JPH0782725A - Permeable erosion control weir levee - Google Patents

Permeable erosion control weir levee

Info

Publication number
JPH0782725A
JPH0782725A JP23143693A JP23143693A JPH0782725A JP H0782725 A JPH0782725 A JP H0782725A JP 23143693 A JP23143693 A JP 23143693A JP 23143693 A JP23143693 A JP 23143693A JP H0782725 A JPH0782725 A JP H0782725A
Authority
JP
Japan
Prior art keywords
gravel
grid
boulder
river
erosion control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23143693A
Other languages
Japanese (ja)
Other versions
JP3186910B2 (en
Inventor
Takahisa Mizuyama
高久 水山
Shunichiro Kasai
俊一郎 葛西
Noboru Watanabe
昇 渡辺
Joji Shima
丈示 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23143693A priority Critical patent/JP3186910B2/en
Publication of JPH0782725A publication Critical patent/JPH0782725A/en
Application granted granted Critical
Publication of JP3186910B2 publication Critical patent/JP3186910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Revetment (AREA)

Abstract

PURPOSE:To prevent the run-off of gravel and earth caught in the case of the generation of debris flow while holding an earth control function. CONSTITUTION:Solid frames 1 arranged to a riverbed 5 are such that vertical bar-shaped members 2 and horizontal bar-shaped members 3 are constructed in the shape of a grid in the directions of cross and vertical sections, the upper stream side of a river along lengthwise of the river is higher than the lower stream side thereof and that the height from the riverbed 5 of the upper most stream side to the horizontal bar-shaped members 3 is 2-3 times of a diameter of a giant gravel R. An interval between the horizontal bar-shaped members 3 on the upper side from the height is smaller than the diameter of the giant gravel R. According to the constitution, the connection of a group of giant gravel caught with the giant gravel having larger than 2-3 times of the diameter of the giant gravel R is not broken, so that the gravel and earth caught by being attributed to the breakdown of the connection of a group of giant gravel can not be made to run off again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、山岳地の渓流・沢等に
設置して急激な土砂の流出を規制する透過型砂防堰堤に
関し、特に、土砂調節機能を保持しながら、捕捉した礫
や土砂の再流出を効果的に防止するようにした透過型砂
防堰堤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permeation type erosion control dam which is installed in a mountain stream or stream in a mountainous area to control a sudden outflow of sediment, and more particularly to a gravel trapped while retaining a sediment control function. The present invention relates to a permeation-type erosion control dam that effectively prevents reflow of sediment.

【0002】[0002]

【従来の技術】砂防堰堤は、急激な土砂の流出による山
間地の荒廃や滞砂による貯水機能の低下等を防止するた
めに従来から数多く設置されており、さらに梅雨、台風
等の集中豪雨で発生する土石流の被害から民家・施設・
道路等を守るためにもその設置が望まれている。ところ
で、従来からコンクリート製の砂防堰堤が多用されてい
るが、このような砂防堰堤は小さな礫・泥水まで堰き止
め規制効果は完全である反面、逆に急速に土砂が堆積
し、砂防堰堤としての機能を短期間の間に失うという欠
点を持ち、またその築堤に巨額の経費と日数を要する。
そのため、近年、流下土石のうち大きな礫のみを規制
し、小さな礫や泥水は下流に通過させるスクリーン効果
を持たせた透過型砂防堰堤が提案され、実施されてい
る。
2. Description of the Related Art Sabo dams have been installed in large numbers in order to prevent the deterioration of the water storage function due to the devastation of mountainous areas due to the rapid outflow of sediment and the retention of sand, and to prevent heavy rains such as the rainy season and typhoons. Due to the damage caused by the debris flow,
Its installation is also desired to protect roads. By the way, concrete sabo dams have been frequently used, but such sabo dams have a complete damming control effect up to small gravel and muddy water, but on the other hand, sediment builds up rapidly and It has the disadvantage of losing its function in a short period of time, and its embankment requires huge expense and days.
Therefore, in recent years, a transmission-type erosion control dam has been proposed and implemented, in which only large gravel of the falling debris is regulated and small gravel and muddy water are allowed to pass downstream.

【0003】前記透過型砂防堰堤の典型例は、例えば、
特公昭58−51568号公報に開示されている。以
下、これを、その側面図の図6と、河川下流側からみた
その正面図の図7とを参照しながら、同明細書及び添付
図面に用いられている名称と符号とを以て説明すると、
鉄骨等の棒状部材7が河川の横断方向、縦断方向に格子
状に架設された立体フレームが基礎部8を介して河床9
に設置されている。
A typical example of the transparent erosion control dam is, for example,
It is disclosed in Japanese Patent Publication No. 58-51568. Hereinafter, this will be described with reference to FIG. 6 which is a side view thereof and FIG. 7 which is a front view thereof as seen from the downstream side of the river with reference to names and reference numerals used in the specification and the accompanying drawings,
A three-dimensional frame in which a rod-shaped member 7 such as a steel frame is laid in a lattice shape in the transverse and longitudinal directions of the river is a riverbed 9 with a foundation 8 interposed.
It is installed in.

【0004】河川の横断方向に投影した格子升目の大き
さは、図7に示すように、河川下流側の格子升目10を
河川上流側の格子升目11より小さくし、集中豪雨等に
より発生した土石流中の巨礫を棒状部材7により構成さ
れた中空部に捕獲係止させるに際し、河川上流側の大き
な格子升目11により該土石流の運動エネルギーを低減
させ、河川下流側の小さな格子升目10により流下させ
ては危険な大きさの巨礫を捕獲係止するように構成され
ている。このように、格子升目の大きさを変化させるこ
とにより、強大な破壊エネルギーを有する土石流を効率
的に制御・抑制すると共に、災害を及ぼさない程度の大
きさの礫や泥水を河川下流側に流下させることにより、
砂防堰堤としての機能を長期間維持し続けるようにして
いる。
As shown in FIG. 7, the size of the grid squares projected in the transverse direction of the river is such that the grid squares 10 on the downstream side of the river are smaller than the grid squares 11 on the upstream side of the river, and debris flow caused by heavy rainfall or the like occurs. When catching and locking the inside boulders in the hollow portion formed by the rod-shaped member 7, the large grid squares 11 on the upstream side of the river reduce the kinetic energy of the debris flow, and the small grid squares 10 on the downstream side of the river make it flow down. Is configured to capture and lock dangerously large boulders. In this way, by changing the size of the grid, the debris flow that has a large destruction energy can be efficiently controlled and suppressed, and the gravel and mud that are not large enough to cause a disaster can flow down to the downstream side of the river. By letting
The function as a sabo dam is maintained for a long time.

【0005】ところで、縦部材の純間隔bは流出土砂量
を調節する上で極めて重要である。例えば、縦軸にP/
0 (P;砂防ダムが設置されている場合のピーク流出
土砂量、P0 ;砂防ダムが設置されていない場合のピー
ク流出土砂量)をとり、横軸にb/dmax (b;縦部材
の純間隔、dmax ;巨礫の直径で、これは砂防堰堤設置
予定地点より上流の渓床及びダムサイト下流夫々200
mの間の渓床堆積物を踏査し、約100個以上の巨礫の
頻度分布を調べた累加曲線の95%程度の直径)をとっ
て示す、流出土砂量説明図の図8に示すように、b/d
max =1.5以下はP/P0 =0である。
By the way, the pure space b between the vertical members is extremely important in adjusting the amount of sediment flow. For example, the vertical axis is P /
P 0 takes the (P;; peak sediment amount when check dam is installed, P 0 peak sediment amount when check dam is not installed), b / dmax in the horizontal axis (b; longitudinal member , Dmax; diameter of boulders, which is 200 meters upstream of the planned site of the sabo dam and downstream of the dam site.
As shown in Fig. 8 of the runoff sediment amount explanatory diagram, which is obtained by surveying the bed sediments between m and the frequency distribution of about 100 or more boulders, and taking the diameter of about 95% of the cumulative curve) , B / d
P / P 0 = 0 when max = 1.5 or less.

【0006】つまり、以上のことは、縦部材の純間隔b
を巨礫の直径dmax の1.5にすれば、砂防ダムと同等
の砂防機能を付与し得ることを示唆するものである。ま
た、土木技術資料22−2(1980)の「土石流対策
砂防施設に関する実験」には、縦部材の純間隔bは1.
5〜2dmax 程度が良いことが示されており、既設置の
透過型砂防堰堤の実績では、縦部材の純間隔bが1.5
〜2dmax のものが圧倒的に多い。
That is, the above is the pure space b between the vertical members.
It is suggested that if the boulder diameter dmax is set to 1.5, a sabo control function equivalent to that of a sabo dam can be provided. Also, in the “Experiment on Debris Flow Countermeasure Sabo Facility” of Civil Engineering Technical Material 22-2 (1980), the pure interval b of the vertical members is 1.
It is shown that about 5 to 2 dmax is good, and in the actual results of the existing transmission type sabo dams, the vertical spacing b of the vertical members is 1.5.
Overwhelmingly most are ~ 2dmax.

【0007】[0007]

【発明が解決しようとする課題】上記透過型砂防堰堤
は、土石流を効率的に制御・抑制して、災害を及ぼさな
い程度の大きさの礫や泥水を河川下流側に流下させ、砂
防堰堤としての機能を長期間維持し続け得る効果があ
る。しかしながら、捕捉された土石流先頭部の巨礫群が
後続流である礫混じりの泥水の流れによって一気に再流
出する危険性がある。つまり、これは、縦部材の間隙で
絡み合うことによって捕捉された巨礫群の上を、礫混じ
りの泥水である後続流が通過すると共に、透過型砂防堰
堤を高速で通過する。そのため、この後続流が巨礫群の
絡みを壊し、捕捉されている土砂等を再流出させてしま
うものと解される。
The above-mentioned permeable sabo dam is a sabo dam that efficiently controls and suppresses debris flow and causes gravel and muddy water of a size that does not cause a disaster to flow downstream of the river. Has the effect of maintaining the function of for a long time. However, there is a risk that the trapped debris flow boulders will reflow at once due to the subsequent flow of muddy water containing gravel. That is, this is because the subsequent flow of muddy water mixed with gravel passes over the boulder group captured by being entangled in the gap between the vertical members, and also passes through the permeable erosion control dam at high speed. Therefore, it is understood that this subsequent flow breaks the entanglement of the boulders and causes the trapped earth and sand to flow out again.

【0008】従って、本発明の目的とするところは、土
砂調節機能を保持しながら、捕捉した礫や土砂の再流出
を効果的に防止し得る透過型砂防堰堤を提供するにあ
る。
Therefore, an object of the present invention is to provide a permeable erosion control dam which can effectively prevent the reflow of trapped gravel and sediment while retaining the sediment control function.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1に係る透過型砂防堰堤の特徴とす
るところは、縦方向と、河川の横断方向とに棒状部材を
架設して構成したフレームを河床に設置してなる透過型
砂防堰堤において、前記フレームの予め設定した高さよ
り上側の棒状部材の間に形成される格子状升目の大きさ
を、予め設定した高さより下側の格子状升目の大きさよ
りも小さくしたところにある。
In order to solve the above-mentioned problems, the transmission type erosion control dam according to claim 1 of the present invention is characterized in that rod-shaped members are installed in the longitudinal direction and in the transverse direction of the river. In a permeable erosion control dam constructed by installing the frame on the river bed, the size of the grid-like grid formed between the rod-shaped members above the preset height of the frame is set below the preset height. It is smaller than the size of the grid on the side.

【0010】また、本発明の請求項2に係る透過型砂防
堰堤の特徴とするところは、請求項1記載の透過型砂防
堰堤において、前記予め設定した高さが、調査によって
得られる巨礫の直径の2〜3倍であって、かつ該高さよ
り上側の格子状升目を構成する棒状部材と棒状部材との
間隔のうちの最小間隔を前記巨礫の直径以下にしたとこ
ろにある。
[0012] Further, the characteristic of the permeable erosion control dam according to claim 2 of the present invention is that in the permeable erosion control dam according to claim 1, the preset height is the diameter of boulders obtained by investigation. It is 2 to 3 times the above and the minimum distance among the distances between the rod-shaped members forming the grid-like grid above the height is set to be equal to or smaller than the diameter of the boulder.

【0011】[0011]

【作用】本発明の請求項1に係る透過型砂防堰堤によれ
ば、中小規模の洪水における土砂・礫は流れの高さが比
較的低いので、縦配設された棒状部材の下側の間隔を通
って下流に流れる一方、土石流発生時にはその先頭部の
巨礫群が縦配設された棒状部材で捕捉され、透過型砂防
堰堤の上流側に堆積し、堆積高さが予め設定した高さ以
上になると、後続流中の巨礫は予め設定した高さより上
側の格子状升目を形成する棒状部材で捕捉される。
According to the permeable erosion control dam according to claim 1 of the present invention, since the height of the flow of sediment and gravel in a small-to-medium-scale flood is relatively low, the space between the vertically arranged rod-shaped members is reduced. While flowing to the downstream through the flow path, when a debris flow occurs, the boulder group at the beginning of the flow is captured by the vertically arranged rod-shaped member and is deposited on the upstream side of the permeable erosion control dam, and the deposition height is higher than the preset height. Then, the boulders in the subsequent flow are captured by the rod-shaped member forming the grid-like grid above the preset height.

【0012】また、本発明の請求項2に係る透過型砂防
堰堤によれば、中小規模の洪水における土砂・礫は流れ
の高さが比較的低いので、縦配設された棒状部材の下側
の間隔を通って下流に流れる一方、土石流発生時にはそ
の先頭部の巨礫群が縦配設された棒状部材で捕捉され、
透過型砂防堰堤の上流側に堆積し、堆積高さが巨礫の直
径の2〜3倍になると、後続流中の巨礫が上側の格子状
升目を形成する棒状部材で捕捉される。
Further, according to the transmission type erosion control dam according to claim 2 of the present invention, since the height of the sediment / gravel in a small-scale flood is relatively low, the lower side of the vertically arranged rod-shaped member is While flowing downstream through the interval of, when the debris flow occurs, the boulder group at the beginning of the debris flow is captured by the vertically arranged rod-shaped member,
When the sediment is deposited on the upstream side of the transmission type erosion control dam and the deposition height becomes 2 to 3 times the diameter of the boulder, the boulder in the subsequent flow is captured by the rod-shaped member forming the upper grid-like grid.

【0013】[0013]

【実施例】以下、本発明の実施例に係る透過型砂防堰堤
を、中小規模の洪水時の流下状態を示す透過型砂防堰堤
の構成説明図の図1(図1aは透過型砂防堰堤の側面
図、図1bは河川下流側からみた透過型砂防堰堤の正面
図)と、土石流先頭部の捕捉状態を示す透過型砂防堰堤
の構成説明図の図2(図2aは透過型砂防堰堤の側面
図、図2bは河川下流側からみた透過型砂防堰堤の正面
図)と、土石流の後続流の捕捉状態を示す透過型砂防堰
堤の構成説明図の図3(図3aは透過型砂防堰堤の側面
図、図3bは河川下流側からみた透過型砂防堰堤の正面
図)とを参照しながら説明する。
EXAMPLE A transparent type erosion control dam according to an embodiment of the present invention will now be described with reference to FIG. 1 (FIG. 1a is a side surface of the transparent erosion control levee, showing the configuration of the transparent erosion control levee showing the flow-down state during a small or medium-sized flood). Fig. 1b is a front view of the transparent sabo dam viewed from the downstream side of the river) and Fig. 2 of the configuration diagram of the transparent sabo dam showing the trapped state of the debris flow head (Fig. 2a is a side view of the transparent sabo dam) FIG. 2b is a front view of the transparent sabo dam viewed from the downstream side of the river) and FIG. 3 is a side view of the transparent sabo dam showing the trapped state of the subsequent debris flow (FIG. 3a is a side view of the transparent sabo dam). , FIG. 3b is a front view of the transparent sabo dam viewed from the downstream side of the river).

【0014】図1,2,3に示す符号1は立体状のフレ
ームであって、このフレームは鉄骨等の棒状部材である
縦棒状部材2と横棒状部材3とを河川の横断方向、縦断
方向に架設されると共に、従来例のように、河川上流側
における高さを河川下流側における高さよりも高く形成
されてなり、これは基礎部4を介して河床5に設置され
ている。
Reference numeral 1 shown in FIGS. 1, 2 and 3 is a three-dimensional frame. This frame connects a vertical rod-shaped member 2 and a horizontal rod-shaped member 3, which are rod-shaped members such as steel frames, in the transverse and longitudinal directions of a river. As in the conventional example, the height of the upstream side of the river is higher than the height of the downstream side of the river, which is installed on the riverbed 5 via the foundation part 4.

【0015】最上流側の縦棒状部材2と横棒状部材3と
によって形成される格子状升目である格子升目は後述す
るように大小がある。即ち、縦棒状部材2の純間隔bは
巨礫Rの直径dmax の1.5〜2になるように立設さ
れ、最下段の横棒状部材3は河床5から巨礫Rの直径d
max の2〜3倍の高さ位置に横架され、縦棒状部材2と
最下段の横棒状部材3とによって大きな格子升目6が形
成されている。また、最下段の横棒状部材3の上側に
は、純間隔が巨礫Rの直径dmax 以下になるように複数
本の横棒状部材3(図では4本)が横架され、縦棒状部
材2と複数本の横棒状部材3とによって格子升目6より
小さな格子升目7が形成されている。
As will be described later, there are large and small lattice squares which are lattice-like squares formed by the vertical bar-shaped member 2 and the horizontal bar-shaped member 3 on the most upstream side. That is, the vertical distance between the vertical bar members 2 is set to be 1.5 to 2 which is the diameter dmax of the boulder R, and the horizontal bar member 3 at the lowermost stage is the river bed 5 to the diameter d of the boulder R.
A large lattice grid 6 is formed by the vertical rod-shaped member 2 and the lowermost horizontal rod-shaped member 3 which are laterally bridged at a height position of 2 to 3 times max. In addition, a plurality of horizontal bar-shaped members 3 (four in the figure) are horizontally installed on the upper side of the lowermost horizontal bar-shaped member 3 so that the pure interval is equal to or smaller than the diameter dmax of the boulder R, and the vertical bar-shaped member 2 is formed. Lattice grids 7 smaller than the grid grids 6 are formed by the plurality of horizontal rod-shaped members 3.

【0016】従って、従来例のように、強大な破壊エネ
ルギーを有する土石流を効率的に制御・抑制することが
できる。そして、中小規模の洪水の場合は、図1aに示
すように、流れの高さが比較的低いので縦配設された縦
棒状部材2の下側の間隔を通って、災害を及ぼさない程
度の大きさの礫や泥水が下流に流れる。一方、土石流発
生時は、図2aに示すように、土石流先頭部の巨礫群が
縦配設された縦棒状部材2で捕捉され、フレーム1の上
流側に堆積する。その後に礫混じりの泥水からなる後続
流が流下してくるが、捕捉された巨礫群の高さが巨礫R
の直径dmax の2〜3倍になると、図3aに示すよう
に、後続流中の巨礫Rが、純間隔が巨礫Rの直径dmax
になるように横架された横棒状部材3で捕捉される。な
お、前記巨礫Rの直径dmax としては、従来例の項で説
明したように、砂防堰堤設置予定地点より上流の渓床及
びダムサイト下流夫々200mの間の渓床堆積物を踏査
し、約100個以上の巨礫Rの頻度分布を調べた累加曲
線の95%程度とされる。
Therefore, it is possible to efficiently control and suppress the debris flow having a strong breaking energy as in the conventional example. In the case of a small-to-medium-scale flood, as shown in FIG. 1a, the height of the flow is relatively low, and therefore, it passes through the space below the vertically-arranged vertical bar-shaped members 2 and does not cause a disaster. Gravel and mud of a size flows downstream. On the other hand, when a debris flow occurs, as shown in FIG. 2A, a group of boulders at the beginning of the debris flow is captured by the vertically-arranged vertical rod-shaped member 2 and deposited on the upstream side of the frame 1. After that, a subsequent flow of muddy water mixed with gravel flows down, but the height of the captured boulders is boulder R.
2 to 3 times the diameter dmax of the boulder R in the subsequent flow, the pure interval is a diameter dmax of the boulder R as shown in FIG. 3a.
It is captured by the horizontal rod-shaped member 3 which is horizontally stretched. As the diameter dmax of the boulder R, as described in the section of the conventional example, about 100 m of the mountain bed deposit is surveyed between the mound bed upstream and the dam site downstream 200 m from the planned site of the sabo dam. It is about 95% of the cumulative curve obtained by examining the frequency distribution of more than one boulder R.

【0017】当然、棒状部材の間隙で絡み合うように捕
捉された巨礫群の上を、礫混じりの泥水である後続流が
通過すると共に、透過型砂防堰堤を高速で通過するの
で、この後続流が巨礫群の絡みが破壊されるが、上側の
横棒状部材3の純間隔が巨礫Rの直径dmax になるよう
に横架されているので、捕捉された巨礫群が崩れたりす
ることがなく、従来のように、後続流の巨礫群の絡みが
破壊されることに起因して、捕捉されている土砂等が再
流出するようなことがなくなる。
As a matter of course, since the subsequent flow of muddy water containing gravel passes over the boulder group trapped so as to be entangled with each other in the gap between the rod-shaped members and also passes through the permeable sabo dam at a high speed, this subsequent flow is generated. Although the entanglement of the boulder group is destroyed, the trapped boulder group is not collapsed because the trapped boulder group is not collapsed because the net distance between the upper horizontal rod-shaped members 3 is set to be the diameter dmax of the boulder R. As described above, the trapped earth and sand and the like will not reflow due to the entanglement of the boulder group in the subsequent flow being destroyed.

【0018】他の実施例に係る透過型砂防堰堤を、河川
下流側からみたその正面図の図4を参照しながら説明す
ると、これは、純間隔bは巨礫の直径dmax の1.5〜
2になるように立設された最上流側の縦棒状部材2の河
床5から巨礫の直径dmax の2〜3倍の高さ位置に最下
段の横棒状部材3を横架し、縦棒状部材2の頂部に最上
段の横棒状部材3を横架すると共に、隣接した縦棒状部
材2の中間に、補助縦棒状部材2aの下端側を最下段の
横棒状部材3に、また上端側を最上段の横棒状部材3に
固着したものである。この場合、縦棒状部材2の純間隔
bが巨礫の直径dmax の1.5〜2になるように立設さ
れているので、縦棒状部材2と補助縦棒状部材2aとの
純間隔は巨礫の直径dmax よりも小さいことになる。従
って、捕捉された巨礫群の高さが巨礫の直径dmax の2
〜3倍になると、後続流中の巨礫が、純間隔が巨礫の直
径dmax よりも小さい縦棒状部材2と補助縦棒状部材2
aとによって捕捉されるので、この実施例は上記実施例
と同効である。
Referring to FIG. 4 which is a front view of the transmission type sabo dam according to another embodiment as seen from the downstream side of the river, the pure interval b is 1.5 to the boulder diameter dmax.
The vertical bar-shaped member 3 is vertically installed from the riverbed 5 of the vertical bar-shaped member 2 on the most upstream side to be 2 to 3 times as high as the diameter dmax of the boulder. The uppermost horizontal bar-shaped member 3 is horizontally mounted on the top of the auxiliary vertical bar-shaped member 2 and the lower end side of the auxiliary vertical bar-shaped member 2a is positioned at the lowermost horizontal bar-shaped member 3 and the uppermost side is positioned at the uppermost side. It is fixed to the upper horizontal bar member 3. In this case, since the vertical distance between the vertical bar-shaped members 2 is set to be 1.5 to 2 which is the diameter dmax of the boulder, the vertical distance between the vertical bar-shaped member 2 and the auxiliary vertical bar-shaped member 2a is equal to that of the boulder. It will be smaller than the diameter dmax. Therefore, the height of the captured boulder group is equal to the boulder diameter dmax of 2
.About.3 times, the boulders in the subsequent flow have a vertical bar-shaped member 2 and an auxiliary vertical bar-shaped member 2 with a pure interval smaller than the diameter dmax of the boulders.
This embodiment has the same effect as the above embodiment since it is captured by a and.

【0019】もう一つの他の実施例に係る透過型砂防堰
堤を、河川下流側からみたその正面図の図5を参照しな
がら説明すると、これは、同図から良く理解されるよう
に、上記実施例に係る最下段の横棒状部材3と最上段の
横棒状部材3との中間に1本の補助横棒状部材3aを追
加したものであり、従って、この実施例は、上記実施例
と同様に、縦棒状部材2と補助縦棒状部材2aとの純間
隔が巨礫の直径dmaxよりも小さいので、その作用と効
果は上記実施例と同等である。
Referring to FIG. 5 which is a front view of the transmission type sabo dam according to another embodiment, as seen from the downstream side of the river, this will be understood as well understood from the figure. One auxiliary horizontal bar-shaped member 3a is added in the middle of the lowermost horizontal bar-shaped member 3 and the uppermost horizontal bar-shaped member 3 according to the embodiment. Therefore, this embodiment is similar to the above-described embodiments. In addition, since the pure distance between the vertical bar-shaped member 2 and the auxiliary vertical bar-shaped member 2a is smaller than the diameter dmax of the boulder, its action and effect are the same as those of the above-mentioned embodiment.

【0020】ところで、土石流には岩石が多く含まれて
いるもの、礫が少なく泥流に近いもの、粘性が高く粥状
のもの、粘性が小さく水流に近いもの、あるいは流木を
多く含むもの等、種々の性状があるので、透過型砂防堰
堤を設置するに際しては、現地踏査、過去のデータの分
析等によって縦棒状部材の間隔を決定することが、透過
型砂防堰堤の砂防寿命を長くする上において極めて大切
である。なお、格子升目につては、格子形状に限定せ
ず、さらに骨組構造を立体トラス構造とすることも可能
であり、フレームの骨組を構成する棒状部材は角鋼管、
丸鋼管等の閉断面部材が望ましいが、H型鋼等の型鋼で
も良い。また、プレキャスト部材の使用も可能である。
By the way, the debris flow contains a lot of rocks, the one containing little gravel and the one close to the mud flow, the one having a high viscosity and porridge, the one having a small viscosity and being close to the water flow, the one containing a lot of driftwood, etc. Since there are various properties, when installing a transparent sabo dam, it is necessary to determine the distance between the vertical bars by site survey, analysis of past data, etc. in order to extend the sabo life of the transparent sabo dam. It is extremely important. Note that the lattice pattern is not limited to the lattice shape, and the frame structure can be a three-dimensional truss structure, and the rod-shaped member constituting the frame structure is a square steel pipe,
A closed cross-section member such as a round steel pipe is preferable, but a shaped steel such as an H-shaped steel may be used. It is also possible to use a precast member.

【0021】[0021]

【発明の効果】以上述べたように、本発明の請求項1に
係る透過型砂防堰堤では、土石流発生時に際して、縦配
設された棒状部材で捕捉された先頭部の巨礫群の堆積高
さが予め設定した高さより高くなると、後続流中の巨礫
は予め設定した高さより上側の格子状升目を形成する棒
状部材で捕捉されるが、上側の格子状升目の大きさが下
側の格子目の大きさより小さいので、従来例に比較し
て、後続流による巨礫群の絡みの破壊による土砂等の再
流出の恐れが少なくなる。
As described above, in the transmission type erosion control dam according to claim 1 of the present invention, when a debris flow occurs, the deposition height of the boulder group at the leading end captured by the vertically arranged rod-shaped member. If the height is higher than the preset height, the boulders in the subsequent flow are trapped by the rod-shaped members that form the grid-like grid above the preset height, but the size of the grid-like top grid is lower than the grid-like grid below. Is smaller than that of the conventional example, there is less risk of reflow of earth and sand or the like due to destruction of the entanglement of the boulder group due to the subsequent flow.

【0022】また、本発明の請求項2に係る透過型砂防
堰堤では、土石流発生時に際して、縦配設された棒状部
材で捕捉された先頭部の巨礫群の堆積高さが巨礫の直径
の2〜3倍になると、後続流中の巨礫が上側の格子状升
目を形成する棒状部材で捕捉されるが、上側の格子状升
目を構成する棒状部材と棒状部材との間隔のうちの最小
間隔を前記巨礫の直径以下であるため、後続流による巨
礫群の絡みの破壊による土砂等の再流出の恐れがなくな
る。
Further, in the permeable erosion control dam according to claim 2 of the present invention, when a debris flow occurs, the deposition height of the boulder group at the leading end captured by the vertically arranged rod-shaped member is equal to the boulder diameter of 2 When it becomes ~ 3 times, the boulders in the subsequent flow are captured by the rod-shaped members forming the upper grid-shaped grid, but the minimum distance between the rod-shaped members forming the upper grid-shaped grid is set. Since the diameter is less than or equal to the diameter of the boulders, there is no fear of reflow of earth and sand due to the destruction of the entanglement of the boulders due to the subsequent flow.

【0023】従って、本発明に係る透過型砂防堰堤によ
れば、上記のとおり、後続流による巨礫群の絡みの破壊
による土砂等の再流出の恐れが少なくなり、また再流出
の恐れがなくなるので、土砂等の再流出の危険防止に対
して多大な効果がある。
Therefore, according to the transmission type erosion control dam according to the present invention, as described above, the risk of reflow of sediment or the like due to the destruction of the entanglement of the boulder group due to the subsequent flow is reduced, and the risk of reflow is eliminated. It has a great effect on preventing the risk of re-flow of earth and sand.

【図面の簡単な説明】[Brief description of drawings]

【図1】中小規模の洪水時の流下状態を示す本発明の実
施例になる透過型砂防堰堤に係り、図1aはその側面
図、図1bは河川下流側からみたその正面図である。
FIG. 1 is a side view of a permeable erosion control dam according to an embodiment of the present invention showing a flow-down state during a small-to-medium-scale flood, and FIG. 1a is a front view thereof as seen from a downstream side of a river.

【図2】土石流先頭部の捕捉状態を示す本発明の実施例
になる透過型砂防堰堤に係り、図2aはその図、図2b
は河川下流側からみたその正面図である。
FIG. 2 relates to a transmission type erosion control dam according to an embodiment of the present invention, showing a trapped state of the debris flow head, FIG.
Is a front view seen from the downstream side of the river.

【図3】土石流の後続流の捕捉状態を示す本発明の実施
例になる透過型砂防堰堤に係り、図3aはその側面図、
図3bは河川下流側からみたその正面図である。
FIG. 3 is a side view of a transmission type erosion control dam according to an embodiment of the present invention, showing a trapped state of a subsequent flow of debris flow;
FIG. 3b is a front view of the river viewed from the downstream side.

【図4】他の実施例になる透過型砂防堰堤に係り、河川
下流側からみたその正面図である。
FIG. 4 is a front view of a transparent sabo dam according to another embodiment as viewed from the downstream side of the river.

【図5】もう一つの他の実施例になる透過型砂防堰堤に
係り、河川下流側からみたその正面図である。
FIG. 5 is a front view of a transparent sabo dam according to another embodiment, as viewed from the downstream side of the river.

【図6】従来例に係る透過型砂防堰堤の側面図である。FIG. 6 is a side view of a transmission-type erosion control dam according to a conventional example.

【図7】河川下流側からみた従来例に係る透過型砂防堰
堤の正面図である。
FIG. 7 is a front view of a transparent sabo dam according to a conventional example as viewed from the downstream side of the river.

【図8】流出土砂量説明図である。FIG. 8 is an explanatory diagram of the amount of runoff sediment.

【符号の説明】[Explanation of symbols]

1…フレーム 2…縦棒状部材、2a…補助縦棒状部材 3…横棒状部材、3a…補助横棒状部材 4…基礎部 5…河床 6,7…格子升目 b…縦棒状部材の純間隔 dmax …巨礫の直径 R…巨礫 DESCRIPTION OF SYMBOLS 1 ... Frame 2 ... Vertical bar-shaped member, 2a ... Auxiliary vertical bar-shaped member 3 ... Horizontal bar-shaped member 3a ... Auxiliary horizontal bar-shaped member 4 ... Foundation part 5 ... Riverbed 6,7 ... Grid grid b ... Vertical spacing of vertical bar-shaped members dmax ... Boulder diameter R ... Boulder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 昇 兵庫県神戸市中央区脇浜町1丁目3番18号 株式会社神戸製鋼所神戸本社内 (72)発明者 嶋 丈示 兵庫県神戸市中央区脇浜町1丁目3番18号 株式会社神戸製鋼所神戸本社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Noboru Watanabe 1-3-18 Wakihama-cho, Chuo-ku, Kobe-shi, Hyogo Kobe Steel Works, Ltd. Kobe Head Office (72) Inventor Takeji Shima Chuo-ku, Kobe-shi, Hyogo 1-3-18 Wakihamacho Kobe Steel Works, Ltd. Kobe Head Office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 縦方向と、河川の横断方向とに棒状部材
を架設して構成したフレームを河床に設置してなる透過
型砂防堰堤において、前記フレームの予め設定した高さ
より上側の棒状部材の間に形成される格子状升目の大き
さを、予め設定した高さより下側の格子状升目の大きさ
よりも小さくしたことを特徴とする透過型砂防堰堤。
1. A permeable erosion control dam constructed by installing a frame, which is constructed by arranging rod-shaped members in a vertical direction and a transverse direction of a river, on a river bed, and a rod-shaped member above a preset height of the frame. A transmission-type erosion control dam, characterized in that the size of the grid-like grids formed between them is smaller than the size of the grid-like grids below a preset height.
【請求項2】 前記予め設定した高さが、調査によって
得られる巨礫の直径の2〜3倍であって、かつ該高さよ
り上側の格子状升目を構成する棒状部材と棒状部材との
間隔のうちの最小間隔を前記巨礫の直径以下にしたこと
を特徴とする請求項1記載の透過型砂防堰堤。
2. The preset height is 2 to 3 times the diameter of the boulder obtained by the investigation, and the distance between the rod-shaped members forming the lattice-like grid above the height is between the rod-shaped members. The permeable erosion control dam according to claim 1, wherein a minimum interval among them is set to be equal to or smaller than a diameter of the boulder.
JP23143693A 1993-09-17 1993-09-17 Permeable sabo dam Expired - Lifetime JP3186910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23143693A JP3186910B2 (en) 1993-09-17 1993-09-17 Permeable sabo dam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23143693A JP3186910B2 (en) 1993-09-17 1993-09-17 Permeable sabo dam

Publications (2)

Publication Number Publication Date
JPH0782725A true JPH0782725A (en) 1995-03-28
JP3186910B2 JP3186910B2 (en) 2001-07-11

Family

ID=16923523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23143693A Expired - Lifetime JP3186910B2 (en) 1993-09-17 1993-09-17 Permeable sabo dam

Country Status (1)

Country Link
JP (1) JP3186910B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270329A (en) * 2003-03-10 2004-09-30 Sumitomo Metal Steel Products Inc Method of renewing slitted erosion control dam, and structure of the same
JP2004300874A (en) * 2003-04-01 2004-10-28 Kobe Steel Ltd Permeable type erosion control weir levee
JP2005201019A (en) * 2004-01-19 2005-07-28 Kobe Steel Ltd Permeable type erosion control weir levee
JP2006052540A (en) * 2004-08-10 2006-02-23 Jfe Metal Products & Engineering Inc Permeable debris barrier and method for capturing gravel
JP2006328721A (en) * 2005-05-24 2006-12-07 Jfe Metal Products & Engineering Inc Transmission type mudslide control dam
JP2007191936A (en) * 2006-01-19 2007-08-02 Jfe Metal Products & Engineering Inc Transmission type erosion control dam
JP2009167628A (en) * 2008-01-11 2009-07-30 Nippon Steel & Sumikin Metal Products Co Ltd Repairing method for steel slit dam
JP2009167629A (en) * 2008-01-11 2009-07-30 Nippon Steel & Sumikin Metal Products Co Ltd Repairing method for steel slit dam
JP2009197433A (en) * 2008-02-20 2009-09-03 Kobe Steel Ltd Permeable erosion control dam
JP2010053602A (en) * 2008-08-28 2010-03-11 Kobe Steel Ltd Permeable erosion control dam made of metal and sediment flow monitoring system
JP2011214298A (en) * 2010-03-31 2011-10-27 Kobe Steel Ltd Permeable sand-preventing sluice
WO2017149560A1 (en) * 2016-02-29 2017-09-08 株式会社プロテックエンジニアリング Permeable erosion-control dam
CN113431001A (en) * 2021-06-22 2021-09-24 安阳工学院 Debris flow sand blocking dam attachment and size determination method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270329A (en) * 2003-03-10 2004-09-30 Sumitomo Metal Steel Products Inc Method of renewing slitted erosion control dam, and structure of the same
JP2004300874A (en) * 2003-04-01 2004-10-28 Kobe Steel Ltd Permeable type erosion control weir levee
JP2005201019A (en) * 2004-01-19 2005-07-28 Kobe Steel Ltd Permeable type erosion control weir levee
JP2006052540A (en) * 2004-08-10 2006-02-23 Jfe Metal Products & Engineering Inc Permeable debris barrier and method for capturing gravel
JP4663403B2 (en) * 2005-05-24 2011-04-06 Jfe建材株式会社 Transmission type sabo dam
JP2006328721A (en) * 2005-05-24 2006-12-07 Jfe Metal Products & Engineering Inc Transmission type mudslide control dam
JP2007191936A (en) * 2006-01-19 2007-08-02 Jfe Metal Products & Engineering Inc Transmission type erosion control dam
JP4680072B2 (en) * 2006-01-19 2011-05-11 Jfe建材株式会社 Transmission type sabo dam
JP2009167628A (en) * 2008-01-11 2009-07-30 Nippon Steel & Sumikin Metal Products Co Ltd Repairing method for steel slit dam
JP2009167629A (en) * 2008-01-11 2009-07-30 Nippon Steel & Sumikin Metal Products Co Ltd Repairing method for steel slit dam
JP2009197433A (en) * 2008-02-20 2009-09-03 Kobe Steel Ltd Permeable erosion control dam
JP2010053602A (en) * 2008-08-28 2010-03-11 Kobe Steel Ltd Permeable erosion control dam made of metal and sediment flow monitoring system
JP2011214298A (en) * 2010-03-31 2011-10-27 Kobe Steel Ltd Permeable sand-preventing sluice
WO2017149560A1 (en) * 2016-02-29 2017-09-08 株式会社プロテックエンジニアリング Permeable erosion-control dam
KR20170122642A (en) * 2016-02-29 2017-11-06 가부시키가이샤 프로텍 엔지니어링 Penetrating Type Debris Barrier
JPWO2017149560A1 (en) * 2016-02-29 2018-08-16 株式会社プロテックエンジニアリング Transmission type sabo dam
CN113431001A (en) * 2021-06-22 2021-09-24 安阳工学院 Debris flow sand blocking dam attachment and size determination method
CN113431001B (en) * 2021-06-22 2022-08-19 安阳工学院 Debris flow sand blocking dam attachment device and size determination method

Also Published As

Publication number Publication date
JP3186910B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
US6247873B1 (en) Construction methods for preventing land erosion and improving streams, or for revetments, and construction methods for preventing mountain landslides
JPH0782725A (en) Permeable erosion control weir levee
KR20150143497A (en) Stream debris restraining structure
JP4647133B2 (en) Flowing material catching structure and falling material catching work
JP2003129437A (en) Structure for catching flow-down matter and energy absorption in river and mountain stream
JP4275595B2 (en) Transmission type sabo dam and gravel capture method
CN105862659B (en) High-frequency debris flow shore protection and diversion method
CN112942385B (en) Villages and small towns building torrent debris flow protection system and design method
KR20020077514A (en) Method for soil erosion control works or shore protection works and structure for soil protection or shore protection
CN210562017U (en) Mud-rock flow flexible blocking net and mud-rock flow flexible blocking dam
RU2321701C2 (en) Weir construction method
JP2608018B2 (en) Transmission type driftwood generation control
JPS5851568B2 (en) Sabo dam with three-dimensional frame
JP7212581B2 (en) Debris flow sedimentary work
KR100776621B1 (en) Pile structure for preventing a disaster by debris flow
JP3316473B2 (en) Large culvert sabo dam
TWI766820B (en) Earth-rock flow remediation structure of Yexi
TW552338B (en) A deposit prevention system for influx of rivers and reservoirs
JPH09105122A (en) Retaining work of floodwood
Yang et al. Protection technology and applications of gabion
Ukarande River Training Works and Flood Control
TW201016930A (en) Regulation method for river with the function of protecting bridge pier and dike, and with the function of forming sand and stone collecting specific area
JP4039419B2 (en) Environmental protection type block and revetment using it
KR200429763Y1 (en) Scour prevention block
JPS5851569B2 (en) sand embankment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 13