リチウム
水溶液の濃度と吸収器2の入口および出口の温度と再生
器3の入口および出口の温度とは、図2のデューリング
線図で示され、吸収器2の入口および出口の温度、圧力
はA、Bで示され、再生器3の入口および出口の温度、
圧力はC、Dで示されている。
In the water / lithium bromide refrigerator shown in FIG. 4, the concentration of the lithium bromide aqueous solution circulating in the absorber 2 and the regenerator 3, the temperature at the inlet and the outlet of the absorber 2, the inlet of the regenerator 3, and The temperature of the outlet is shown by the Dühring diagram of FIG. 2, the temperature of the inlet and the outlet of the absorber 2, the pressure is shown by A and B, the temperature of the inlet and the outlet of the regenerator 3,
The pressure is indicated by C and D.

【0008】[0008]

【解決しようとする課題】図4に図示された従来の水・
臭化リチウム吸収冷凍機においては、蒸発器1内の上部
空間と吸収器2内の上部空間とは連通して、ほぼ同一圧
力に設定されているため、図2の臭化リチウム水溶液の
デューリング線図から明らかなように、蒸発器1および
吸収器2内の圧力を8mmHgに設定した場合には、約7〜
8℃の冷水が得られ、冷房の冷源として充分に利用され
うるが、空冷装置10の駆動により吸収器2内の臭化リチ
ウム水溶液が夏期の高温外気と熱交換されて冷却される
ようになっているので、吸収器2の出口温度は50℃(図
2でB点)と比較的高温となり、吸収器2の出口におけ
る臭化リチウム水溶液の濃度は約63%となる。
[Problems to be solved] Conventional water shown in FIG.
In the lithium bromide absorption refrigerator, the upper space in the evaporator 1 and the upper space in the absorber 2 communicate with each other and are set to substantially the same pressure. As is clear from the diagram, when the pressure inside the evaporator 1 and the absorber 2 is set to 8 mmHg, it is about 7-
Although cold water of 8 ° C. can be obtained and can be sufficiently used as a cooling source for cooling, by driving the air cooling device 10, the lithium bromide aqueous solution in the absorber 2 is cooled by exchanging heat with high temperature outside air in summer. Therefore, the outlet temperature of the absorber 2 is relatively high at 50 ° C. (point B in FIG. 2), and the concentration of the aqueous lithium bromide solution at the outlet of the absorber 2 is about 63%.

【0009】吸収冷凍機において、熱量比を向上させる
ためには、吸収器2と再生器3とを循環する臭化リチウ
ム水溶液の濃度巾(吸収器2の出口濃度と吸収器2の入
口濃度との差)を増大させ、また溶液熱交換器14の熱回
収率を増加させればよいのであるが、前記濃度巾の増大
を図るべく、吸収器2の入口濃度を増大させると、結晶
線Xに接近して、臭化リチウム水溶液循環配管11中に臭
化リチウムが折出し、溶液熱交換器14の熱回収率が低下
し、また完全に結晶した場合はサイクルが低下してしま
うので、図2に図示されるように、吸収器2の入口温度
は56℃程度で、その濃度は66%となり、濃度巾は3%程
度を限度としてしまう。
In the absorption refrigerator, in order to improve the heat quantity ratio, the concentration range of the lithium bromide aqueous solution circulating between the absorber 2 and the regenerator 3 (the outlet concentration of the absorber 2 and the inlet concentration of the absorber 2 is However, if the inlet concentration of the absorber 2 is increased in order to increase the concentration range, the crystal line X , Lithium bromide breaks out in the lithium bromide aqueous solution circulation pipe 11, the heat recovery rate of the solution heat exchanger 14 decreases, and the cycle decreases when completely crystallized. As shown in Fig. 2, the inlet temperature of the absorber 2 is about 56 ° C, its concentration is 66%, and the concentration width is limited to about 3%.

【0010】また吸収器2の入口および再生器3の出口
における臭化リチウム水溶液の濃度が増大するに伴な
い、加熱装置15による再生器3内の臭化リチウム水溶液
の加熱温度が上昇し、高温の加熱源を必要とする。
Further, as the concentration of the aqueous lithium bromide solution at the inlet of the absorber 2 and the outlet of the regenerator 3 increases, the heating temperature of the aqueous lithium bromide solution in the regenerator 3 by the heating device 15 rises, resulting in a high temperature. Need a heating source.

【0011】[0011]

【課題を解決するための手段および作用効果】本発明
は、このような難点を克服した水・臭化リチウム吸収冷
凍機の改良に係り、蒸発器と吸収器とを連通する水蒸気
通路に、該蒸発器から吸収器に向けて水蒸気を吸引させ
る蒸気エゼクタを介装したことを特徴とするものであ
る。
SUMMARY OF THE INVENTION The present invention relates to an improvement of a water / lithium bromide absorption refrigerating machine which overcomes the above drawbacks, and relates to a water vapor passage communicating between an evaporator and an absorber. It is characterized in that a vapor ejector for sucking water vapor from the evaporator toward the absorber is interposed.

【0012】本発明は前記したように構成されるため、
蒸発器内の水蒸気圧力を低圧に保持させて充分に低い温
度の冷水を発生させることができると同時に、吸収器内
の水蒸気圧力を蒸発器内の水蒸気圧力よりも高圧に設定
させて、吸収器出口および再生器入口の臭化リチウム水
溶液の濃度を低下させることができる。
Since the present invention is constructed as described above,
The water vapor pressure in the evaporator can be maintained at a low pressure to generate cold water at a sufficiently low temperature, and at the same time, the water vapor pressure in the absorber can be set higher than the water vapor pressure in the evaporator. The concentration of the aqueous lithium bromide solution at the outlet and the inlet of the regenerator can be reduced.

【0013】このため、再生器出口および吸収器入口の
臭化リチウム水溶液の濃度を臭化リチウムの結晶濃度に
接近させなくても、吸収器出口および再生器入口の臭化
リチウム水溶液濃度と、再生器出口および吸収器出口の
臭化リチウム水溶液濃度との濃度巾を充分に増大させ
て、熱量比を向上させることができる。
Therefore, even if the concentration of the lithium bromide aqueous solution at the regenerator outlet and the absorber inlet is not brought close to the crystal concentration of lithium bromide, the lithium bromide aqueous solution concentration at the absorber outlet and the regenerator inlet and the regeneration The calorific ratio can be improved by sufficiently increasing the concentration range with respect to the concentration of the aqueous lithium bromide solution at the outlet and the outlet of the absorber.

【0014】また吸収器出口および再生器入口の臭化リ
チウム水溶液の濃度の低下に伴なってそこそこの濃度巾
を保っても、再生器出口および吸収器入口の臭化リチウ
ム水溶液の濃度を低下させることができるので、再生器
の加熱温度を低くすることができ、比較的低温の加熱源
で足りる。
Further, even if the concentration range of the lithium bromide aqueous solution at the outlet of the absorber and the inlet of the regenerator is decreased, the concentration of the aqueous lithium bromide solution at the outlet of the regenerator and the inlet of the absorber is reduced. Therefore, the heating temperature of the regenerator can be lowered, and a heating source of a relatively low temperature is sufficient.

【0015】[0015]

【実 施 例】図1に図示された本発明の一実施例につ
いて説明する。図4に図示された従来の水・臭化リチウ
ム吸収冷凍機と同一の構成部分には、それぞれ同一の符
号が付されている。
EXAMPLE An example of the present invention shown in FIG. 1 will be described. The same components as those of the conventional water / lithium bromide absorption refrigerator shown in FIG. 4 are designated by the same reference numerals.

【0016】蒸発器1内の上部空間と吸収器2内の上部
空間とはディフューザ20で連通され、該ディフューザ20
内でその絞り部21より蒸発器1寄りに蒸気ノズル22が吸
収器2に向って配設されて、蒸気エゼクタ23が構成され
ており、凝縮器4内の水がボイラ24で加熱加圧され、蒸
気ノズル22より高圧水蒸気が噴出されて、吸収器2内の
圧力が蒸発器1内の圧力よりも22mmHgだけ高圧(30mmH
g)に加圧されるようになっている。
The upper space in the evaporator 1 and the upper space in the absorber 2 are communicated with each other by a diffuser 20.
A steam nozzle 22 is arranged in the vicinity of the evaporator 1 from the narrowed portion 21 toward the absorber 2 to form a steam ejector 23, and the water in the condenser 4 is heated and pressurized by the boiler 24. , High-pressure steam is ejected from the steam nozzle 22, and the pressure in the absorber 2 is higher than the pressure in the evaporator 1 by 22 mmHg (30 mmH
It is designed to be pressurized to g).

【0017】図1の実施例は前記したように蒸発器1内
の圧力よりも22mmHgだけ高圧に吸収器2内の圧力が保持
されるので吸収器2の出口温度を図4に図示の従来の冷
凍機における吸収器2の出口温度50℃と同一温度に設定
すると、吸収器2の出口における臭化リチウム水溶液の
濃度は、図2で明らかなように、約48%迄に上昇する。
In the embodiment shown in FIG. 1, since the pressure inside the absorber 2 is maintained at a pressure higher by 22 mmHg than the pressure inside the evaporator 1 as described above, the outlet temperature of the absorber 2 is changed from the conventional one shown in FIG. When the same temperature as the outlet temperature of the absorber 2 in the refrigerator is set to 50 ° C., the concentration of the aqueous lithium bromide solution at the outlet of the absorber 2 rises to about 48%, as is apparent from FIG.

【0018】このため、吸収器2の入口温度を70℃にし
ても吸収器2の入口における臭化リチウム水溶液の濃度
は60%となって、濃度巾は60−48=12%となり、熱量比
が著しく改善される。
Therefore, even if the inlet temperature of the absorber 2 is 70 ° C., the concentration of the lithium bromide aqueous solution at the inlet of the absorber 2 is 60%, the concentration width is 60-48 = 12%, and the heat quantity ratio is Is significantly improved.

【0019】また蒸発器1の圧力を図4に図示の従来の
冷凍機における圧力(70mmHg)と同一に設定しても、再
生器3の出口温度は88℃となるので、加熱装置15は高温
の加熱源を必要としなくて足りる。
Even if the pressure of the evaporator 1 is set to the same as the pressure (70 mmHg) in the conventional refrigerator shown in FIG. 4, the outlet temperature of the regenerator 3 becomes 88 ° C., so that the heating device 15 has a high temperature. You don't need a heating source.

【0020】さらに蒸気ノズル22より噴出する水蒸気は
凝縮器4内の水を水源としてしているため、吸収器2内
で吸収されても、冷凍機内の水の総量は一定に保持され
る。
Further, since the water vapor ejected from the steam nozzle 22 uses water in the condenser 4 as a water source, even if absorbed in the absorber 2, the total amount of water in the refrigerator is kept constant.

【0021】図1の実施例では、吸収器2および凝縮器
4を空冷装置10および空冷装置16で冷却していたが、吸
収器2および凝縮器4を水冷装置で冷却してもよく、こ
のように水冷式にすると、吸収器2の出口における臭化
リチウム水溶液の温度を、図3に図示するうよに、例え
ば40℃に低下させることができるので、吸収器2の出口
および再生器3の入口における臭化リチウム水溶液の濃
度を従来の58%から40%に低下させることができ、再生
器3の出口温度を空冷式の出口温度88°Cと同水準に設
定すれば、濃度巾をさらに60−40=20%に拡大させて、
熱量比を一段と向上させることができる。
In the embodiment of FIG. 1, the absorber 2 and the condenser 4 are cooled by the air cooling device 10 and the air cooling device 16, but the absorber 2 and the condenser 4 may be cooled by the water cooling device. With such a water cooling system, the temperature of the aqueous lithium bromide solution at the outlet of the absorber 2 can be lowered to, for example, 40 ° C. as shown in FIG. 3, so that the outlet of the absorber 2 and the regenerator 3 The concentration of the aqueous solution of lithium bromide at the inlet of can be reduced from the conventional 58% to 40%, and if the outlet temperature of the regenerator 3 is set to the same level as the air-cooled outlet temperature of 88 ° C, the concentration range can be increased. Further expanding to 60-40 = 20%,
The heat quantity ratio can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る水・臭化リチウム吸収冷凍機の概
略構成図である。
FIG. 1 is a schematic configuration diagram of a water / lithium bromide absorption refrigerator according to the present invention.

【図2】図1および図4に図示の空冷式水・臭化リチウ
ム吸収冷凍機におけるDuhring線図である。
FIG. 2 is a Duhring diagram of the air-cooled water / lithium bromide absorption refrigerator shown in FIGS. 1 and 4.

【図3】本発明の他の実施例である水冷式水・臭化リチ
ウム吸収冷凍機におけるDuhring 線図である。
FIG. 3 is a Duhring diagram of a water-cooled water / lithium bromide absorption refrigerator according to another embodiment of the present invention.

【図4】従来の空冷式水・臭化リチウム吸収冷凍機の概
略構成図である。
FIG. 4 is a schematic configuration diagram of a conventional air-cooled water / lithium bromide absorption refrigerator.

【符号の説明】[Explanation of symbols]

1…蒸発器、2…吸収器、3…再生器、4…凝縮器、5
…冷却ユニット、6…水冷配管、7…ポンプ、8…臭化
リチウム水溶液配管、9…ポンプ、10…空冷装置、11…
臭化リチウム水溶液循環配管、12…ポンプ、13…流量制
御弁、14…溶液熱交換器、15…加熱装置、16…空冷装
置、20…ディフューザ、21…絞り部、22…蒸気ノズル、
23…蒸気エゼクタ、24…ボイラ。
1 ... Evaporator, 2 ... Absorber, 3 ... Regenerator, 4 ... Condenser, 5
... Cooling unit, 6 ... Water cooling pipe, 7 ... Pump, 8 ... Lithium bromide aqueous solution pipe, 9 ... Pump, 10 ... Air cooling device, 11 ...
Lithium bromide aqueous solution circulation pipe, 12 ... Pump, 13 ... Flow control valve, 14 ... Solution heat exchanger, 15 ... Heating device, 16 ... Air cooling device, 20 ... Diffuser, 21 ... Throttling part, 22 ... Steam nozzle,
23 ... Steam ejector, 24 ... Boiler.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 満 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 早川 由紀夫 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 柿崎 真二 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 川口 昇 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuru Ishikawa 1-4-1 Chuo, Wako-shi, Saitama Inside the Honda R & D Co., Ltd. (72) Inventor Yukio Hayakawa 1-4-1 Chuo, Wako-shi, Saitama Stock company Honda Technical Research Institute (72) Inventor Shinji Kakizaki 1-4-1 Chuo, Wako City, Saitama Prefecture Stock Technical Research Institute Honda Research Institute (72) Noboru Kawaguchi 1-1-4 Central, Wako City, Saitama Prefecture No. Stock Company Honda Technical Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器と吸収器とを連通する水蒸気通路
に、該蒸発器から吸収器に向けて水蒸気を吸引させる蒸
気エゼクタを介装したことを特徴とする水・臭化リチウ
ム吸収冷凍機。
1. A water / lithium bromide absorption refrigerating machine comprising a steam ejector for sucking steam from the evaporator toward the absorber in a water vapor passage communicating between the evaporator and the absorber. .
JP24604193A 1993-09-08 1993-09-08 Water and lithium bromide absorption refrigerator Pending JPH0783530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24604193A JPH0783530A (en) 1993-09-08 1993-09-08 Water and lithium bromide absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24604193A JPH0783530A (en) 1993-09-08 1993-09-08 Water and lithium bromide absorption refrigerator

Publications (1)

Publication Number Publication Date
JPH0783530A true JPH0783530A (en) 1995-03-28

Family

ID=17142584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24604193A Pending JPH0783530A (en) 1993-09-08 1993-09-08 Water and lithium bromide absorption refrigerator

Country Status (1)

Country Link
JP (1) JPH0783530A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534739A (en) * 2014-12-25 2015-04-22 中国科学院广州能源研究所 Flash evaporation-diffusion absorption refrigerating system
WO2016005628A1 (en) * 2014-07-10 2016-01-14 Universidad Carlos Iii De Madrid Expansion, absorption and compression device for sorption machines
CN109297212A (en) * 2018-09-28 2019-02-01 中国建筑科学研究院有限公司 Novel absorption type refrigeration mode and device utilizing low-temperature heat energy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016005628A1 (en) * 2014-07-10 2016-01-14 Universidad Carlos Iii De Madrid Expansion, absorption and compression device for sorption machines
ES2556225A1 (en) * 2014-07-10 2016-01-14 Universidad Carlos Iii De Madrid Expansion, absorption and compression device for absorption machines (Machine-translation by Google Translate, not legally binding)
CN104534739A (en) * 2014-12-25 2015-04-22 中国科学院广州能源研究所 Flash evaporation-diffusion absorption refrigerating system
CN109297212A (en) * 2018-09-28 2019-02-01 中国建筑科学研究院有限公司 Novel absorption type refrigeration mode and device utilizing low-temperature heat energy

Similar Documents

Publication Publication Date Title
JPS61119954A (en) Absorption heat pump/refrigeration system
JPH0783530A (en) Water and lithium bromide absorption refrigerator
JPH06281288A (en) Absorption type refrigerator using waste heat
JP2000154946A (en) Triple effect absorption refrigeration machine
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
JPS5812507B2 (en) Hybrid type absorption heat pump
JP3193578B2 (en) Absorption refrigerator
JP3429906B2 (en) Absorption refrigerator
JPS6122225B2 (en)
JPS5852463Y2 (en) Water-lithium salt compact absorption refrigerator
JP3429905B2 (en) Absorption refrigerator
JP2520946B2 (en) Air-cooled absorption refrigerator
JPH0350373Y2 (en)
JPS58108368A (en) Double effect absorption type refrigerator
KR200154868Y1 (en) Self parting device of absorption type cooler
JPS63204080A (en) Absorption refrigerator
JPH0222312B2 (en)
JPH0534034A (en) Absorption type freezer
JPH10197089A (en) Absorption refrigerator
JPS6210352B2 (en)
JPS6022251B2 (en) absorption refrigerator
JP2001317834A (en) Two stage double effect absorption refrigerating machine
JPS5921957A (en) Absorption cold and hot water machine
JP2001208443A (en) Absorption freezer
JPH0830629B2 (en) Absorption refrigerator