JPH0783523A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0783523A
JPH0783523A JP22703393A JP22703393A JPH0783523A JP H0783523 A JPH0783523 A JP H0783523A JP 22703393 A JP22703393 A JP 22703393A JP 22703393 A JP22703393 A JP 22703393A JP H0783523 A JPH0783523 A JP H0783523A
Authority
JP
Japan
Prior art keywords
oil
compressor
refrigerant
discharge
gas refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22703393A
Other languages
Japanese (ja)
Inventor
Katsutoshi Kitagawa
勝敏 北川
Masahiko Sasakura
正彦 佐々倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22703393A priority Critical patent/JPH0783523A/en
Publication of JPH0783523A publication Critical patent/JPH0783523A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To eliminate a drop in a oil level by distributing to supply part of return oil of a compressor in which an oil rate of discharge gas refrigerant is little to other compressor in which an oil rate of discharge gas refrigerant is much. CONSTITUTION:An oil return tube 21 is provided to a suction tube of an ON/ OFF control compressor 2, and a distribution oil return tube 22 is provided to a suction tube of an inverter-control compressor 1. The tube 22 supplies to distribute part of return oil of a compressor in which OC% of the discharge gas refrigerant is little to the other compressor in which OC% of the discharge gas refrigerant is much. However, OC%=(O/L)X100, where L is the discharge refrigerant rate, and 0 is oil rate discharged in mixture in the discharge refrigerant. Thus, since suitable part of oil return from an oil separator 20 of the compressor 2 is supplemented to the compressor 1 through the tube 22, the oil rate output from the same compressor becomes equal to the return oil rate, and an oil level of stored lubricant is held in a suitable state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複数台の圧縮機を1冷媒
系統に搭載した空気調和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a plurality of compressors mounted in one refrigerant system.

【0002】[0002]

【従来の技術】図4は従来の空気調和機の1例の冷媒配
管系統図である。室外ユニットAに複数台(図では3
台)の室内ユニットB1,B2,B3が冷媒配管を介し
て互に並列に接続されている。室外ユニットAは複数台
(図では2台)の圧縮機1,2、逆止弁3,4、室外熱
交換器5、アキュムレータ8等を備えている。室内ユニ
ットB1,B2,B3はそれぞれ膨張弁61,62,6
3、室内熱交換器71,72,73等を備えている。
2. Description of the Related Art FIG. 4 is a refrigerant piping system diagram of an example of a conventional air conditioner. Multiple units in the outdoor unit A (3 in the figure)
Indoor units B1, B2, B3 are connected in parallel to each other via a refrigerant pipe. The outdoor unit A includes a plurality of (two in the figure) compressors 1, 2, check valves 3, 4, an outdoor heat exchanger 5, an accumulator 8, and the like. The indoor units B1, B2, B3 have expansion valves 61, 62, 6 respectively.
3, the indoor heat exchangers 71, 72, 73, etc. are provided.

【0003】上記圧縮機1,2は冷媒回路内に並列に組
込まれ、これらの密閉容器は均油管9を介して互に接続
されている。2台の圧縮機のうち、1台はインバータ制
御圧縮機1、他の1台はオン・オフ制御圧縮機2であ
る。インバータ制御圧縮機1は商用電源51にインバー
タ52を介して電気的に接続され、オン・オフ制御圧縮
機2は商用電源53に直接接続されている。
The compressors 1 and 2 are assembled in parallel in the refrigerant circuit, and these closed containers are connected to each other via an oil equalizing pipe 9. Of the two compressors, one is an inverter control compressor 1 and the other one is an on / off control compressor 2. The inverter control compressor 1 is electrically connected to a commercial power supply 51 via an inverter 52, and the on / off control compressor 2 is directly connected to a commercial power supply 53.

【0004】また、インバータ制御圧縮機1及びオン・
オフ制御圧縮機2の吐出口と各々の逆止弁3,4との間
の吐出配管にそれぞれ油分離器10,20が設けられ、
この油分離器10,20から各々の圧縮機1,2の吸入
配管にかけて油戻し管11,21が設けられている。な
お、油戻し管11,21は油戻し管を通って各圧縮機
1,2に流入する油量を制御するキャピラリー12,2
2を有する。また、図4では冷房運転時の冷媒配管系統
図が示されており、ヒートポンプ装置に見られるような
四方弁機構の図示は省略されている。
In addition, the inverter control compressor 1 and the on
Oil separators 10 and 20 are provided in the discharge pipes between the discharge port of the off-control compressor 2 and the check valves 3 and 4, respectively.
Oil return pipes 11 and 21 are provided from the oil separators 10 and 20 to the suction pipes of the compressors 1 and 2, respectively. The oil return pipes 11 and 21 are capillaries 12 and 2 that control the amount of oil flowing into the compressors 1 and 2 through the oil return pipes.
Have two. Further, FIG. 4 shows a refrigerant piping system diagram during the cooling operation, and the illustration of the four-way valve mechanism as seen in the heat pump device is omitted.

【0005】冷房運転時、圧縮機1,2から吐出された
ガス冷媒は油分離器10,20、逆止弁3,4を経て、
合流して室外熱交換器5に入り、ここで凝縮液化する。
この液冷媒は室内ユニットB1,B2,B3に並列に流
入し、膨張弁61,62,63で断熱膨張した後、室内
熱交換器71,72,73で室内空気を冷却することに
よって蒸発気化する。このガス冷媒はアキュムレータ8
を経て圧縮機1,2に並列に吸入される。また、油分離
器10,20では、各々圧縮機1,2から吐出されたガ
ス冷媒中に含まれている潤滑油(以下、油と略す)が分
離され、各々油戻し管11,21を介して各圧縮機1,
2の吸入配管に戻される。
During the cooling operation, the gas refrigerant discharged from the compressors 1 and 2 passes through the oil separators 10 and 20 and the check valves 3 and 4,
They merge and enter the outdoor heat exchanger 5, where they are condensed and liquefied.
This liquid refrigerant flows into the indoor units B1, B2, B3 in parallel, undergoes adiabatic expansion by the expansion valves 61, 62, 63, and is then evaporated and vaporized by cooling the indoor air by the indoor heat exchangers 71, 72, 73. . This gas refrigerant is the accumulator 8
And is sucked in parallel to the compressors 1 and 2. In the oil separators 10 and 20, the lubricating oil (hereinafter abbreviated as oil) contained in the gas refrigerant discharged from the compressors 1 and 2, respectively, is separated and passed through the oil return pipes 11 and 21, respectively. Each compressor 1,
It is returned to the second suction pipe.

【0006】本空気調和機の運転制御の仕組みの説明は
省略するが、室内負荷に応じ、インバータ制御圧縮機1
は所定の運転周波数の範囲、例えば、2台の圧縮機1,
2が共に運転中には、図5に示すように、55〜95H
Z の範囲で制御され、インバータ制御圧縮機1のみ運転
中には35〜95HZ の範囲で制御され、両方の状態に
またがってオン・オフ制御圧縮機2のオン・オフが制御
される。
The description of the operation control mechanism of the present air conditioner will be omitted, but the inverter control compressor 1 will be operated according to the indoor load.
Is a predetermined operating frequency range, for example, two compressors 1,
As shown in FIG.
It is controlled in the range of Z, while driving only the inverter control the compressor 1 is controlled in the range of 35~95H Z, on and off across both state on-off control the compressor 2 is controlled.

【0007】[0007]

【発明が解決しようとする課題】上記従来の空調機にお
いては、図5に示されるようにオン・オフ制御圧縮機2
のオン時にはインバータ制御圧縮機1の運転周波数は所
定の範囲内、例えば、55〜95HZ で変化し、インバ
ータ制御圧縮機1はオン・オフ制御圧縮機2よりも概し
て高速回転で運転される。同種の圧縮機では、通常、回
転数が高くなる程、吐出ガス冷媒のOC%が大きくなる
傾向になるので、インバータ制御圧縮機1の吐出ガス冷
媒のOC%の方が、オン・オフ制御圧縮機2の吐出ガス
冷媒のOC%より大きくなる。ただしOC%とは、下記
の式によって求められるものである。
In the above conventional air conditioner, as shown in FIG. 5, the on / off control compressor 2 is used.
The operating frequency of the inverter control the compressor 1 at the time of ON within a predetermined range, for example, vary 55~95H Z, inverter control the compressor 1 is generally operated at a high speed than the on-off control the compressor 2. In the same type of compressor, the OC% of the discharge gas refrigerant generally tends to increase as the rotation speed increases, so that the OC% of the discharge gas refrigerant of the inverter control compressor 1 is on / off control compression. It becomes larger than OC% of the discharge gas refrigerant of the machine 2. However, OC% is obtained by the following formula.

【0008】OC%=(O/L)×100 但し、 L:吐出冷媒量(g/h) O:吐出冷媒中に混入して吐出される油量(g/h) 一方、冷媒系統は1系統であり、各圧縮機から吐出され
たガス冷媒は冷凍サイクルを循環する間に混合されるの
で、各圧縮機の吸入ガス冷媒のOC%はほゞ等しくな
る。
OC% = (O / L) × 100 where L: discharge refrigerant amount (g / h) O: oil amount mixed in discharge refrigerant and discharged (g / h) On the other hand, the refrigerant system is 1 Since the gas refrigerant discharged from each compressor is mixed while circulating through the refrigeration cycle, the OC% of the suction gas refrigerant of each compressor becomes approximately equal.

【0009】従って、インバータ制御圧縮機1について
は、油分離器10を経て冷凍サイクル中に出る油量の方
が冷凍サイクルを循環して戻る油量より概して多くなる
ので、同圧縮機1の密閉容器内底部に貯溜されている油
の量は運転継続に伴い徐々に減少し、その油面は低下す
る。この時、インバータ制御圧縮機1の密閉容器内の圧
力が、オン・オフ制御圧縮機2の密閉容器内の圧力より
低ければ、オン・オフ制御圧縮機2の密閉容器内の油が
均油管9を通って、インバータ制御圧縮機1の密閉容器
内に流入、補充され、該圧縮機内の油面は回復する。
Therefore, in the inverter-controlled compressor 1, the amount of oil that goes out through the oil separator 10 into the refrigeration cycle is generally larger than the amount of oil that circulates in the refrigeration cycle and returns. The amount of oil stored in the bottom of the container gradually decreases as the operation continues, and the oil level drops. At this time, if the pressure in the closed container of the inverter control compressor 1 is lower than the pressure in the closed container of the on / off control compressor 2, the oil in the closed container of the on / off control compressor 2 will be equalized. The oil level in the compressor is restored by flowing through and being replenished into the closed container of the inverter-controlled compressor 1.

【0010】しかし、実際の運転では、インバータ制御
圧縮機1の密閉容器内の圧力はオン・オフ制御圧縮機2
の密閉容器内の圧力に等しいか高い場合もあるので、オ
ン・オフ制御圧縮機2の密閉容器の油が均油管9を通っ
てインバータ制御圧縮機1の密閉容器内に流入するとは
限らない。この結果、インバータ制御圧縮機1の密閉容
器内の油面が低下して、インバータ制御圧縮機1の潤滑
不良又はこれに基く故障を惹起するおそれがある。
However, in actual operation, the pressure in the closed container of the inverter control compressor 1 is controlled by the on / off control compressor 2.
In some cases, the oil in the closed container of the on / off control compressor 2 does not always flow into the closed container of the inverter control compressor 1 through the oil equalizing pipe 9 because it may be equal to or higher than the pressure in the closed container. As a result, the oil level in the airtight container of the inverter-controlled compressor 1 may be lowered, which may cause lubrication failure of the inverter-controlled compressor 1 or a failure based on it.

【0011】本発明は、上記従来技術の欠点を解消し、
OC%の大きい圧縮機においても、油面の低下が生じな
いようにしようとするものである。
The present invention solves the above-mentioned drawbacks of the prior art,
Even in a compressor with a high OC%, the oil level is not lowered.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
したものであって、複数台の圧縮機を1冷媒系統に並列
に接続すると共に、各圧縮機を均油管で接続してなる空
気調和機において、各圧縮機の吐出側に設けられた油分
離器からの油を各油分離器が接続されているそれぞれの
圧縮機に戻す油戻し管を設けると共に、吐出ガス冷媒の
OC%が小さい圧縮機の戻し油の一部を吐出ガス冷媒の
OC%が大きい他の圧縮機に分配供給する分配油戻し管
を設けたことを特徴とする空気調和機に関するものであ
る。但し、OC%は次式で定義されるものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems and is an air system in which a plurality of compressors are connected in parallel to one refrigerant system and each compressor is connected by an oil equalizing pipe. In the harmony machine, an oil return pipe for returning the oil from the oil separator provided on the discharge side of each compressor to each compressor connected to each oil separator is provided, and the OC% of the discharge gas refrigerant is The present invention relates to an air conditioner provided with a distribution oil return pipe for supplying a part of return oil of a small compressor to another compressor having a high OC% of discharge gas refrigerant. However, OC% is defined by the following equation.

【0013】OC%=(O/L)×100 L:吐出冷媒量(g/h) O:吐出冷媒中に混入して吐出される油量(g/h)OC% = (O / L) × 100 L: discharge refrigerant amount (g / h) O: oil amount mixed in discharge refrigerant and discharged (g / h)

【0014】[0014]

【作用】本発明は、上記構成を備えているので、吐出ガ
ス冷媒のOC%が大きく密閉容器内の油面が低下する圧
縮機(従来例ではインバータ制御圧縮機)に吐出ガス冷
媒のOC%が小さい圧縮機(従来例ではオン・オフ制御
圧縮機)の戻し油の一部を分配することにより、吐出ガ
ス冷媒のOC%が大きい圧縮機において、油分離器を経
て冷凍サイクル中に出る油量に同圧縮機の吸入管を通っ
て戻る油量(=その圧縮機自体の油分離器から戻る油量
+他の圧縮機の油戻しから分配される油量)を等しくす
ることができ、OC%の大きい圧縮機内の油面低下が防
止される。
Since the present invention has the above-described structure, the discharge gas refrigerant has a high OC% and the oil level in the hermetically sealed container is lowered (the inverter control compressor in the conventional example). In the compressor with a large OC% of the discharged gas refrigerant, the oil that comes out through the oil separator into the refrigeration cycle is distributed by distributing a part of the return oil of the compressor with a small value (the conventional example is an on / off control compressor). The amount of oil returned through the suction pipe of the compressor (= the amount of oil returned from the oil separator of the compressor itself + the amount of oil distributed from the oil return of another compressor) can be made equal to the amount, The oil level in the compressor with a high OC% is prevented from lowering.

【0015】[0015]

【実施例】本発明の第1実施例に係る冷媒配管系統図、
図2は図1の本発明部分のみを取り出した作用説明図で
ある。なお、圧縮機の運転制御を示す線図は図5に示す
従来のものと同様である。
[Embodiment] A refrigerant piping system diagram according to a first embodiment of the present invention,
FIG. 2 is an explanatory view of the operation in which only the part of the present invention of FIG. 1 is taken out. The diagram showing the operation control of the compressor is the same as the conventional one shown in FIG.

【0016】図1において、オン・オフ制御圧縮機2の
油分離器20からは、同圧縮機2の吸入配管にかけて油
戻し管21が設けられているだけでなく、さらにインバ
ータ制御圧縮機1の吸入配管にかけて分配油戻し管22
が設けられている。油戻し管21及び分配油戻し管22
は油戻し管を通って、各々オン・オフ制御圧縮機2、イ
ンバータ制御圧縮機1に流入する油量を制御するキャピ
ラリー23,24を有する。他の構成、作用は図4に示
す従来のものと同様であり、対応する部材には同じ符号
が付されている。
In FIG. 1, an oil return pipe 21 is provided not only from the oil separator 20 of the on / off control compressor 2 to the suction pipe of the compressor 2 but also of the inverter control compressor 1. Distribution oil return pipe 22 through the suction pipe
Is provided. Oil return pipe 21 and distributed oil return pipe 22
Has capillaries 23 and 24 for controlling the amount of oil flowing into the on / off control compressor 2 and the inverter control compressor 1 through the oil return pipe. Other configurations and operations are similar to those of the conventional one shown in FIG. 4, and corresponding members are designated by the same reference numerals.

【0017】次に図2により本発明の作用を説明する。
先づ、油分離器10,20には油が溜らないことが必要
で、そのためには、次の,式が条件となる。 OUT1=OUT2+IN3 …………………………………… OUT3=OUT4+IN4+IN5 ………………………… 但し、 OUT1:インバータ制御圧縮機1の吐出ガス冷媒中に
含まれて同圧縮機から出ていく油量(g/h) OUT2:油分離器10を経てインバータ制御圧縮機か
ら冷凍サイクルに出ていく油量(g/h) IN3 :油分離器10から油戻し管11を介してイン
バータ制御圧縮機1に戻される油量(g/h) OUT3:オン・オフ制御圧縮機2の吐出ガス冷媒に含
まれて同圧縮機から出ていく油量(g/h) OUT4:油分離器20を経てオン・オフ制御圧縮機2
から冷凍サイクルに出ていく油量(g/h) IN5 :油分離器20から油戻し管21を介してオン
・オフ制御圧縮機2に戻される油量(g/h) IN4 :油分離器20から分配油戻し管22を介して
インバータ制御圧縮機1に分配される油量(g/h)
Next, the operation of the present invention will be described with reference to FIG.
First, it is necessary that oil does not accumulate in the oil separators 10 and 20, and for that purpose, the following equation is a condition. OUT1 = OUT2 + IN3 ……………………………… OUT3 = OUT4 + IN4 + IN5 …………………………………………………………………………………………………………………………………………………………………………………………………… OUT1 Oil amount (g / h) output from the machine OUT2: Oil amount (g / h) output from the inverter-controlled compressor to the refrigeration cycle via the oil separator 10 IN3: From the oil separator 10 to the oil return pipe 11 Oil amount (g / h) returned to the inverter-controlled compressor 1 via OUT3: Oil amount contained in the discharge gas refrigerant of the on / off control compressor 2 and flowing out from the compressor (g / h) OUT4: On / off control compressor 2 via oil separator 20
Amount of oil (g / h) flowing out from the refrigeration cycle from IN5: Amount of oil (g / h) returned from the oil separator 20 to the on / off control compressor 2 via the oil return pipe 21 IN4: Oil separator Amount (g / h) of oil distributed from 20 to the inverter-controlled compressor 1 via the distributed oil return pipe 22

【0018】また、圧縮機より冷凍サイクル中に出てい
く油量と戻る油量には、次の式が成り立つ。 OUT2>OUT4,IN1=IN2 ………………………… 但し、 IN1:インバータ制御圧縮機1にその吸入配管を通っ
て冷凍サイクルから戻ってくる油量(g/h) IN2:オン・オフ制御圧縮機2にその吸入配管を通っ
て冷凍サイクルから戻ってくる油量(g/h)
Further, the following equations hold for the amount of oil flowing out of the compressor during the refrigeration cycle and the amount of oil returning. OUT2> OUT4, IN1 = IN2 ………………………………………………………………………… IN1: The amount of oil (g / h) returned from the refrigeration cycle to the inverter-controlled compressor 1 through its suction pipe IN2: ON Oil quantity returned from the refrigeration cycle to the off-control compressor 2 through its suction pipe (g / h)

【0019】次に、両圧縮機1,2の密閉容器内の油面
がバランスするためには、次の,式が条件となる。 OUT2=IN1+IN4 ……………………………………… OUT4=IN2+IN4 ……………………………………… 上記,,式より次の式が導かれ、式を満足す
るよう油戻し管22中のキャピラリ24の径、長さ等が
決められる。 IN4=(OUT2−OUT4)/2 …………………………
Next, in order to balance the oil levels in the hermetically sealed containers of both compressors 1 and 2, the following equation is required. OUT2 = IN1 + IN4 …………………………………… OUT4 = IN2 + IN4 ……………………………………………………………… The diameter, length, etc. of the capillary 24 in the oil return pipe 22 are determined so as to satisfy the requirement. IN4 = (OUT2-OUT4) / 2 ………………………………

【0020】以上の構成により、オン・オフ制御圧縮機
2の油分離器20からの油戻しの一部適量が分配油戻し
管22を介してインバータ制御圧縮機1に補充されるの
で、同圧縮機について出ていく油量と戻る油量が等しく
なり(式参照)、同圧縮機の密閉容器内底部に貯溜さ
れる潤滑油の油面は適正な状態に保たれる。
With the above-described structure, a part of an appropriate amount of oil returned from the oil separator 20 of the on / off control compressor 2 is replenished to the inverter control compressor 1 via the distribution oil return pipe 22, so that the same compression is performed. The amount of oil coming out of the machine and the amount of returning oil become equal (see formula), and the oil level of the lubricating oil stored in the bottom of the closed container of the compressor is kept in an appropriate state.

【0021】図3は本発明の第2実施例に係る作用説明
図であり、第1実施例の図2に対応する図である。本例
は圧縮機3台の場合の実施例を示し、1台のインバータ
制御圧縮機1と2台のオン・オフ制御圧縮機2,3で構
成されているものである。オン・オフ制御圧縮機3の油
分離器30から分配油戻し管32を介してインバータ制
御圧縮機1に適量の油が分配される。これによって、圧
縮機1,2,3の3台とも運転中におけるインバータ制
御圧縮機1の密閉容器内の油面は適正な状態に保たれ
る。
FIG. 3 is an explanatory view of the operation according to the second embodiment of the present invention, and is a drawing corresponding to FIG. 2 of the first embodiment. This example shows an embodiment in the case of three compressors, and is composed of one inverter control compressor 1 and two on / off control compressors 2 and 3. An appropriate amount of oil is distributed from the oil separator 30 of the on / off control compressor 3 to the inverter control compressor 1 via the distribution oil return pipe 32. As a result, the oil level in the closed container of the inverter-controlled compressor 1 during operation of all three compressors 1, 2 and 3 is maintained in an appropriate state.

【0022】なお、上記各実施例では室内ユニットが3
台、圧縮機の台数が2台及び3台、うち1台がインバー
タ制御圧縮機、他がオン・オフ制御圧縮機の場合を例に
説明したが、本発明はこれらの台数および圧縮機制御方
式に限定されるものではない。
In each of the above embodiments, the number of indoor units is three.
The number of units and the number of compressors are two and three, of which one is an inverter-controlled compressor and the other is an on / off-controlled compressor, but the present invention is not limited thereto. It is not limited to.

【0023】以上詳述したように、上記各実施例では、
吐出ガス冷媒のOC%が大きく密閉容器内底部に貯溜さ
れる潤滑油の油面が低下する傾向にある圧縮機(実施例
ではインバータ制御圧縮機)に吐出ガス冷媒のOC%が
小さい圧縮機(実施例ではオン・オフ制御圧縮機)の戻
し油の一部適量を分配する油戻し管(図1の22等)を
具備しているので、同圧縮機(実施例ではインバータ制
御圧縮機)について吐出側より流出する油量と吸入側に
戻る油量が等しくなり、同圧縮機の密閉容器内の油面は
低下せず、適正な状態に保たれる。この結果、同圧縮機
の油面低下による潤滑不良又はこれに基づく故障を回避
することができる。
As described in detail above, in each of the above embodiments,
The compressor (inverter-controlled compressor in the embodiment) in which the OC% of the discharged gas refrigerant is large and the oil level of the lubricating oil stored in the bottom of the closed container tends to be low, Since the embodiment is provided with an oil return pipe (22, etc. in FIG. 1) that distributes an appropriate amount of return oil of the on / off control compressor, the compressor (inverter control compressor in the embodiment) The amount of oil flowing out from the discharge side becomes equal to the amount of oil returning to the suction side, and the oil level in the closed container of the compressor does not decrease and is maintained in an appropriate state. As a result, it is possible to avoid a lubrication failure due to a decrease in the oil level of the compressor or a failure due to this.

【0024】[0024]

【発明の効果】本発明の空気調和機においては、各圧縮
機の吐出側に設けられた油分離器からの油を各油分離器
が接続されているそれぞれの圧縮機に戻す油戻し管を設
けると共に、吐出ガス冷媒のOC%が小さい圧縮機の戻
し油の一部を吐出ガス冷媒のOC%が大きい他の圧縮機
に分配供給する分配油戻し管を設けてあるのでOC%の
大きい圧縮機においても密閉容器内の油面低下がなくな
り、潤滑不良又はこれによる故障を回避することができ
る。
In the air conditioner of the present invention, the oil return pipe for returning the oil from the oil separator provided on the discharge side of each compressor to each compressor connected to each oil separator is provided. Along with the provision of a distribution oil return pipe for supplying a part of the return oil of the compressor having a small OC% of the discharge gas refrigerant to another compressor having a large OC% of the discharge gas refrigerant, a compression with a large OC% is provided. Even in the machine, the oil level in the closed container does not decrease, and it is possible to avoid poor lubrication or a failure due to this.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る冷媒配管の系統図。FIG. 1 is a system diagram of a refrigerant pipe according to a first embodiment of the present invention.

【図2】同実施例の作用説明用部分系統図。FIG. 2 is a partial system diagram for explaining the operation of the embodiment.

【図3】本発明の第2実施例に係る作用説明用部分系統
図。
FIG. 3 is a partial system diagram for explaining an operation according to a second embodiment of the present invention.

【図4】従来の空気調和機の冷媒配管系統図。FIG. 4 is a refrigerant piping system diagram of a conventional air conditioner.

【図5】従来の空気調和機の負荷と圧縮能力との関係に
よる圧縮機の制御を示す線図。
FIG. 5 is a diagram showing control of a compressor based on the relationship between load and compression capacity of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 インバータ制御圧縮機(吐出ガス冷媒のOC
%が大きい圧縮機) 2,3 オン・オフ制御圧縮機(吐出ガス冷媒のOC
%が小さい圧縮機) 10,20,30 油分離器 22,32 分配油戻し管
1 Inverter control compressor (OC of discharge gas refrigerant
% Compressor 2,3 ON / OFF control compressor (OC of discharge gas refrigerant)
Compressor with small%) 10,20,30 Oil separator 22,32 Distributing oil return pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数台の圧縮機を1冷媒系統に並列に接
続すると共に、各圧縮機を均油管で接続してなる空気調
和機において、各圧縮機の吐出側に設けられた油分離器
からの油を各油分離器が接続されているそれぞれの圧縮
機に戻す油戻し管を設けると共に、吐出ガス冷媒のOC
%が小さい圧縮機の戻し油の一部を吐出ガス冷媒のOC
%が大きい他の圧縮機に分配供給する分配油戻し管を設
けたことを特徴とする空気調和機。但し、OC%は次式
で定義されるものである。 OC%=(O/L)×100 L:吐出冷媒量(g/h) O:吐出冷媒中に混入して吐出される油量(g/h)
1. An air conditioner in which a plurality of compressors are connected in parallel to one refrigerant system and each compressor is connected by an oil equalizing pipe, and an oil separator provided on the discharge side of each compressor. An oil return pipe for returning the oil from the oil to each compressor connected to each oil separator is provided, and the discharge gas refrigerant OC
Discharge a part of the compressor return oil with a small%
An air conditioner characterized by having a distribution oil return pipe for distribution and supply to another compressor with a high%. However, OC% is defined by the following equation. OC% = (O / L) × 100 L: discharge refrigerant amount (g / h) O: oil amount mixed in discharge refrigerant and discharged (g / h)
JP22703393A 1993-09-13 1993-09-13 Air conditioner Pending JPH0783523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22703393A JPH0783523A (en) 1993-09-13 1993-09-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22703393A JPH0783523A (en) 1993-09-13 1993-09-13 Air conditioner

Publications (1)

Publication Number Publication Date
JPH0783523A true JPH0783523A (en) 1995-03-28

Family

ID=16854476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22703393A Pending JPH0783523A (en) 1993-09-13 1993-09-13 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0783523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113933A1 (en) 2009-03-31 2010-10-07 三菱重工業株式会社 Turbo refrigeration machine and method for controlling the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113933A1 (en) 2009-03-31 2010-10-07 三菱重工業株式会社 Turbo refrigeration machine and method for controlling the same
US20120055184A1 (en) * 2009-03-31 2012-03-08 Mitsubishi Heavy Industries, Ltd. Centrifugal-chiller and method for controlling the same

Similar Documents

Publication Publication Date Title
JP2557903B2 (en) Air conditioner
EP0541343B1 (en) Refrigeration systems
US5279131A (en) Multi-airconditioner
JP4013261B2 (en) Refrigeration equipment
JPH0771829A (en) Spare cooler and proportional controller of liquid freezing circuit with heat accumulator
MY110359A (en) Heat storage type air conditioning apparatus
US5150582A (en) Multiple air conditioning apparatus
KR950003791B1 (en) Automatic chiller plant balancing
US6467304B2 (en) Refrigeration cycle
US7246507B2 (en) Air conditioner
JPH0783523A (en) Air conditioner
JPH0610562B2 (en) Heat pump type air conditioner
JP3000584B2 (en) Refrigeration equipment
JPH10141785A (en) Air conditioner
JPH09101070A (en) Refrigerating apparatus
JP3408022B2 (en) Refrigeration equipment
JPH0835731A (en) Heat pump
KR100710368B1 (en) Multi-type air conditioner
JP2508825B2 (en) Air conditioner
KR101203848B1 (en) A compressor oil retrieving apparatus of multi-type air conditioner
JP4464333B2 (en) Compressor oil leveling device and refrigerator
JPS59170656A (en) Refrigerator
JP2508824B2 (en) Air conditioner
JP3354244B2 (en) Refrigeration equipment
JP2000320916A (en) Refrigerating cycle

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011106