JPH078329B2 - Method for removing sulfur compound and desulfurizing agent used in the method - Google Patents

Method for removing sulfur compound and desulfurizing agent used in the method

Info

Publication number
JPH078329B2
JPH078329B2 JP63257084A JP25708488A JPH078329B2 JP H078329 B2 JPH078329 B2 JP H078329B2 JP 63257084 A JP63257084 A JP 63257084A JP 25708488 A JP25708488 A JP 25708488A JP H078329 B2 JPH078329 B2 JP H078329B2
Authority
JP
Japan
Prior art keywords
desulfurizing agent
sulfur compound
sulfur
heat treatment
manganese dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63257084A
Other languages
Japanese (ja)
Other versions
JPH02107313A (en
Inventor
英雄 二見
良光 橋爪
学 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP63257084A priority Critical patent/JPH078329B2/en
Publication of JPH02107313A publication Critical patent/JPH02107313A/en
Publication of JPH078329B2 publication Critical patent/JPH078329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、硫化水素、メルカプタン類、硫化物類および
他の有機硫黄化合物などの硫黄化合物を含有する、天然
ガス、都市ガス、LPG、ナフサ、各種工程ガスなどのガ
ス状物質およびLPG、ナフサ、灯油などの石油類の液状
物質より硫黄化合物を除去する方法に関する。
The present invention relates to natural gas, city gas, LPG, naphtha containing sulfur compounds such as hydrogen sulfide, mercaptans, sulfides and other organic sulfur compounds. The present invention relates to a method for removing sulfur compounds from gaseous substances such as various process gases and liquid substances such as LPG, naphtha and kerosene.

〔従来の技術〕[Conventional technology]

英国特許第901,609号には、鉄酸化物またはマンガン酸
化物を用い、第1段階において、150〜700℃の流動層で
硫化水素を除去し、次いで第2段階で同様にして有機硫
黄を除去する方法であって、該吸着剤に吸着される硫黄
化合物の含有量を10%以下に止めて該吸着剤を再生する
方法が開示されている。
British Patent No. 901,609 uses iron oxides or manganese oxides to remove hydrogen sulphide in a fluidized bed at 150-700 ° C in the first stage and then organic sulfur in the second stage as well. A method is disclosed in which the content of the sulfur compound adsorbed by the adsorbent is stopped at 10% or less to regenerate the adsorbent.

しかしながら、英国特許第901,609号には、100℃以下の
温度で硫黄化合物を除去することについては記載されて
おらず、また流動層の運転を休止したままの状態、ある
いは運転を継続しながら該吸着剤を熱処理することにつ
いても記載されておらず、該吸着剤の再生を酸化条件下
に行なう必要がある。
However, British Patent No. 901,609 does not describe removal of sulfur compounds at a temperature of 100 ° C. or lower, and the adsorption of the adsorbent while the fluidized bed is stopped or while the operation is continued. Heat treatment of the agent is also not mentioned and it is necessary to regenerate the adsorbent under oxidizing conditions.

米国特許第3,492,083号には、例えばNa2:MgO3:Mn1のモ
ル比よりなるNaOH、MgOおよびMnO2の混合物を400〜500
℃で反応して得られた生成物;Na1:Ca3:Mn1のモル比より
なるNaOH、CaOおよびMnO2の混合物を500〜800℃で反応
させて得られた生成物;Na1:Mg3:Mn1のモル比よりなるNa
OH、MgO、およびMnO2の混合物を500〜800℃で反応して
得られる生成物;MgO3:MnO21のモル比よりなるMgOおよ
びMnO2の混合物を0.1〜0.5モルのV2O5で処理したものを
800〜900℃で反応させて得られる生成物などを用いてガ
ス中の硫黄化合物を吸着除去した後、該吸着剤を再生さ
せる方法が開示されている。
No. 3,492,083, for example Na2: MgO3: Mn1 molar consisting ratio of NaOH, the mixture of MgO and MnO 2 400 to 500
The product obtained by reacting at 0 ° C; the product obtained by reacting a mixture of NaOH, CaO and MnO 2 at a molar ratio of Na1: Ca3: Mn1 at 500 to 800 ° C; Na1: Mg3: Mn1 Molar ratio of Na
A product obtained by reacting a mixture of OH, MgO and MnO 2 at 500 to 800 ° C .; a mixture of MgO and MnO 2 having a molar ratio of MgO 3: MnO 2 1 at 0.1 to 0.5 mol of V 2 O 5 . Processed
A method is disclosed in which a sulfur compound in a gas is adsorbed and removed by using a product obtained by reacting at 800 to 900 ° C., and then the adsorbent is regenerated.

しかしながら、米国特許第3,492,083号には、二酸化マ
ンガンを主成分とする吸着剤を用いることについて教示
されておらず、また、該吸着剤を100℃以下の温度で用
いることについても教示されていない。該吸着剤の再生
にあたっては、還元処理および酸化処理の2段階処理が
必要であり、脱硫装置の運転を休止したままの状態ある
いは運転を継続しながら、吸着剤を熱処理することにつ
いても教示されていない。
However, US Pat. No. 3,492,083 does not teach the use of manganese dioxide-based adsorbents, nor the use of the adsorbents at temperatures below 100 ° C. Regeneration of the adsorbent requires a two-step treatment of a reduction treatment and an oxidation treatment, and it is also taught that the adsorbent is heat-treated while the desulfurization apparatus is stopped or in operation. Absent.

特開昭50−30795号には、マンガン酸化物を主触媒成分
とし遷移金属元素の酸化物を助触媒成分として含有する
脱臭用触媒組成物が開示されているが、該組成物を100
℃以下の低温で硫黄化合物含有ガスと接触させて、該硫
黄化合物を捕捉し脱臭する方法についても、また該組成
物を熱処理して脱臭性能を回復させることについても何
ら教示されていない。
JP-A-50-30795 discloses a deodorizing catalyst composition containing a manganese oxide as a main catalyst component and an oxide of a transition metal element as a cocatalyst component.
Nothing is taught about a method of capturing a sulfur compound-containing gas by contacting it with a gas containing a sulfur compound at a low temperature of 0 ° C. or lower to deodorize it, and no heat treatment of the composition to restore the deodorizing performance.

特開昭62−183833号公報には、脱硫吸着剤の床に液状ま
たは気状の供給原料を通過させることからなる、供給原
料の脱硫方法において、吸着剤床の温度を一時的に通常
運転温度から少くとも50℃だけ上昇させて500℃を超え
ない温度にすることを特徴とする、供給原料の脱硫方法
が開示されている。しかしながら、好ましい吸着剤とし
て酸化亜鉛および/または酸化銅が用いられているが、
その脱硫効果は満足すべき状態にない。
In JP-A-62-183833, in a method for desulfurizing a feed material, which comprises passing a liquid or gaseous feed material through a bed of desulfurization adsorbent, the temperature of the adsorbent bed is temporarily changed to a normal operating temperature. Discloses a method for desulfurizing a feedstock characterized by raising the temperature by at least 50 ° C. to a temperature not exceeding 500 ° C. However, although zinc oxide and / or copper oxide have been used as preferred adsorbents,
The desulfurization effect is not satisfactory.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、硫黄化合物含有物質より硫黄化合物を除去す
る方法における従来技術に残された前記課題を解決する
ことを目的とするものである。
An object of the present invention is to solve the above problems remaining in the prior art in the method of removing a sulfur compound from a sulfur compound-containing substance.

本発明は、硫黄化合物をある程度捕捉した脱硫剤を、酸
化条件下に再生させる方法およびその装置を用いること
なく、脱硫装置の運転を休止したままの状態、あるいは
運転を継続したままの状態で、短時間熱処理することに
より、脱硫剤の硫黄化合物捕捉性能を効率よく回復させ
ることのできる硫黄化合物の除去方法および該方法に用
いられる脱硫剤を提供することを目的とするものであ
る。
The present invention, a desulfurizing agent having captured a sulfur compound to some extent, without using a method and an apparatus for regenerating it under oxidizing conditions, in a state where the operation of the desulfurization apparatus is stopped, or in a state where the operation is continued, An object of the present invention is to provide a method for removing a sulfur compound capable of efficiently recovering the sulfur compound-capturing performance of the desulfurization agent by heat treatment for a short time, and a desulfurization agent used in the method.

本発明は、硫化水素、メルカプタン類、硫化物類、他の
有機硫黄化合物などの硫黄化合物を含有するガス状また
は液状物質中の硫黄化合物を100℃以上の低温で極めて
効率よく捕捉・除去することのできる硫黄化合物の除去
方法および該方法に用いられる脱硫剤を提供することを
目的とするものである。
INDUSTRIAL APPLICABILITY The present invention is extremely efficient in capturing and removing a sulfur compound in a gaseous or liquid substance containing a sulfur compound such as hydrogen sulfide, mercaptans, sulfides and other organic sulfur compounds at a low temperature of 100 ° C. or higher. An object of the present invention is to provide a method for removing a sulfur compound that can be used and a desulfurizing agent used in the method.

本発明は、天然ガス、都市ガス、LPG、ナフサ、灯油な
どの石油類、あるいは天然ガス、LPG、ナフサ、灯油な
どの石油類、石炭などを処理して得られる各種生成ガス
などの、ガス状物質または液状物質中の硫黄化合物を、
100℃以下の低温で極めて効率よく捕捉・除去すること
のできる硫黄化合物の除去方法および該方法に用いられ
る脱硫剤を提供することを目的とするものである。
INDUSTRIAL APPLICABILITY The present invention relates to petroleum products such as natural gas, city gas, LPG, naphtha and kerosene, or petroleum products such as natural gas, LPG, naphtha and kerosene, and various produced gases obtained by processing coal and the like. Sulfur compounds in substances or liquid substances,
It is an object of the present invention to provide a method for removing a sulfur compound that can be captured and removed extremely efficiently at a low temperature of 100 ° C or lower, and a desulfurizing agent used in the method.

本発明は、燃料電池ならびに水素または合成原料ガスの
製造に用いられる原料ガスの精製、天然ガス、石油類お
よび石炭類より製造される生成ガスの精製、都市ガスな
どの有臭ガスの脱臭、その他の硫黄化合物ガスの精製・
無害化を100℃以下の低温で効率よく実施することので
きる硫黄化合物の除去方法および該方法に用いられる脱
硫剤を提供することを目的とするものである。
INDUSTRIAL APPLICABILITY The present invention relates to a fuel cell and purification of a raw material gas used for production of hydrogen or a synthetic raw material gas, purification of a produced gas produced from natural gas, petroleum and coal, deodorization of odorous gas such as city gas, etc. Purification of sulfur compound gas
It is an object of the present invention to provide a method for removing a sulfur compound, which can efficiently perform detoxification at a low temperature of 100 ° C. or less, and a desulfurizing agent used in the method.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、第1に1種または2種以上の硫黄化合物を含
有するガス状または液状物質を脱硫剤充填層に流通させ
て該硫黄化合物を除去する方法において、(1)該硫黄
化合物を含有するガス状または液状物質を、硫酸マンガ
ンの酸性水溶液に過マンガン酸カリウムを添加して酸化
させた後、加温・熟成させ、次いで乾燥させて得られる
二酸化マンガンよりなるか、あるいは主成分としての該
二酸化マンガンに銅、コバルト、銀、ランタンおよびセ
リウムから選ばれる金属の酸化物を添加してなる脱硫剤
を充填した脱硫剤充填層に、100℃以下の温度条件下に
該硫黄化合物のうちいずれかが最初に破過するまで、あ
るいは最初に破過した該硫黄化合物の破過後の脱硫剤充
填層出口ガス中の濃度がその破過濃度と実質上同等の低
濃度に達するまで流通させて該硫黄化合物を該脱硫剤に
接触・捕捉させる工程、次いで(2)該硫黄化合物が接
触・捕捉された脱硫剤充填層を50〜400℃および10分〜
1時間の条件下に熱処理する工程よりなり、該硫黄化合
物が硫化水素、メチルメルカプタンなどのメルカプタン
類、硫化ジメチル、二硫化炭素、硫化カルボニルなどの
硫化物類、およびチオフェンよりなり、該熱処理が熱処
理によって脱硫剤の硫黄化合物接触・捕捉性能を回復し
うる条件下に行なわれ、該工程(1)に次いで順次工程
(2)および(1)よりなる2工程が1回以上繰返され
ることを特徴とする硫黄化合物の除去方法を提供するも
のである。
The present invention firstly provides a method for removing a sulfur or sulfur compound by flowing a gaseous or liquid substance containing one or more sulfur compounds into a desulfurizing agent-packed layer, wherein (1) the sulfur compound is contained. The gaseous or liquid substance is made of manganese dioxide obtained by adding potassium permanganate to an acidic aqueous solution of manganese sulfate to oxidize it, then heating and aging it, and then drying it. A desulfurizing agent-filled layer filled with a desulfurizing agent obtained by adding an oxide of a metal selected from copper, cobalt, silver, lanthanum and cerium to the manganese dioxide, and any one of the sulfur compounds under a temperature condition of 100 ° C. or lower. Flow through until the first breakthrough, or until the concentration of the sulfur compound that has passed through first in the outlet gas of the desulfurizing agent packed bed after the breakthrough reaches a low concentration substantially equivalent to the breakthrough concentration. Step was the sulfur compounds is contacted and acquisition to the desulfurizing agent is then (2) the sulfur compounds are contacted, captured the desulfurizing agent packed layer 50 to 400 ° C. and 10 minutes to
The heat treatment is performed under a condition of 1 hour, and the sulfur compound is hydrogen sulfide, mercaptans such as methyl mercaptan, dimethyl sulfide, carbon disulfide, sulfides such as carbonyl sulfide, and thiophene. Is carried out under the conditions capable of recovering the sulfur compound contacting / scavenging performance of the desulfurization agent, and the step (1) is followed by two or more steps consisting of steps (2) and (1) being repeated one or more times. A method for removing a sulfur compound is provided.

本発明は、第2に1種または2種以上の硫黄化合物を含
有するガス状または液状物質を脱硫剤充填層に流通させ
て該硫黄化合物を除去する方法であって、(1)該硫黄
化合物を含有するガス状または液状物質を、硫酸マンガ
ンの酸性水溶液に過マンガン酸カリウムを添加して酸化
させた後、加温・熟成させ、次いで乾燥させて得られる
二酸化マンガンよりなるか、あるいは主成分としての該
二酸化マンガンに銅、コバルト、銀、ランタンおよびセ
リウムから選ばれる金属の酸化物を添加してなる脱硫剤
を充填した脱硫剤充填層に、100℃以下の温度条件下に
該硫黄化合物のうちいずれかが最初に破過するまで、あ
るいは最初に破過した該硫黄化合物の破過後の脱硫剤充
填層出口ガス中の濃度がその破過濃度と実質上同等の低
濃度に達するまで流通させて該硫黄化合物を該脱硫剤に
接触・捕捉させる工程、次いで(2)該硫黄化合物が接
触・捕捉された脱硫剤充填層を50〜400℃および10分〜
1時間の条件下に熱処理する工程よりなり、該硫黄化合
物が硫化水素、メチルメルカプタンなどのメルカプタン
類、硫化ジメチル、二酸化炭素、硫化カルボニルなどの
硫化物類、およびチオフェンよりなり、該熱処理が熱処
理によって脱硫剤の硫黄化合物接触・捕捉性能を回復し
うる条件下に行なわれ、該工程(1)に次いで順次工程
(2)および(1)よりなる2工程が1回以上繰返され
る前記硫黄化合物の除去方法に用いられる脱硫剤であっ
て、硫酸マンガンの酸性水溶液に過マンガン酸カリウム
を添加して酸化させた後、加温・熟成させ、次いで乾燥
させて得られる二酸化マンガンよりなるか、あるいは主
成分としての該二酸化マンガンに銅、コバルト、銀、ラ
ンタンおよびセリウムから選ばれる金属の酸化物を添加
してなる脱硫剤を提供するものである。
The present invention is secondly a method of removing a sulfur compound by flowing a gaseous or liquid substance containing one or more sulfur compounds into a desulfurizing agent-packed bed, wherein (1) the sulfur compound A gaseous or liquid substance containing a manganese dioxide obtained by adding potassium permanganate to an acidic aqueous solution of manganese sulfate to oxidize it, followed by heating and aging, followed by drying, or a main component. Copper, cobalt, silver, lanthanum and cerium to the manganese dioxide as a desulfurizing agent filled layer filled with a desulfurizing agent formed by adding a metal oxide selected from the sulfur compounds under temperature conditions of 100 ° C or less. Flow until either of them breaks through first or the concentration of the sulfur compound that has passed through first in the outlet gas of the desulfurizing agent packed bed after the breakthrough reaches a low concentration substantially equivalent to the breakthrough concentration. Step was the sulfur compounds is contacted and acquisition to the desulfurizing agent is then (2) the sulfur compounds are contacted, captured the desulfurizing agent packed layer 50 to 400 ° C. and 10 minutes to
The sulfur compound comprises hydrogen sulfide, mercaptans such as methyl mercaptan, sulfides such as dimethyl sulfide, carbon dioxide, carbonyl sulfide, and thiophene; and the heat treatment is performed by heat treatment. The removal of the sulfur compound, which is carried out under the conditions capable of recovering the sulfur compound contact / scavenging performance of the desulfurization agent, and the step (1) and then the two steps (2) and (1) are repeated one or more times. A desulfurizing agent used in the method, which comprises manganese dioxide obtained by adding potassium permanganate to an acidic aqueous solution of manganese sulfate to oxidize it, followed by heating and aging, and then drying. A desulfurizing agent obtained by adding an oxide of a metal selected from copper, cobalt, silver, lanthanum and cerium to the manganese dioxide as It is intended to provide.

すなわち、本発明は、マンガン酸化物、例えば二酸化マ
ンガン、低価数の三酸化マンガン、四酸化三マンガンお
よび一酸化マンガンのうち二酸化マンガンのみが100℃
以下の低温で、酸素ガスを実質上含有しないガスであっ
ても、該ガス中の硫化水素および硫化カルボニルのみな
らず有機硫黄化合物をも極めて有効に捕捉・除去しうる
ことならびに本発明の脱硫剤は熱処理による硫黄化合物
捕捉性能の回復が極めて顕著であることを見出すことに
よりなされたものである。
That is, the present invention is a manganese oxide, such as manganese dioxide, low valence manganese trioxide, trimanganese tetraoxide and manganese monoxide only manganese dioxide 100 ℃.
It is possible to capture and remove not only hydrogen sulfide and carbonyl sulfide but also organic sulfur compounds in the gas at a low temperature below, even if the gas contains substantially no oxygen gas, and the desulfurizing agent of the present invention. Was made by finding that the recovery of the sulfur compound capturing performance by the heat treatment is extremely remarkable.

本発明により捕捉・除去される硫黄化合物は、硫化水
素、メチルメルカプタンなどのメルカプタン類、硫化ジ
メチル、二硫化炭素、硫化カルボニルなどの硫化物類、
およびチオフェンなどの他の有機硫黄化合物を包含す
る。
The sulfur compounds captured and removed by the present invention include hydrogen sulfide, mercaptans such as methyl mercaptan, dimethyl sulfide, carbon disulfide, sulfides such as carbonyl sulfide,
And other organic sulfur compounds such as thiophene.

本発明方法により処理される硫黄化合物を含有するガス
状物質として、例えば天然ガス、都市ガス、LPG、ナフ
サ、あるいは天然ガス、LPG、ナフサ等の石油類、石炭
等を処理して得られる各種生成ガスなどがあげられる。
As a gaseous substance containing a sulfur compound to be treated by the method of the present invention, for example, natural gas, city gas, LPG, naphtha, or natural gas, LPG, petroleum such as naphtha, various products obtained by treating coal, etc. Examples include gas.

本発明方法により処理される硫黄化合物を含有する液状
物質としては、LPGやナフサ、灯油等の石油類などがあ
げられる。
Examples of the liquid substance containing a sulfur compound that is treated by the method of the present invention include petroleum substances such as LPG, naphtha and kerosene.

本発明方法および本発明の脱硫剤は、燃料電池ならびに
水素または合成原料ガスの製造に用いられる原料ガスの
精製、天然ガス、石油類および石炭類より製造される生
成ガスの精製、都市ガスなどの有臭ガスの脱臭、その他
のガスの精製、無害化を効率的に実施するのに適用され
る。
INDUSTRIAL APPLICABILITY The method of the present invention and the desulfurizing agent of the present invention are used for refining a raw material gas used for producing a fuel cell and hydrogen or a synthetic raw material gas, refining a product gas produced from natural gas, petroleum and coal, city gas, etc. It is applied to efficiently perform deodorization of odorous gas, purification of other gases, and detoxification.

本発明の脱硫剤に用いられる二酸化マンガンは、通常10
m2/g以上、好ましくは40m2/g以上、さらに好ましくは15
0m2/g以上の比表面積を有するものであれば、特に制限
なく、市販品を使用することも可能であり、比表面積の
大きいものほど硫黄化合物の捕捉量が増大する傾向がみ
られる。本発明の脱硫剤に用いられる二酸化マンガンの
好ましい例として、硫酸マンガンの酸性水溶液に過マン
ガン酸カリウムを添加して酸化させた後、加温・熟成さ
せ、次いで乾燥させて得られるものがあげられる。
Manganese dioxide used in the desulfurizing agent of the present invention is usually 10
m 2 / g or more, preferably 40 m 2 / g or more, more preferably 15
There is no particular limitation as long as it has a specific surface area of 0 m 2 / g or more, and it is possible to use a commercially available product, and a larger specific surface area tends to increase the amount of trapped sulfur compounds. Preferred examples of manganese dioxide used in the desulfurizing agent of the present invention include those obtained by adding potassium permanganate to an acidic aqueous solution of manganese sulfate to oxidize it, followed by heating and aging, and then drying. .

マンガンの酸化物中、二酸化マンガン以外のものは二酸
化マンガンに比べて硫黄化合物の捕捉量が低下する傾向
が認められる。
Among manganese oxides, those other than manganese dioxide tend to have a lower trapping amount of sulfur compounds than manganese dioxide.

本発明の脱硫剤は、二酸化マンガンの他に、銅、鉄、コ
バルト、銀、ランタン、セリウムなどの金属の酸化物を
含有することができる。例えば、主成分としての二酸化
マンガンに酸化銅を含有させた場合、初期の捕捉性能は
二酸化マンガンのみの場合に比べて低下するが、熱処理
による捕捉性能の回復は二酸化マンガンのみの場合に比
べて促進され、その結果熱処理を繰返すことにより二酸
化マンガンのみの場合と同等の脱硫効果が認められるよ
うになる。
The desulfurizing agent of the present invention can contain oxides of metals such as copper, iron, cobalt, silver, lanthanum, and cerium, in addition to manganese dioxide. For example, when manganese dioxide as the main component contains copper oxide, the initial trapping performance is lower than that of manganese dioxide alone, but the recovery of trapping performance by heat treatment is accelerated compared to the case of manganese dioxide alone. As a result, by repeating the heat treatment, a desulfurization effect equivalent to that in the case of only manganese dioxide comes to be recognized.

本発明の脱硫剤は、好ましくは主成分としての二酸化マ
ンガンに粘結剤を添加・混合し、粒状、タブレット、棒
状等に成型して使用される。
The desulfurizing agent of the present invention is preferably used by adding and mixing a binder to manganese dioxide as a main component and molding the mixture into granules, tablets or rods.

本発明の脱硫剤に用いられる粘結剤の例としてベーマイ
トゲル(AlOOH)、水ガラス、コロイダルシリカ、ベン
トナイト、タルクなどの無機系粘結剤ならびにポリビル
ニアルコール、ポリ酢酸ビニル、結晶性セルロース、エ
チルセルロース、メチルセルロース、カルボキシメチル
セルロース、ワックス、でん粉、デキストリンなどの有
機系粘結剤があげられる。
Boehmite gel as an example of the binder used in the desulfurizing agent of the present invention (AlOOH), water glass, colloidal silica, bentonite, inorganic binders such as talc and polyvinylidalcohol, polyvinyl acetate, crystalline cellulose, Examples thereof include organic binders such as ethyl cellulose, methyl cellulose, carboxymethyl cellulose, wax, starch and dextrin.

本発明の脱硫剤に用いる粘結剤の量は、脱硫剤の重量に
対して、通常2%〜30%、好ましくは3%〜20%の範囲
であり、2%未満では脱硫剤の強度が低下するので好ま
しくなく、30%を超えると脱硫剤の性能が低下するので
好ましくない。
The amount of the binder used in the desulfurizing agent of the present invention is usually in the range of 2% to 30%, preferably 3% to 20%, based on the weight of the desulfurizing agent. If it exceeds 30%, the performance of the desulfurizing agent deteriorates, which is not preferable.

本発明の方法において、前記硫黄化合物を含有するガス
状物質または液状物質を、前記脱硫剤に接触・捕捉させ
る温度は、100℃以下、好ましくは60℃以下であり、100
℃を超えると硫黄化合物の捕捉量が低下して好ましくな
い。
In the method of the present invention, the gaseous or liquid substance containing the sulfur compound is contacted with and trapped by the desulfurizing agent at a temperature of 100 ° C. or lower, preferably 60 ° C. or lower, 100
If the temperature exceeds ° C, the amount of trapped sulfur compounds is reduced, which is not preferable.

本発明の脱硫剤は、従来公知の担体例えば、アルミナ、
シリカ、チタニア、活性炭、活性白土、酸性白土、シリ
カ・アルミナ、マグネシア、などに担持して使用するこ
とができる。
The desulfurizing agent of the present invention is a conventionally known carrier such as alumina,
It can be used by supporting it on silica, titania, activated carbon, activated clay, acid clay, silica / alumina, magnesia, or the like.

本発明の脱硫剤が熱処理によりその硫黄化合物捕捉性能
が回復しうる程度に、硫黄化合物を捕捉した脱硫剤は、
50〜400℃、好ましくは100〜250℃および10分以上、好
ましくは10分〜1時間の条件下熱処理されて捕捉された
硫黄化合物とさらに反応しつつその硫黄化合物捕捉性能
が著しく回復される。該熱処理によって脱硫剤の硫黄化
合物捕捉性能が回復される理由は明らかではないが、脱
硫剤に硫黄化合物が捕捉されるのは脱硫剤たる二酸化マ
ンガンの活性酸素原子の1部と捕捉された硫黄化合物中
の硫黄原子との結合によるものと推定され、硫黄原子と
結合していない他の活性酸素の存在下に熱処理を行なう
と、1部の活性酸素原子と結合している硫黄化合物中の
硫黄原子の1部が二酸化マンガン中のマンガン原子との
結合反応に移行し、硫黄化合物中の硫黄原子と結合して
いない活性酸素原子が再生されることによるものと推定
される。該熱処理の温度が、50℃未満では捕捉された硫
黄化合物と脱硫剤との反応が起こらず脱硫剤の硫黄化合
物捕捉性能の回復が不十分であり、400℃を超えると脱
硫剤がシンタリングを起こし、その表面積が低下し、脱
硫剤の硫黄化合物捕捉性能が低下するので好ましくな
い。本発明における熱処理の時間が10分未満では捕捉さ
れた硫黄化合物と脱硫剤との反応が不十分であって脱硫
剤の硫黄化合物捕捉性能の回復が不十分であり、1時間
を超えるとそれに見合う効果が認められず時間とエネル
ギーを浪費する結果となり、好ましくない。
To the extent that the desulfurizing agent of the present invention can recover its sulfur compound scavenging performance by heat treatment, the desulfurizing agent trapped a sulfur compound is
The sulfur compound trapping performance is remarkably restored while further reacting with the sulfur compound trapped by heat treatment under the conditions of 50 to 400 ° C., preferably 100 to 250 ° C. and 10 minutes or more, preferably 10 minutes to 1 hour. The reason why the sulfur compound scavenging performance of the desulfurizing agent is restored by the heat treatment is not clear, but the reason why the sulfur compound is trapped in the desulfurizing agent is that a part of the active oxygen atoms of manganese dioxide as the desulfurizing agent and the trapped sulfur compound are present. It is presumed that this is due to the bond with the sulfur atom in the sulfur compound, and when heat treatment is performed in the presence of other active oxygen that is not bonded to the sulfur atom, the sulfur atom in the sulfur compound bonded to part of the active oxygen atom It is presumed that this is due to the fact that a part of the above shifts to the binding reaction with the manganese atom in the manganese dioxide and the active oxygen atom that is not bound to the sulfur atom in the sulfur compound is regenerated. If the temperature of the heat treatment is less than 50 ° C, the reaction between the captured sulfur compound and the desulfurizing agent does not occur, and the recovery of the sulfur compound capturing performance of the desulfurizing agent is insufficient, and if the temperature exceeds 400 ° C, the desulfurizing agent causes sintering. Is caused, the surface area thereof is reduced, and the sulfur compound capturing performance of the desulfurization agent is reduced, which is not preferable. If the heat treatment time in the present invention is less than 10 minutes, the reaction between the captured sulfur compound and the desulfurizing agent is insufficient, and the recovery of the sulfur compound capturing ability of the desulfurizing agent is insufficient, and if it exceeds 1 hour, it is commensurate with it. The effect is not recognized, resulting in waste of time and energy, which is not preferable.

本発明において、熱処理によって脱硫剤の硫黄化合物接
触・捕捉性能を回復とうる条件は、硫黄化合物の種類に
よって多少変動するものと考られるが、脱硫剤充填層の
出口における硫黄化合物の濃度が破過した時点の濃度で
ある0.2ppmVである場合十分であるが、例えば硫化ジメ
チルの場合、上記出口濃度が上記入口濃度と同じく2ppm
Vとなった時点でも満足されるが、例えばメチルメルカ
プタンの上記入口濃度が100ppmVの場合、その2量体の
上記出口濃度が25ppmVに達すると満足されなくなる。こ
のように、捕捉工程において、硫黄化合物の出口濃度が
一定値以上に達した後に熱処理を行なっても脱硫剤の捕
捉性能が回復しない理由は明らかではないが、硫黄化合
物の出口濃度が一定値以上に達するまで捕捉させると、
硫黄化合物中の硫黄原子と結合する二酸化マンガン中の
活性酸素原子が実質上存在しなくなり、そのような条件
下では、熱処理を行なっても活性酸素原子と結合してい
る硫黄化合物中の硫黄原子と二酸化マンガン中のマンガ
ン原子との結合反応が起りにくくなり、硫黄化合物中の
硫黄原子と結合していない活性酸素原子が再生されない
ためと推定される。
In the present invention, the conditions under which the sulfur compound contact / scavenging performance of the desulfurization agent can be recovered by heat treatment are considered to vary somewhat depending on the type of the sulfur compound. It is sufficient when the concentration is 0.2 ppmV, which is the same as the above concentration.
Although it is satisfied even when it reaches V, for example, when the inlet concentration of methyl mercaptan is 100 ppmV, it is not satisfied when the outlet concentration of the dimer reaches 25 ppmV. Thus, in the trapping step, it is not clear why the desulfurizing agent trapping performance does not recover even if heat treatment is performed after the sulfur compound outlet concentration reaches a certain value or more, but the sulfur compound outlet concentration is not less than a certain value. Until it reaches
The active oxygen atom in manganese dioxide that binds to the sulfur atom in the sulfur compound is substantially absent, and under such conditions, the sulfur atom in the sulfur compound that binds to the active oxygen atom even after heat treatment is It is presumed that the binding reaction with the manganese atom in manganese dioxide is less likely to occur, and the active oxygen atom that is not bound with the sulfur atom in the sulfur compound is not regenerated.

本発明における脱硫剤の熱処理は、運転を一時休止した
ままの状態で、あるいは前記ガス状または液状物質を流
通させたままの状態で行なうことができる。また複数個
の脱硫剤充填層を交互に使用することも可能である。
The heat treatment of the desulfurizing agent in the present invention can be carried out while the operation is temporarily stopped or while the gaseous or liquid substance is being circulated. It is also possible to alternately use a plurality of desulfurizing agent packed layers.

本発明における熱処理によりその捕捉性能が回復した脱
硫剤は、再度硫黄化合物の捕捉・除去に使用され、脱硫
剤の捕捉量が飽和に達するまで繰り返して使用される。
The desulfurizing agent whose scavenging performance is recovered by the heat treatment in the present invention is used again for scavenging and removing the sulfur compound, and is repeatedly used until the scavenging amount of the desulfurizing agent reaches saturation.

〔発明の効果〕〔The invention's effect〕

本発明によれば、第1に硫化水素、メルカプタン類、硫
化物類、有機硫黄化合物などの硫黄化合物を含有するガ
ス状物質または液状物質中の硫黄化合物を、100℃以下
の低温で極めて効率よく捕捉・除去することができる。
According to the present invention, firstly, a sulfur compound in a gaseous substance or a liquid substance containing a sulfur compound such as hydrogen sulfide, mercaptans, sulfides and organic sulfur compounds can be extremely efficiently treated at a low temperature of 100 ° C. or lower. Can be captured and removed.

本発明によれば、第2に天然ガス、都市ガスなどのガス
状物質;LPG、ナフサ、灯油などの石油類;天然ガス、LP
G、ナフサ、灯油などの石油類、石炭などを処理して得
られる各種生成ガスなどのガス状または液状物質中の硫
黄化合物を、100℃以下の低温で極めて効率よく捕捉・
除去することができる。
According to the present invention, secondly, gaseous substances such as natural gas and city gas; petroleum such as LPG, naphtha and kerosene; natural gas and LP
G, naphtha, kerosene, and other petroleum, and sulfur compounds in gaseous or liquid substances such as various produced gases obtained by processing coal are extremely efficiently captured at low temperatures of 100 ° C or less.
Can be removed.

本発明によれば、第3に燃料電池ならびに水素または合
成原料ガスの製造に用いられる原料ガスの精製、都市ガ
スなどの有臭ガスの脱臭、その他の硫黄化合物含有ガス
の精製、無害化を100℃以下の低温で効率よく実施する
ことができる。
According to the present invention, thirdly, it is possible to purify a raw material gas used for producing a fuel cell and hydrogen or a synthetic raw material gas, deodorize an odorous gas such as city gas, and purify and detoxify other sulfur compound-containing gas. It can be carried out efficiently at a low temperature of ℃ or less.

本発明によれば、硫黄化合物をある程度捕捉した脱硫剤
を、酸化条件下に再生する方法およびそのための装置を
用いることなく、脱硫剤充填層の運転を休止したままの
状態、あるいは前記ガス状または液状物質を流通させた
ままの状態で、短時間熱処理することにより、脱硫剤の
捕捉性能を極めて効率よく回復させ、該捕捉量が飽和に
達するまで繰り返して使用することが可能であり、その
結果として総捕捉量を著しく増大させることができる。
According to the present invention, a desulfurizing agent that has captured a sulfur compound to some extent, without using a method for regenerating under oxidizing conditions and an apparatus therefor, a state in which the operation of the desulfurizing agent packed bed is stopped, or the above-mentioned gaseous state or While keeping the liquid substance flowing, by heat treatment for a short time, the trapping performance of the desulfurization agent is recovered very efficiently, and it is possible to use repeatedly until the trapped amount reaches saturation. As a result, the total trapped amount can be remarkably increased.

〔実施例〕〔Example〕

以下の実施例により、本発明をさらに具体的に説明す
る。
The present invention will be described more specifically by the following examples.

実施例−1 硫酸第一マンガン395g/l水溶液1に、硫酸を添加し
て、pH=1の硫酸マンガンの水溶液を調製した。この溶
液に過マンガン酸カリウム278.6gを添加して酸化させた
後、温度を50℃前後に保ちながら、このスラリーに水を
添加し、30分間熟成させた。これを水洗、110℃にて乾
燥したところ二酸化マンガン340gが得られた。この二酸
化マンガン300gに、ベントナイト34.6gを混合し、さら
に適当量の水を加えてニーダーで混練した。得られた混
合物は110℃にて5時間乾燥し、8〜16メッシュに粉砕
して、比表面積240m2/gを有する脱硫剤−Aを得た。
Example 1 Sulfuric acid was added to 395 g / l aqueous solution 1 of manganese sulfate to prepare an aqueous solution of manganese sulfate having a pH = 1. After adding 278.6 g of potassium permanganate to this solution for oxidation, water was added to this slurry while maintaining the temperature at around 50 ° C., and aged for 30 minutes. When this was washed with water and dried at 110 ° C., 340 g of manganese dioxide was obtained. Bentonite (34.6 g) was mixed with 300 g of this manganese dioxide, and an appropriate amount of water was further added, followed by kneading with a kneader. The obtained mixture was dried at 110 ° C. for 5 hours and pulverized to 8 to 16 mesh to obtain a desulfurizing agent-A having a specific surface area of 240 m 2 / g.

この脱硫剤−A375cc(重量として322g)を円筒容器に充
填しこの充填容器に、メタンを約90%含有し、他にエタ
ン、プロパンおよびブタンを含有し、さらに有機硫黄化
合物としてt−ブチルメルカプタン2ppmVおよび硫化ジ
メチル2ppmVを含有するガスを、常温常圧下、GHSV8,000
Hr-1の条件下、3.0Nm3/Hrの割合で流通させる試験を行
なった。脱硫剤充填容器を出てくるガス中の硫黄化合物
の含有量をFPDガスクロマトグラフで分析した。最初に
破過してくるものは硫化ジメチルであり、t−ブチルメ
ルカプタンは硫化ジメチルが100%リークしてもなお、F
PDガスクロマトグラフの検出限界以下、すなわち0.2ppm
V以下であった。ここに破過とは、脱硫剤充填容器を出
てくるガス中に硫黄化合物が一定の下限濃度に達するこ
と、換言すればFPDガスクロマトグラフの検出限界たる
0.2ppmVに達することを云い、本実施例では、硫化ジメ
チルの濃度が0.2ppmVに達するまでの経過時間を破過時
間とする。また捕捉された硫黄化合物中の硫黄の量を、
脱硫剤の重量に対する百分率(%)で表わし捕捉量とす
る。
This desulfurizing agent-A 375 cc (322 g by weight) was filled in a cylindrical container, and this filled container contained about 90% of methane, ethane, propane and butane, and t-butyl mercaptan 2 ppmV as an organic sulfur compound. And gas containing dimethyl sulfide 2ppmV, GHSV8,000 under normal temperature and pressure
A test was carried out under the condition of Hr -1 in which the solution was distributed at a ratio of 3.0 Nm 3 / Hr. The content of sulfur compounds in the gas coming out of the desulfurization agent-filled container was analyzed by FPD gas chromatography. The first to break through is dimethyl sulfide, and t-butyl mercaptan is still F
Below the detection limit of PD gas chromatograph, that is, 0.2 ppm
It was below V. Here, breakthrough means that the sulfur compound reaches a certain lower limit concentration in the gas coming out of the desulfurizing agent filled container, in other words, it is the detection limit of the FPD gas chromatograph.
It means that the concentration reaches 0.2 ppmV, and in this embodiment, the breakthrough time is the elapsed time until the concentration of dimethyl sulfide reaches 0.2 ppmV. In addition, the amount of sulfur in the captured sulfur compound,
It is expressed as a percentage (%) with respect to the weight of the desulfurizing agent and is the trapped amount.

該処理ガス流通開始後165時間で硫化ジメチルが破過
し、そのときの捕捉量は0.9重量%であった。
165 hours after starting the flow of the processing gas, dimethyl sulfide broke through, and the trapped amount at that time was 0.9% by weight.

次に処理ガスの流通を1Nm3/Hに減らし、脱硫剤の温度を
150℃まで昇温し、150℃に30分間加熱保持した。昇温過
程において硫化ジメチルの脱離が起こったが、脱離量は
微量であり、脱硫剤の温度を70℃から100℃の間に昇温
した時点で止まり、しかるのちに脱硫剤充填容器を出て
くるガス中の硫化ジメチル濃度は0.2ppmV以下となっ
た。脱硫剤の加熱を停止して放冷し、常温に戻った時点
でガスの流通を3Nm3/Hに戻した。その後硫化ジメチルの
破過は30時間後に起き、この時点における脱硫剤の捕捉
量は、1.1重量%であった。第2回目の熱処理を第1回
目と同様の条件で行ない、その後放冷して常温まで戻
し、30時間後に硫化ジメチルの破過が起こり、この時点
における脱硫剤の捕捉量は1.3重量%であった。その後1
5時間後に脱硫剤充填容器出口ガス中の硫化ジメチルの
濃度が充填容器入口ガス中のそれと等しくなった時点で
第1回目と同様の条件で第3回目の熱処理を行ない、そ
の後常温に戻し、硫化ジメチルが破過するのに30時間を
要した。その時点での脱硫剤の捕捉量は1.5重量%であ
った。すなわち、上記熱処理の繰り返しにより捕捉量は
増大し、上記3回の熱処理により、捕捉量は熱処理の初
期捕捉量の1.7倍に達した。
Next, the flow of processing gas was reduced to 1 Nm 3 / H, and the temperature of the desulfurization agent was increased.
The temperature was raised to 150 ° C., and the temperature was kept at 150 ° C. for 30 minutes. Desorption of dimethyl sulfide occurred in the temperature rising process, but the desorption amount was very small and stopped when the temperature of the desulfurizing agent was raised between 70 ° C and 100 ° C, and then the desulfurizing agent filled container was closed. The dimethyl sulfide concentration in the gas that came out was 0.2 ppmV or less. The heating of the desulfurization agent was stopped, the mixture was allowed to cool, and when the temperature returned to room temperature, the gas flow was returned to 3 Nm 3 / H. Thereafter, breakthrough of dimethyl sulfide occurred after 30 hours, and the trapped amount of the desulfurizing agent at this time was 1.1% by weight. The second heat treatment was performed under the same conditions as the first heat treatment, and then allowed to cool to room temperature and breakthrough of dimethyl sulfide occurred after 30 hours. At this point, the trapped amount of the desulfurizing agent was 1.3% by weight. It was Then 1
After 5 hours, when the concentration of dimethyl sulfide in the outlet gas of the desulfurizing agent filling container became equal to that in the inlet gas of the filling container, the third heat treatment was performed under the same conditions as the first time, and then the temperature was returned to room temperature and the sulfurization was performed. It took 30 hours for dimethyl to break through. The amount of the desulfurizing agent trapped at that time was 1.5% by weight. That is, the trapping amount increased by repeating the heat treatment, and the trapping amount reached 1.7 times the initial trapping amount of the heat treatment by the above three heat treatments.

なお、捕捉量については、処理ガス中の硫黄化合物の濃
度より求めた値と試験終了後の脱硫剤に含まれる硫黄の
定量分析より求められた値とが合致することを確認して
いる(以下同じ)。
Regarding the trapped amount, it has been confirmed that the value obtained from the concentration of the sulfur compound in the treated gas matches the value obtained from the quantitative analysis of sulfur contained in the desulfurizing agent after the test (hereinafter the same).

実施例−2 硝酸銅の188g/l水溶液10lと炭酸ナトリウムの106g/l水
溶液10lとを40℃で混合し、得られた沈でんを水洗、乾
燥して酸化銅750gを得た。
Example-2 10 l of a 188 g / l aqueous solution of copper nitrate and 10 l of a 106 g / l aqueous solution of sodium carbonate were mixed at 40 ° C, and the obtained precipitate was washed with water and dried to obtain 750 g of copper oxide.

かくして得られた酸化銅95g、実施例1で使用した二酸
化マンガン380gおよびベントナイト25gを混合し、さら
に適当量の水を加えてニーダーで混練した。得られた混
合物を120℃で5時間乾燥し、8〜16メッシュに粉砕し
て、比表面積220m2/gを有する脱硫剤−Bを得た。
The thus-obtained copper oxide (95 g), the manganese dioxide (380 g) used in Example 1 and bentonite (25 g) were mixed, and an appropriate amount of water was further added, followed by kneading with a kneader. The obtained mixture was dried at 120 ° C. for 5 hours and pulverized to 8 to 16 mesh to obtain a desulfurizing agent-B having a specific surface area of 220 m 2 / g.

得られた脱硫剤−B(重量として244g)を用いて、実施
例−1同じ条件下で試験を行なった。該処理ガス流通開
始後90時間で硫化ジメチルが破過し、そのときの捕捉量
は0.5重量%であった。次に処理ガスの流通を1Nm3/Hに
減らし150℃まで昇温し、150℃に30分間加熱保持した。
昇温過程において実施例1と同様の経過をたどった後硫
化ジメチル濃度は0.2ppmV以下となった。脱硫剤の加熱
を停止して放冷し、常温に戻った時点でガスの流通を3N
m3/Hに戻した。硫化ジメチルは40時間後に破過し、この
時点での脱硫剤の捕捉量は0.8重量%であった。同様に
第2回目の熱処理を行ない、硫化ジメチルの破過は40時
間後に起きた。この時点での脱硫剤の捕捉量は1.1重量
%であった。次に第3回目の熱処理を行ない30時間後に
硫化ジメチルの破過が起こり、そのときの脱硫剤の捕捉
量は1.3重量%であった。
Using the resulting desulfurizing agent-B (244 g in weight), a test was conducted under the same conditions as in Example-1. Dimethyl sulfide passed through 90 hours after the start of the flow of the treated gas, and the trapped amount at that time was 0.5% by weight. Next, the flow of the processing gas was reduced to 1 Nm 3 / H, the temperature was raised to 150 ° C., and the temperature was kept at 150 ° C. for 30 minutes.
After following the same steps as in Example 1 in the temperature rising process, the dimethyl sulfide concentration became 0.2 ppmV or less. Stop the heating of the desulfurization agent, let it cool down, and when the temperature returns to room temperature, the gas flow is 3N.
Returned to m 3 / H. Dimethyl sulfide broke through after 40 hours, and the amount of the desulfurizing agent trapped at this point was 0.8% by weight. Similarly, the second heat treatment was performed, and breakthrough of dimethyl sulfide occurred after 40 hours. The amount of the desulfurizing agent trapped at this point was 1.1% by weight. Next, the third heat treatment was carried out, and 30 hours later, breakthrough of dimethyl sulfide occurred, and the trapped amount of the desulfurizing agent at that time was 1.3% by weight.

上記3回の熱処理により、捕捉量は熱処理前の初期捕捉
量の2.6倍に達した。
By the above three heat treatments, the trapped amount reached 2.6 times the initial trapped amount before the heat treatment.

実施例−3 脱硫剤−B20cc(重量として13g)を円筒容器に充填し、
この円筒容器に有機硫黄化合物として硫化ジメチル100p
pmVを含有するメタンを常温・常圧、GHHSV7680Hr-1の条
件下、0.15Nm3/Hrで流通させる試験を行なった。ガス流
通開始3.5時間後に硫化ジメチルの破過が起こった。こ
の時点における脱硫剤の捕捉量は0.6重量%であった。
次にガスの流通を続けたまま脱硫剤を150℃まで昇温
し、150℃に30分間加熱保持した。昇温過程において実
施例1と同様の経過をたどったのち硫化ジメチル濃度は
0.2ppmVとなった。
Example-3 A desulfurizing agent-B20cc (13 g by weight) was filled in a cylindrical container,
Dimethyl sulfide 100p as an organic sulfur compound in this cylindrical container
A test was conducted in which methane containing pmV was circulated at 0.15 Nm 3 / Hr under normal temperature and pressure conditions of GHHSV7680Hr -1 . Breakthrough of dimethyl sulfide occurred 3.5 hours after the start of gas flow. The amount of the desulfurizing agent captured at this point was 0.6% by weight.
Next, the desulfurization agent was heated to 150 ° C. while continuing the gas flow, and was heated and held at 150 ° C. for 30 minutes. After going through the same process as in Example 1 in the temperature rising process, the dimethyl sulfide concentration was
It became 0.2 ppmV.

次に脱硫剤の加熱を停止し、放冷して常温に戻し、再度
硫化ジメチルが2時間後に破過し、この時点での脱硫剤
の捕捉量は0.9重量%であった。同様に第2回目の熱処
理を行ない、その後2時間後に硫化ジメチルの破過が起
こりその時点の脱硫剤の捕捉量は1.2重量%であり、第
3回目の熱処理後の硫化ジメチルの破過は2.5時間後で
脱硫剤の捕捉量は1.7重量%であった。第4回目の熱処
理後の硫化ジメチルの破過は2.5時間後に起こり、この
時点での脱硫剤の捕捉量は2.2重量%であった。
Next, the heating of the desulfurizing agent was stopped, the temperature was cooled to normal temperature, and dimethyl sulfide passed through again after 2 hours, and the amount of the desulfurizing agent captured at this time was 0.9% by weight. Similarly, the second heat treatment was performed, and the breakthrough of dimethyl sulfide occurred 2 hours after that, and the amount of the desulfurizing agent trapped at that time was 1.2% by weight, and the breakthrough of dimethyl sulfide after the third heat treatment was 2.5%. The amount of the desulfurizing agent captured after the lapse of time was 1.7% by weight. Breakthrough of dimethyl sulfide after the fourth heat treatment occurred after 2.5 hours, and the trapped amount of the desulfurizing agent at this time was 2.2% by weight.

上記4回の熱処理により、捕捉量は熱処理前の初期捕捉
量の3.7倍に達した。
By the above four heat treatments, the trapped amount reached 3.7 times the initial trapped amount before the heat treatment.

実施例−4 有機硫黄化合物としてメチルメルカプタン100ppmVを含
有するメタンを用いた以外は実施例3と同じ脱硫剤−B
を用いて、同じ条件下での実験を行なった。
Example-4 The same desulfurizing agent as in Example-3 except that methane containing 100 ppmV of methyl mercaptan was used as the organic sulfur compound-B.
Was used to perform an experiment under the same conditions.

ガス流通開始7時間後にメチルメルカプタンの2量体と
しての破過が起こり、この時点における脱硫剤の捕捉量
は1.2重量%であった。次にガスの流通を続けたまま脱
硫剤を200℃まで昇温し、200℃に30間加熱保持した。そ
の結果脱硫剤充填容器出口ガス中のメチルメルカプタン
の2量体の濃度は0.2ppmV以下となった。次いで加熱を
停止し、放冷して常温に戻した。再度メチルメルカプタ
ンの2量体が破過したのは4時間後であり、この時点で
の脱硫剤の捕捉量は1.8重量%であった。次に2回目の
熱処理を第1回目と同様に行ない、常温に戻し、メチル
メルカプタンの2量体が破過するのに4時間を要し、こ
の時点での脱硫剤の捕捉量は2.4重量%であった。次い
で第3回目の熱処理を行ない、常温に戻した後のメチル
メルカプタンの2量体の破過時間は4時間後であり、そ
の時点での脱硫剤の捕捉量は3.0重量%であった。同様
に第4回目の熱処理を行ない、その後常温に戻しメチル
メルカプタンの2量体が破過するのに4時間を要し、そ
の時点での脱硫剤の捕捉量は3.6重量%であった。
Breakthrough as a dimer of methyl mercaptan occurred 7 hours after the start of gas flow, and the trapped amount of the desulfurizing agent at this time was 1.2% by weight. Next, the desulfurizing agent was heated to 200 ° C. while continuing the gas flow, and was heated and maintained at 200 ° C. for 30 minutes. As a result, the concentration of the dimer of methylmercaptan in the outlet gas of the desulfurizing agent filled container was 0.2 ppmV or less. Then, the heating was stopped, and the mixture was allowed to cool to normal temperature. The breakthrough of the methylmercaptan dimer was again made 4 hours later, and the trapped amount of the desulfurizing agent at this point was 1.8% by weight. Next, the second heat treatment is performed in the same manner as the first heat treatment, and it takes 4 hours for the methylmercaptan dimer to break through after returning to room temperature. At this point, the trapped amount of the desulfurizing agent is 2.4% by weight. Met. Then, the third heat treatment was performed, and the breakthrough time of the methylmercaptan dimer after returning to room temperature was 4 hours, and the amount of the desulfurizing agent trapped at that time was 3.0% by weight. Similarly, the fourth heat treatment was performed, and then the temperature was returned to room temperature, and it took 4 hours for the dimer of methyl mercaptan to break through, and the amount of the desulfurizing agent trapped at that time was 3.6% by weight.

上記4回の熱処理により、捕捉量は熱処理前の初期捕捉
量の3倍に達した。
By the above four heat treatments, the trapped amount reached three times the initial trapped amount before the heat treatment.

比較例−1 実施例−4と同じ脱硫剤−Bを用いて、同じ条件下で試
験を行なった。ガス流通開始7時間後にメチルメルカプ
タンの2量体の破過が起こり、その後そのままの状態で
流通を継続した。破過して、3時間後に脱硫剤充填容器
出口ガス中のメチルメルカプタンの2量体の濃度が脱硫
剤充填容器入口ガス中のメチルメルカプタン濃度の50%
に相当する25ppmVになり、その時点でガスの流通を続け
たまま、脱硫剤を200℃まで昇温し、200℃に30分間加熱
保持した。その後常温まで放冷した。脱硫剤充填容器出
口ガス中のメチルメルカプタンの2量体の濃度は、熱処
理中一時的にその増加速度が低下する傾向が認められる
ものの、熱処理後の常温での流通開始と共にその増加速
度が増大しつつ原料ガス中のメチルメルカプタンの濃度
に相当する濃度に達した。その結果、熱処理してもその
効果はなく、脱硫剤の捕捉性能の回復は認められなかっ
た。
Comparative Example-1 Using the same desulfurizing agent-B as in Example-4, a test was conducted under the same conditions. The breakthrough of the dimer of methyl mercaptan occurred 7 hours after the start of gas flow, and then the flow was continued as it was. Three hours after the breakthrough, the concentration of the dimer of methyl mercaptan in the outlet gas of the desulfurizing agent filling container was 50% of the concentration of methyl mercaptan in the inlet gas of the desulfurizing agent filling container.
Corresponding to 25 ppmV, at which point the desulfurizing agent was heated to 200 ° C. and kept at 200 ° C. for 30 minutes while continuing the gas flow. Then, it was cooled to room temperature. Regarding the concentration of the dimer of methyl mercaptan in the outlet gas of the desulfurizing agent-filled container, the rate of increase tends to decrease temporarily during heat treatment, but the rate of increase increases with the start of distribution at room temperature after heat treatment. Meanwhile, the concentration reached a concentration corresponding to the concentration of methyl mercaptan in the raw material gas. As a result, the heat treatment had no effect, and recovery of the desulfurization agent trapping performance was not observed.

比較例−2 市販の酸化亜鉛を8〜16メッシュに粉砕し脱硫剤−Cを
得た。この脱硫剤C23.8gを用いて実施例−4と同じ条件
下で試験を行なった。
Comparative Example-2 Commercially available zinc oxide was pulverized to 8 to 16 mesh to obtain a desulfurizing agent-C. Using 23.8 g of this desulfurizing agent, a test was conducted under the same conditions as in Example-4.

該処理ガス流通開始後1時間でメチルメルカプタンが破
過し、そのときの捕捉量は0.09重量%であった。次にガ
スの流通を続けたまま200℃に30分間加熱保持する熱処
理を行なった。その結果、常温に戻した時点で脱硫剤充
填容器出口ガス中のメチルメルカプタン濃度は0.2ppmV
以下となった。その後再度メチルメルカプタンが破過し
たのは1時間後であり、この時点の脱硫剤の捕捉量は0.
18重量%であった。次に第1回と同様に第2回目の熱処
理を行なった。しかし、脱硫剤充填容器出口ガス中のメ
チルメルカプタンの濃度は熱処理中、および常温に戻し
た後も原料ガス中のメチルメルカプタンの濃度と同じ10
0ppmVで推移し、脱硫剤の捕捉性能の回復は認められな
かった。
Methyl mercaptan broke through 1 hour after the start of the flow of the treated gas, and the trapped amount at that time was 0.09% by weight. Next, heat treatment was performed by heating and holding at 200 ° C. for 30 minutes while continuing the gas flow. As a result, the methyl mercaptan concentration in the outlet gas of the desulfurization agent filled container was 0.2 ppmV when the temperature was returned to room temperature.
It became the following. After that, the methyl mercaptan passed through again one hour later, and the trapped amount of the desulfurizing agent at this time was 0.
It was 18% by weight. Then, the second heat treatment was performed as in the first heat treatment. However, the concentration of methyl mercaptan in the outlet gas of the desulfurizing agent filled container was the same as that of methyl mercaptan in the raw material gas during the heat treatment and after returning to room temperature.
It remained at 0 ppmV, and recovery of the desulfurization agent scavenging performance was not observed.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/34 ZAB (56)参考文献 特開 昭50−74585(JP,A) 特開 昭55−41847(JP,A)Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location B01D 53/34 ZAB (56) References JP-A-50-74585 (JP, A) JP-A-55-41847 ( JP, A)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】1種または2種以上の硫黄化合物を含有す
るガス状または液状物質を脱硫剤充填層に流通させて該
硫黄化合物を除去する方法において、(1)該硫黄化合
物を含有するガス状または液状物質を、硫酸マンガンの
酸性水溶液に過マンガン酸カリウムを添加して酸化させ
た後、加温・熟成させ、次いで乾燥させて得られる二酸
化マンガンよりなるか、あるいは主成分としての該二酸
化マンガンに銅、コバルト、銀、ランタンおよびセリウ
ムから選ばれる金属の酸化物を添加してなる脱硫剤を充
填した脱硫剤充填層に、100℃以下の温度条件下に該硫
黄化合物のうちいずれかが最初に破過するまで、あるい
は最初に破過した該硫黄化合物の破過後の脱硫剤充填層
出口ガス中の濃度がその破過濃度と実質上同等の低濃度
に達するまで流通させて該硫黄化合物を該脱硫剤に接触
・捕捉させる工程、次いで(2)該硫黄化合物が接触・
捕捉された脱硫剤充填層を50〜400℃および10分〜1時
間の条件下に熱処理する工程よりなり、該硫黄化合物が
硫化水素、メチルメルカプタンなどのメルカプタン類、
硫化ジメチル、二硫化炭素、硫化カルボニルなどの硫化
物類、およびチオフェンよりなり、該熱処理が熱処理に
よって脱硫剤の硫黄化合物接触・捕捉性能を回復しうる
条件下に行なわれ、該工程(1)に次いで順次工程
(2)および(1)よりなる2工程が1回以上繰返され
ることを特徴とする硫黄化合物の除去方法。
1. A method for removing a sulfur or sulfur compound by flowing a gaseous or liquid substance containing one or more sulfur compounds into a desulfurizing agent packed bed, wherein (1) a gas containing the sulfur compound. The solid or liquid substance consists of manganese dioxide obtained by adding potassium permanganate to an acidic aqueous solution of manganese sulfate to oxidize it, followed by heating and aging, followed by drying, or the manganese dioxide as the main component. A desulfurizing agent-filled layer filled with a desulfurizing agent obtained by adding an oxide of a metal selected from copper, cobalt, silver, lanthanum and cerium to manganese, and one of the sulfur compounds under a temperature condition of 100 ° C. or lower. Flow until the first breakthrough, or until the concentration of the sulfur compound that has passed through the first breakthrough in the outlet gas of the desulfurizing agent packed bed after the breakthrough reaches a low concentration substantially equivalent to the breakthrough concentration. Step of sulfur compounds is contacted and acquisition to the desulfurizing agent Te, then (2) the sulfur compounds are contacted,
A step of heat-treating the trapped desulfurizing agent-packed layer under conditions of 50 to 400 ° C. and 10 minutes to 1 hour, wherein the sulfur compound is hydrogen sulfide, mercaptans such as methyl mercaptan,
Dimethyl sulfide, carbon disulfide, carbonyl sulfide and other sulfides, and thiophene, the heat treatment is carried out under conditions capable of recovering the sulfur compound contact / scavenging performance of the desulfurizing agent by the heat treatment, and to the step (1) Next, a method of removing a sulfur compound, characterized in that two steps consisting of steps (2) and (1) are repeated one or more times.
【請求項2】該脱硫剤がさらに粘結剤を添加してなる請
求項1記載の硫黄化合物の除去方法。
2. The method for removing a sulfur compound according to claim 1, wherein the desulfurizing agent further comprises a binder.
【請求項3】該二酸化マンガンが10m2/g以上の比表面積
を有する請求項1記載の硫黄化合物の除去方法。
3. The method for removing a sulfur compound according to claim 1, wherein the manganese dioxide has a specific surface area of 10 m 2 / g or more.
【請求項4】該熱処理が硫黄化合物を含有するガス状ま
たは液状物質を流通させたままの状態あるいは該流通を
停止した状態で行なわれる請求項1記載の硫黄化合物の
除去方法。
4. The method for removing a sulfur compound according to claim 1, wherein the heat treatment is performed in a state where the gaseous or liquid substance containing the sulfur compound is kept flowing or in a state where the flowing is stopped.
【請求項5】1種または2種以上の硫黄化合物を含有す
るガス状または液状物質を脱硫剤充填層に流通させて該
硫黄化合物を除去する方法であって、(1)該硫黄化合
物を含有するガス状または液状物質を、硫酸マンガンの
酸性水溶液に過マンガン酸カリウムを添加して酸化させ
た後、加温・熟成させ、次いで乾燥させて得られる二酸
化マンガンよりなるか、あるいは主成分としての該二酸
化マンガンに銅、コバルト、銀、ランタンおよびセリウ
ムから選ばれる金属の酸化物を添加してなる脱硫剤を充
填した脱硫剤充填層に、100℃以下の温度条件下に該硫
黄化合物のうちいずれかが最初に破過するまで、あるい
は最初に破過した該硫黄化合物の破過後の脱硫剤充填層
出口ガス中の濃度がその破過濃度と実質上同等の低濃度
に達するまで流通させて該硫黄化合物を該脱硫剤に接触
・捕捉させる工程、次いで(2)該硫黄化合物が接触・
捕捉された脱硫剤充填層を50〜400℃および10分〜1時
間の条件下に熱処理する工程よりなり、該硫黄化合物が
硫化水素、メチルメルカプタンなどのメルカプタン類、
硫化ジメチル、二酸化炭素、硫化カルボニルなどの硫化
物類、およびチオフェンよりなり、該熱処理が熱処理に
よって脱硫剤の硫黄化合物接触・捕捉性能を回復しうる
条件下に行なわれ、該工程(1)に次いで順次工程
(2)および(1)よりなる2工程が1回以上繰返され
る前記硫黄化合物の除去方法に用いられる脱硫剤であっ
て、硫酸マンガンの酸性水溶液に過マンガン酸カリウム
を添加して酸化させた後、加温・熟成させ、次いで乾燥
させて得られる二酸化マンガンよりなるか、あるいは主
成分としての該二酸化マンガンに銅、コバルト、銀、ラ
ンタンおよびセリウムから選ばれる金属の酸化物を添加
してなる脱硫剤。
5. A method for removing a sulfur or sulfur compound by flowing a gaseous or liquid substance containing one or more sulfur compounds into a desulfurizing agent-packed bed, comprising: (1) containing the sulfur compound. The gaseous or liquid substance is made of manganese dioxide obtained by adding potassium permanganate to an acidic aqueous solution of manganese sulfate to oxidize it, then heating and aging it, and then drying it. A desulfurizing agent-filled layer filled with a desulfurizing agent obtained by adding an oxide of a metal selected from copper, cobalt, silver, lanthanum and cerium to the manganese dioxide, and any one of the sulfur compounds under a temperature condition of 100 ° C. or lower. Flow through until the first breakthrough or until the concentration in the outlet gas of the desulfurizing agent packed bed after the breakthrough of the sulfur compound that has first passed through reaches a low concentration substantially equivalent to the breakthrough concentration. Step of sulfur compounds is contacted and acquisition to the desulfurizing agent Te, then (2) the sulfur compounds are contacted,
A step of heat-treating the trapped desulfurizing agent-filled layer under conditions of 50 to 400 ° C. and 10 minutes to 1 hour, wherein the sulfur compound is hydrogen sulfide, mercaptans such as methyl mercaptan,
It is composed of sulfides such as dimethyl sulfide, carbon dioxide and carbonyl sulfide, and thiophene, and the heat treatment is carried out under the condition that the sulfur compound contacting / capturing performance of the desulfurizing agent can be recovered by the heat treatment. A desulfurizing agent used in the method for removing a sulfur compound, wherein two steps consisting of steps (2) and (1) are repeated one or more times, wherein potassium permanganate is added to an acidic aqueous solution of manganese sulfate to oxidize it. Or manganese dioxide obtained by heating and aging, followed by drying, or by adding an oxide of a metal selected from copper, cobalt, silver, lanthanum and cerium to the manganese dioxide as a main component. Desulfurizing agent.
【請求項6】該二酸化マンガンが10m2/g以上の比表面積
を有する請求項5記載の脱硫剤。
6. The desulfurizing agent according to claim 5, wherein the manganese dioxide has a specific surface area of 10 m 2 / g or more.
【請求項7】該脱硫剤がさらに粘結剤を添加してなる請
求項5記載の脱硫剤。
7. The desulfurizing agent according to claim 5, wherein the desulfurizing agent further comprises a binder.
【請求項8】該熱処理が硫黄化合物を含有するガス状ま
たは液状物質を流通させたままの状態あるいは該流通を
停止した状態で行なわれる請求項5記載の脱硫剤。
8. The desulfurizing agent according to claim 5, wherein the heat treatment is performed in a state where a gaseous or liquid substance containing a sulfur compound is kept flowing or in a state where the flowing is stopped.
JP63257084A 1988-10-14 1988-10-14 Method for removing sulfur compound and desulfurizing agent used in the method Expired - Fee Related JPH078329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63257084A JPH078329B2 (en) 1988-10-14 1988-10-14 Method for removing sulfur compound and desulfurizing agent used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63257084A JPH078329B2 (en) 1988-10-14 1988-10-14 Method for removing sulfur compound and desulfurizing agent used in the method

Publications (2)

Publication Number Publication Date
JPH02107313A JPH02107313A (en) 1990-04-19
JPH078329B2 true JPH078329B2 (en) 1995-02-01

Family

ID=17301522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63257084A Expired - Fee Related JPH078329B2 (en) 1988-10-14 1988-10-14 Method for removing sulfur compound and desulfurizing agent used in the method

Country Status (1)

Country Link
JP (1) JPH078329B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4214190A1 (en) * 1992-04-30 1993-11-04 Bayer Ag CATALYSTS FOR THE REMOVAL OF SULFUR COMPOUNDS FROM TECHNICAL GASES, METHOD FOR THE PRODUCTION AND USE THEREOF
US5306476A (en) * 1992-06-02 1994-04-26 Electrochem, Inc. Continuous sulfur removal process
US5792438A (en) * 1996-08-20 1998-08-11 The Sulfatreat Company Process and composition for increasing the reactivity of sulfur scavenging iron oxides
CN114315510A (en) * 2021-12-17 2022-04-12 安道麦股份有限公司 Treatment method for removing methyl mercaptan in dichloromethane recovery liquid
CN117563556B (en) * 2024-01-16 2024-04-02 北京北大先锋科技股份有限公司 Renewable load-type desulfurizing agent and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339965A (en) * 1976-09-24 1978-04-12 Hideo Soejima Method of removing acidic gases from combusting gas

Also Published As

Publication number Publication date
JPH02107313A (en) 1990-04-19

Similar Documents

Publication Publication Date Title
EP0568003B1 (en) Absorption of hydrogen sulfide and absorbent composition therefor
US3974256A (en) Sulfide removal process
CA1313939C (en) Desulphurisation by using separation stage for producing concentrate steam having high sulphur compound's content
AU677894B2 (en) Desulfurizing a gas stream
US4865826A (en) Desulphurization
TWI450752B (en) Contaminant removal from a gas stream
JPH0147216B2 (en)
KR20110089437A (en) Reduced copper sulphide sorbent for removing heavy metals
GB2191111A (en) Selective removal of hydrogen sulfide over zinc titanate and alumina
EP0401788A1 (en) Selective removal of hydrogen sulfide over a nickel-promoted absorbing composition
JP5619788B2 (en) Adsorbent for removing CO from material stream and method for removing the same
US5094996A (en) Nickel-promoted absorbing compositions for selective removal of hydrogen sulfide
CN108348833B (en) Copper adsorbent for gas purification
CA2153256A1 (en) A packed bed and process for removal of residual mercury from gaseous hydrocarbons
JPH0558768B2 (en)
RU2340392C2 (en) Desulfurisation and new methods of desulfurisation
US5492684A (en) Graded-bed system for improved separations
JPH078329B2 (en) Method for removing sulfur compound and desulfurizing agent used in the method
WO2017093012A1 (en) Regenerable sulfur adsorption and removal
WO2003062177A1 (en) Removal of sulphur compounds from low molecular weight hydrocarbons
EP0262849B1 (en) Desulphurisation
JP2009526628A (en) Adsorption composition and method for removing CO from a stream
JPS62500083A (en) Gas purification method to remove sulfur compounds
US5151257A (en) Removal of hydrogen sulfide from fluid streams
CA2548071C (en) A catalyst useful for h2s removal from gas stream preparation thereof and use thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees