JPH0780713A - Miniature drill coated with hard carbon film - Google Patents

Miniature drill coated with hard carbon film

Info

Publication number
JPH0780713A
JPH0780713A JP22870393A JP22870393A JPH0780713A JP H0780713 A JPH0780713 A JP H0780713A JP 22870393 A JP22870393 A JP 22870393A JP 22870393 A JP22870393 A JP 22870393A JP H0780713 A JPH0780713 A JP H0780713A
Authority
JP
Japan
Prior art keywords
carbon film
hard carbon
drill
coating thickness
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22870393A
Other languages
Japanese (ja)
Inventor
Seiji Kameoka
誠司 亀岡
Tsutomu Ikeda
孜 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22870393A priority Critical patent/JPH0780713A/en
Publication of JPH0780713A publication Critical patent/JPH0780713A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching

Landscapes

  • Drilling Tools (AREA)

Abstract

PURPOSE:To sharply improve chipping resistance by increasing the coating thickness of a hard carbon film in a cutting edge ridge part than the film thickness of the hard carbon film in a flank. CONSTITUTION:The coating thickness t1 of a carbon film C applied to a cutting edge ridge part K is increased than the coating thickness t2 of a carbon film C applied to flanks 2a and 2b (that is, t1/t2>1). Consequently the entrainment of a chip into a groove part is sharply restrained to sharply increase the discharge of the chip to prevent the breakage of a drill to the utmost, and also to sharply restrain lowering cuttingness. Effect for improving chip discharge can efficiently be displayed by making t1/t2 over 1 like this, but on the other hand, since trouble such as lowering working accuracy appears when the carbon film coating thickness t1 in the cutting edge ridge part K is too thickened, it is preferable that the thickness is to be adjusted so that t1/t2 can become 1.5 or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超硬合金などを基材と
し、該基材の表面を硬質炭素膜で被覆してなるミニチュ
アドリルにおいて、耐折損性を改善し、優れた切削性能
を長期的に発揮し得る様に改善されたミニチュアドリル
に関するものである。
BACKGROUND OF THE INVENTION The present invention is a miniature drill comprising a base material such as cemented carbide and the surface of the base material coated with a hard carbon film, with improved breakage resistance and excellent cutting performance for a long time. The present invention relates to an improved miniature drill that can be effectively used.

【0002】[0002]

【従来の技術】穴明け加工用ドリルとしては、従来から
超硬合金や各種セラミックスを基材とするドリル、ある
いはドリルの切削作用部にTiNやTiC等の高硬度セ
ラミックスを被覆したドリル等が実用化されている。し
かしながら、近年切削加工に供される被削材はますます
高硬度化、難削化する傾向があり、上記の様な従来の工
具では対応困難な状況がしばしば生じている。
2. Description of the Related Art Conventionally, as a drill for drilling, a drill having a base material of cemented carbide or various ceramics, or a drill in which a cutting action portion of the drill is coated with high hardness ceramics such as TiN or TiC is practically used. Has been converted. However, in recent years, work materials used for cutting work tend to have higher hardness and harder to cut, and the conventional tools as described above are often difficult to handle.

【0003】例えば、電子集積回路積層基板(プリント
基板)等の加工分野では、プリント基板の多層化や基板
の強度増大に伴って、例えば種々のガラス繊維による樹
脂強化がもたらす難削化が急速に進んでおり、これら難
削性素材に対応し得る様な耐摩耗性及び耐折損性に優れ
た小径ドリル(ミニチュアドリル)が切望されている。
For example, in the field of processing electronic integrated circuit laminated boards (printed boards) and the like, as the printed boards are multi-layered and the strength of the boards is increased, for example, the difficulty of cutting due to the resin reinforcement by various glass fibers is rapidly increasing. A small-diameter drill (miniature drill) having excellent wear resistance and breakage resistance that can cope with these difficult-to-cut materials has been earnestly desired.

【0004】こうした要望に沿うため、穴明け加工時の
切削条件を工夫したり、ミニチュアドリルの一般的な母
材である超硬合金の組成を工夫するといった手段が講じ
られているが、これらの手段でも満足し得る様なドリル
寿命は得られていない。
In order to meet these demands, measures have been taken such as devising cutting conditions during drilling and devising the composition of cemented carbide which is a general base material of miniature drills. The drill life is not satisfactory even by the means.

【0005】こうした問題の改善策として、ドリルを構
成する基材の表面に各種の硬質膜を被覆する方法が検討
されている。中でも、ダイヤモンドに代表される硬質炭
素膜気相合成の研究、並びにその切削工具等への応用開
発は活発に展開されている。これは、ダイヤモンドがT
iN等の如き従来の金属化合物系硬質膜に比べて高硬度
且つ高熱伝導率を有しており、切削時の耐摩耗性と放熱
性に優れた特性を示すことによるものであって、従来の
金属化合物系硬質膜被覆工具では対応できない様な難削
材の加工や高速加工並びに精密加工を可能にする被覆物
質として注目されている。
As a measure for solving such a problem, a method of coating various hard films on the surface of a base material forming a drill has been studied. Above all, research on vapor phase synthesis of a hard carbon film typified by diamond and application development thereof for cutting tools and the like are actively underway. This is a diamond T
This is because it has higher hardness and higher thermal conductivity than conventional metal compound-based hard films such as iN, and has excellent wear resistance and heat dissipation during cutting. It has attracted attention as a coating material that enables machining of difficult-to-cut materials, high-speed machining, and precision machining that metal compound-based hard film coated tools cannot handle.

【0006】即ちドリルの切削作用部をダイヤモンド等
の硬質炭素膜で被覆することによって耐摩耗性を高めよ
うとする試みは、例えば特公昭61−50724号公
報、特開平2−48106号公報、特開平4−2758
12号公報、特開平4−210315号公報等に開示さ
れている。しかしそれらの開示技術でも、前述の様な難
削材に対する切削性能は不十分である。
That is, an attempt to improve wear resistance by coating the cutting action portion of a drill with a hard carbon film such as diamond is disclosed in, for example, JP-B-61-50724 and JP-A-2-48106. Kaihei 4-2758
No. 12, Japanese Patent Laid-Open No. 4-210315 and the like. However, even with these disclosed techniques, the cutting performance for the above-mentioned difficult-to-cut materials is insufficient.

【0007】その最大の問題点はドリルの折損であり、
殊にドリルの軸径が0.5mm程度以下の極細ミニチュ
アドリルの場合は、この折損が大きな問題として指摘さ
れている。例えば特開平4−13506号公報にも記載
されている様に、基材としてセラミックスを使用した場
合は、超硬合金基材を用いたものよりも靭性が悪くなる
ため耐折損性は悪くなり、また特開平4−275812
号公報に記載されている様に、硬質炭素膜被覆部位を刃
先部に特定する等の改善手段も講じられているが、これ
らの手段でも耐折損性を充分に改善することはできな
い。
The biggest problem is breakage of the drill,
Especially, in the case of an ultra-fine miniature drill having a drill shaft diameter of about 0.5 mm or less, this breakage is pointed out as a serious problem. For example, as described in JP-A-4-13506, when ceramics is used as the base material, the toughness is worse than that using the cemented carbide base material, and thus the breakage resistance is worse. In addition, JP-A-4-275812
As described in Japanese Patent Laid-Open Publication No. JP-A No. 2003-242242, improvement measures such as specifying the hard carbon film-covered portion to the cutting edge portion have been taken, but even with these means, the breakage resistance cannot be sufficiently improved.

【0008】即ち、硬質炭素膜被覆の施された従来のミ
ニチュアドリルでは、硬質炭素膜被覆による優れた耐摩
耗性が有効に発揮される以前にドリルの折損が起こり、
寿命短縮の大きな原因になっている。
That is, in the conventional miniature drill coated with a hard carbon film, the drill breaks before the excellent wear resistance of the hard carbon film is effectively exhibited.
It is a major cause of shortening the life.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記の様な問
題点に着目してなされたものであって、その目的は、耐
摩耗性皮膜として炭素膜被覆の施されたドリル、特にミ
ニチュアドリルの耐折損性を改善し、長期に渡って優れ
た切削性能を持続し得る様なミニチュアドリルを提供し
ようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and its purpose is to provide a drill coated with a carbon film as an abrasion resistant film, particularly a miniature drill. The present invention aims to provide a miniature drill having improved breakage resistance and capable of sustaining excellent cutting performance for a long period of time.

【0010】[0010]

【課題を解決するための手段】上記課題を解決すること
のできた本発明の構成は、少なくとも切削作用部を硬質
炭素膜で被覆してなるミニチュアドリルにおいて、切刃
稜部における硬質炭素膜の被覆厚さ(t1 )を、逃げ面
における硬質炭素膜の被覆厚さ(t2 )よりも大きくし
たものであるところに要旨を有するものである。尚、こ
のドリルにおいて、上記被覆厚t1 とt2 の比(t1
2 )は1.0超1.5以下が好ましく、また、こうし
た構成上の特徴は、軸径が0.5mm以下の極細で且つ
捻じれ角が20〜30度であるミニチュアドリルに適用
した時により効果的に発揮される。
Means for Solving the Problems The constitution of the present invention which has been able to solve the above problems is to cover a hard carbon film at a cutting edge in a miniature drill in which at least a cutting action part is covered with a hard carbon film. The gist is that the thickness (t 1 ) is made larger than the coating thickness (t 2 ) of the hard carbon film on the flank. In this drill, the ratio of the coating thickness t 1 to t 2 (t 1 /
t 2 ) is preferably more than 1.0 and 1.5 or less, and such a structural feature is applied to a miniature drill having a shaft diameter of 0.5 mm or less and a twist angle of 20 to 30 degrees. Sometimes more effective.

【0011】[0011]

【作用】ドリルの一般的形状・構造は図1(A)(正面
図)、図1(B)(要部側面図)および図1(C)(I
−I線要部拡大断面図)に示す通りであり、図中Aは切
削作用部、1は掬い面、2aは第1逃げ面、2bは第2
逃げ面、Bは基材、Cは硬質炭素膜、Dは軸径、θは捻
り角度を夫々表しており、硬質炭素膜Cの膜厚tは、切
削作用面の全体に渡ってほぼ一定に構成されている。
[Function] The general shape and structure of the drill are shown in FIG. 1 (A) (front view), FIG. 1 (B) (side view of essential parts) and FIG.
-I line main section enlarged cross-sectional view), in the figure A is a cutting action portion, 1 is a scooping surface, 2a is a first flank surface, 2b is a second
The flank surface, B is the base material, C is the hard carbon film, D is the shaft diameter, and θ is the twist angle. The film thickness t of the hard carbon film C is substantially constant over the entire cutting surface. It is configured.

【0012】本発明者らは、この様な形状・構造の硬質
炭素膜被覆ミニチュアドリルを対象として、折損原因を
様々の角度から検討した結果、ドリル折損の主原因は切
削材の切り屑排出性の低下にあり、この場合、樹脂強化
ガラス繊維等の切り屑排出性よりも、多くの場合、切削
加工時にエントリーボードとして用いられるアルミニウ
ム等の金属材の切り屑排出性が顕著な悪影響を与えるこ
とが確認された。
The inventors of the present invention have investigated the cause of breakage from various angles for the hard carbon film-covered miniature drill having such a shape and structure. As a result, the main cause of the breakage of the drill is the chip discharge property of the cutting material. In this case, in many cases, the chip discharge performance of metal materials such as aluminum used as an entry board during cutting has a significant adverse effect, rather than the chip discharge performance of resin-reinforced glass fibers, etc. Was confirmed.

【0013】即ち、切削された切り屑は、切削の進行に
伴って順次溝部に沿って外部へ排出されなければならな
いが、図1(C)に示す様な従来の炭素膜被覆ミニチュ
アドリルでは、炭素膜被覆によって切刃の鋭利性が低下
するため、アルミニウム等の金属切り屑が連続的につな
がって溝部に巻込まれる。そして、特に軸径の小さいミ
ニチュアドリルでは、細い溝部に該切り屑が詰まってド
リル回転の大きな抵抗となり、ドリル先端部の折損原因
になると共に切削性にも多大な悪影響を及ぼす。
That is, the cut chips must be sequentially discharged to the outside along the groove portion as the cutting progresses. However, in the conventional carbon film-covered miniature drill as shown in FIG. 1 (C), Since the carbon film coating reduces the sharpness of the cutting edge, metal chips such as aluminum are continuously connected and wound into the groove. Particularly in a miniature drill having a small shaft diameter, the chips are clogged in the thin groove portion, which causes a great resistance to the rotation of the drill, which causes breakage of the tip portion of the drill and also has a great adverse effect on the cutting performance.

【0014】そこで、切り屑排出性を改善してやればド
リルの折損が抑制されると共に切削性も改善されると考
え、その線に沿ってドリルの形状・構造面を主体にして
研究を進めた。その結果、切削作用部Aに被覆される硬
質炭素膜の被覆厚を工夫し、例えば図2に示す如く切刃
稜部Kに被覆される炭素膜Cの被覆厚t2 を逃げ面2
a,2bに被覆される炭素膜Cの被覆厚t1 よりも大き
く(即ちt1 /t2 を1以上に)してやれば、溝部への
切り屑の巻込みが大幅に抑えられてその排出性が著しく
高められ、ドリルの折損が可及的に防止されると共に、
切削性の低下も大幅に抑えられることを知った。
Therefore, it is considered that if the chip discharging property is improved, the breakage of the drill is suppressed and the cutting property is also improved. Therefore, the research was advanced along the line mainly on the shape and structure of the drill. As a result, the coating thickness of the hard carbon film coated on the cutting action portion A is devised, and the coating thickness t 2 of the carbon film C coated on the cutting edge portion K as shown in FIG.
If the coating thickness t 1 of the carbon film C coated on a and 2b is made larger (that is, t 1 / t 2 is set to 1 or more), the inclusion of chips in the groove portion is significantly suppressed, and its dischargeability is improved. Is significantly increased, and breakage of the drill is prevented as much as possible.
I have learned that the reduction in machinability can be greatly suppressed.

【0015】この様に、切刃部の炭素膜を厚くすること
によって切り屑排出性が高められる理由は未だ明らかに
されていないが、切刃部をこの様な構成とすることによ
って、切り屑の形態が変化し、その排出性に好結果をも
たらすものと推察される。
Although the reason why the chip discharging property is improved by increasing the thickness of the carbon film of the cutting edge portion has not been clarified yet, the cutting edge portion having such a structure has It is speculated that the form of will change and that it will have a positive effect on its emission properties.

【0016】上記の様な切り屑排出性改善効果は、上記
の様にt1 /t2 を1以上とすることによって有効に発
揮されるが、反面、切刃部Kにおける炭素膜の被覆厚t
1 が厚くなり過ぎると加工精度の低下等の障害が現われ
てくるので、好ましくはt1/t2 が1.5以下となる
様にその肉厚を調整することが望ましい。また、切刃部
の被覆厚t1 と逃げ面の被覆厚t2 は、夫々の位置によ
っても若干変わってくることがあるが、局部的に上記の
要件を外れることがあっても平均的な被覆厚比として上
記の要件を満たすものであれば、本発明の目的は充分に
達成される。
The above-mentioned effect of improving the chip discharge property is effectively exhibited by setting t 1 / t 2 to 1 or more as described above, but on the other hand, the coating thickness of the carbon film in the cutting edge portion K is t
If 1 is too thick, obstacles such as deterioration in processing accuracy will appear. Therefore, it is desirable to adjust the wall thickness so that t 1 / t 2 is 1.5 or less. Further, the coating thickness t 1 of the cutting edge portion and the coating thickness t 2 of the flank face may vary slightly depending on their respective positions, but even if the above requirements are locally deviated, they are average. If the coating thickness ratio satisfies the above requirements, the object of the present invention can be sufficiently achieved.

【0017】また該炭素膜、特に切刃稜部の炭素膜被覆
厚さt1 は、寿命の観点からすると厚肉の方が好まし
い。これは、摩耗面が膜/基材界面に到達するまでの時
期は、該膜厚が大きくなるほど遅れるからである。但
し、この膜厚は加工精度にも影響を及ぼし、該炭素膜が
厚くなるにつれて刃先部の鋭利度は低下してくるので、
十分な切削効果を維持しつつ優れた耐摩耗性を得るに
は、該炭素膜Cの被覆厚を5〜30μm程度とするのが
よい。
The carbon film, particularly the carbon film coating thickness t 1 of the ridge of the cutting edge, is preferably thick from the viewpoint of life. This is because the time until the worn surface reaches the film / base material interface is delayed as the film thickness increases. However, this film thickness also affects the processing accuracy, and the sharpness of the cutting edge portion decreases as the carbon film becomes thicker.
In order to obtain excellent wear resistance while maintaining a sufficient cutting effect, the coating thickness of the carbon film C is preferably about 5 to 30 μm.

【0018】更に本発明者らは、上記の様な炭素膜厚さ
の調整による折損防止効果がより効果的に発揮されるド
リルの寸法・構造について更に研究を重ねた結果、軸径
が0.5mm以下の極細で且つ捻れ角が20〜30度の
場合に、より効果的に発揮されることを知った。
Further, the present inventors have further studied the size and structure of the drill that can more effectively exhibit the breakage prevention effect by adjusting the carbon film thickness as described above, and as a result, the shaft diameter is 0. It has been found that when the twist angle is 20 to 30 degrees and the diameter is 5 mm or less, it is more effectively exhibited.

【0019】本発明に係るドリルの切削作用部A外面に
被覆される硬質炭素膜Cは、通常の走査型電子顕微鏡、
透過型電子顕微鏡、X線回折あるいは電子線回折等の機
器分析手法で炭素質微粒子の集合体として確認し得るも
のであり、該炭素質微粒子の結晶構造は主として結晶質
のダイヤモンド構造を有するものである。但し本発明に
おける上記硬質炭素膜Cは全てが結晶質のダイヤモンド
微粒子で構成されていなければならない訳ではなく、非
晶質のダイヤモンドやグラファイトとの混合物、あるい
は実質的に炭素質とは言えない微量添加金属成分等を少
量含むものであっても構わない。
The hard carbon film C coated on the outer surface of the cutting action portion A of the drill according to the present invention is a conventional scanning electron microscope,
It can be confirmed as an aggregate of carbonaceous fine particles by an instrumental analysis method such as a transmission electron microscope, X-ray diffraction or electron diffraction, and the crystal structure of the carbonaceous fine particles mainly has a crystalline diamond structure. is there. However, the hard carbon film C in the present invention does not have to be entirely composed of crystalline diamond fine particles, and is a mixture with amorphous diamond or graphite, or a trace amount that is not substantially carbonaceous. It may contain a small amount of an added metal component or the like.

【0020】また、炭素膜Cの形成方法についても特に
限定されないが、一般的なのは例えばマイクロ波プラズ
マCVD法、熱フィラメント法、高周波プラズマCVD
法、イオンビーム法等の気相合成法である。この合成に
用いる原料ガスとしては、メタン、エタン等炭化水素系
ガスの他、メタノール、エタノール等のアルコール系ガ
ス、或は一酸化炭素等の酸化炭素系ガス等を用いること
ができ、通常はこれら炭素含有ガスと水素との混合ガス
が用いられる。また、ドリルの母材を構成する素材とし
ては、超硬合金の他、各種セラミックスを用いることが
可能である。
Further, the method of forming the carbon film C is not particularly limited, but a general method is, for example, a microwave plasma CVD method, a hot filament method, or a high frequency plasma CVD method.
Method, ion beam method, and other vapor phase synthesis methods. As a raw material gas used in this synthesis, a hydrocarbon-based gas such as methane or ethane, an alcohol-based gas such as methanol or ethanol, or a carbon oxide-based gas such as carbon monoxide can be used. A mixed gas of a carbon-containing gas and hydrogen is used. Further, as the material forming the base material of the drill, various ceramics other than cemented carbide can be used.

【0021】[0021]

【実施例】次に本発明の実施例を示すが、本発明はもと
より下記実施例によって制限を受けるものではなく、前
後記の趣旨に適合し得る範囲で適当に変更を加えて実施
することも勿論可能であり、それらはいずれも本発明の
技術的範囲に含まれる。
EXAMPLES Next, examples of the present invention will be shown, but the present invention is not limited by the following examples, and may be carried out with appropriate modifications within a range compatible with the gist of the preceding and following description. Of course, it is possible, and all of them are included in the technical scope of the present invention.

【0022】実施例1 K種超硬合金(バインダ成分:Co、TaC)を基材と
する軸径0.85mmのミニチュアドリル基材における
切削作用部を含めた先端部表面に、マイクロ波プラズマ
CVD法により励起したメタン−水素混合ガスを接触さ
せて炭素膜を被覆した。この時、切刃稜部の被覆厚(t
1)と逃げ面の被覆厚(t2)の比(t1 /t2 )が0.9
〜1.9になる様に、反応空間内における基材の配置方
向を変えて5種類の被覆形態の炭素膜を形成した。尚、
膜形成時のメタン濃度とガス圧力はそれぞれ2%,25
torrとした。尚、いずれの場合も炭素膜被覆前にダ
イヤモンド砥粒(平均粒径約0.5μm)を含むエタノ
ール懸濁液中で超音波処理を施した。炭素膜被覆後のS
EM並びにラマン分光分析の結果、いずれのドリルの場
合も炭素膜は結晶質のダイヤモンドを主体とし、一部非
結晶性ダイヤモンドを含むものであった。
Example 1 Microwave plasma CVD was applied to the tip surface including the cutting action part in a miniature drill base material having a shaft diameter of 0.85 mm and made of a K-type cemented carbide (binder component: Co, TaC) as a base material. A carbon film was coated by contacting a methane-hydrogen mixed gas excited by the method. At this time, the coating thickness of the ridge of the cutting edge (t
1 ) and flank face coating thickness (t 2 ) ratio (t 1 / t 2 ) is 0.9
The carbon film having five types of coating forms was formed by changing the arrangement direction of the substrate in the reaction space so that the carbon film had a thickness of ˜1.9. still,
Methane concentration and gas pressure during film formation were 2% and 25%, respectively.
It was set to torr. In each case, ultrasonic treatment was performed in an ethanol suspension containing diamond abrasive grains (average particle size of about 0.5 μm) before coating the carbon film. S after carbon film coating
As a result of EM and Raman spectroscopic analysis, in all drills, the carbon film was mainly composed of crystalline diamond and partially contained amorphous diamond.

【0023】次に、これら5種類のドリルを使用し、プ
リント基板の穴明け試験を行なった。被削材としては、
厚さ1.5mmのエポキシ樹脂製基板(4層板)を3枚
重ねした合板を使用し、エントリーボードとして厚さ
0.25mmのAl板を用いた。また加工条件は、回転
数75,000rpm、送り速度3m/minとした。
Next, a drilling test was performed on the printed circuit board using these five types of drills. As a work material,
A plywood sheet in which three 1.5 mm-thick epoxy resin substrates (four-layer boards) were stacked was used, and an 0.25 mm-thick Al plate was used as an entry board. The processing conditions were a rotation speed of 75,000 rpm and a feed rate of 3 m / min.

【0024】結果は表1に示す通りであり、t1 /t2
が1を超える場合はドリルの折損が見られず、特にその
値が1.5以下であるものは、加工精度においても非常
に優れたものであることがわかる。尚比較例1におい
て、折損したドリルの状態を調べたところ、折損は切り
屑、特にエントリーボードとして用いたアルミニウムや
基板を構成する銅の溝部への詰まりが原因であり、実施
例との耐折損性の差異は、切り屑輩出性の良否によるも
のと思われた。
The results are shown in Table 1, where t 1 / t 2
When the value exceeds 1, no breakage of the drill is observed, and in particular, the value of 1.5 or less is very excellent in machining accuracy. In Comparative Example 1, the state of the broken drill was examined, and it was found that the breakage was due to clogging of chips, particularly aluminum used as the entry board and the copper groove constituting the substrate, and the breakage resistance with the Example. The difference in sex seemed to be due to the goodness of chip production.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例2 K種超硬合金(バインダ成分:Co,VC,Cr3
2 )を母材とし、捻れ角を16〜30度に変化させた軸
径0.35mmのミニチュアドリル基材における切削作
用部を含めた先端部表面に、マイクロ波プラズマCVD
法により励起したメタン−水素混合ガスを接触させて炭
素膜を被覆した。この時、切刃稜部の被覆厚(t1)と逃
げ面の被覆厚(t2)の比(t1 /t2 )が1.07とな
る様に、反応空間内における基材の配置方向を調節し
た。尚、膜形成時のメタン濃度とガス圧力はそれぞれ3
%,20torrとした。尚、いずれの場合も炭素膜被
覆前にダイヤモンド砥粒(平均粒径約0.5μm)を含
むエタノール懸濁液中で超音波処理を施した。炭素膜被
覆後のSEM並びにラマン分光分析の結果、いずれのド
リルの場合も炭素膜は結晶質のダイヤモンドを主体と
し、一部非結晶性ダイヤモンドを含むものであった。
Example 2 Class K cemented carbide (binder component: Co, VC, Cr 3 C
2 ) As the base material, microwave plasma CVD is performed on the tip surface including the cutting action part in the miniature drill base material with a shaft angle of 0.35 mm and a twist angle changed from 16 to 30 degrees.
A carbon film was coated by contacting a methane-hydrogen mixed gas excited by the method. At this time, as the ratio of the coating thickness of the cutting edge portion covering thickness (t 1) and flank (t 2) (t 1 / t 2) is 1.07, the arrangement of the substrate in the reaction space Adjusted the direction. The methane concentration and gas pressure during film formation were 3
%, 20 torr. In each case, ultrasonic treatment was performed in an ethanol suspension containing diamond abrasive grains (average particle size of about 0.5 μm) before coating the carbon film. As a result of SEM and Raman spectroscopic analysis after coating the carbon film, in all drills, the carbon film was mainly composed of crystalline diamond and partially contained amorphous diamond.

【0027】また比較材として、上記と同様の手法でt
1 /t2 比が1.00となる様に炭素膜被覆を行なった
捻じれ角29度または30度、同一軸径のミニチュアド
リルを作製した。
As a comparative material, t
A miniature drill having a twist angle of 29 ° or 30 ° and the same shaft diameter, which was coated with a carbon film so that the 1 / t 2 ratio was 1.00, was produced.

【0028】得られた各ミニチュアドリルを使用し、プ
リント基板の穴明け試験を行なった。被削材としては、
厚さ1.5mmのエポキシ樹脂製基板(4層板)を2枚
重ねした合板を使用し、エントリーボードとして厚さ
0.2mmのAl板を用いた。また加工条件は、回転数
70,000rpm、送り速度2m/minとした。
Using each of the obtained miniature drills, a punching test was performed on the printed circuit board. As a work material,
A plywood sheet in which two epoxy resin substrates (four-layer boards) having a thickness of 1.5 mm were stacked was used, and an Al plate having a thickness of 0.2 mm was used as an entry board. The processing conditions are the number of revolutions
The feed rate was 70,000 rpm and the feed rate was 2 m / min.

【0029】結果は表2に示す通りであり、捻れ角によ
って耐折損性や加工精度はかなり変わってくる。即ち、
捻れ角を30度以下にすると耐折損性は明らかに向上
し、また20度以上に設定すると加工精度の向上が認め
られる。尚、比較例2,3について折損したドリルの状
態を調べたところ、折損は前記実施例1の場合と同様に
切り屑、即ちアルミニウム、銅あるいはエポキシ樹脂の
溝部への詰まりが原因であり、実施例との耐折損性の差
異は、切り屑排出性の良否によるものと思われた。
The results are shown in Table 2, and the breakage resistance and the working accuracy are considerably changed depending on the twist angle. That is,
When the twist angle is 30 degrees or less, the breakage resistance is obviously improved, and when it is set to 20 degrees or more, the processing accuracy is improved. When the state of the broken drills was examined for Comparative Examples 2 and 3, the breakage was caused by clogging of chips, that is, aluminum, copper or epoxy resin in the groove portion, as in the case of Example 1, and The difference in breakage resistance from the example was considered to be due to the goodness of chip discharge property.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明は以上の様に構成されており、ミ
ニチュアドリルの切削作用部における切刃稜部の硬質炭
素膜被覆厚さと逃げ面の硬質炭素膜被覆厚さをうまく調
整することによって、耐折損性を著しく高めることがで
き、長期に渡って優れた切削性能を発揮するミニチュア
ドリルを提供し得ることになった。
The present invention is configured as described above, and by properly adjusting the hard carbon film coating thickness of the cutting edge ridge and the hard carbon film coating thickness of the flank in the cutting action portion of the miniature drill. Therefore, it has become possible to provide a miniature drill which can remarkably improve breakage resistance and exhibits excellent cutting performance over a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】ミニチュアドリルの構造を示す説明図である。FIG. 1 is an explanatory view showing the structure of a miniature drill.

【図2】本発明に係るミニチュアドリルの切刃部を示す
要部拡大断面説明図である。
FIG. 2 is an enlarged cross-sectional explanatory view of essential parts showing a cutting edge portion of the miniature drill according to the present invention.

【符号の説明】[Explanation of symbols]

A 切削作用部 B 基材 C 硬質炭素膜 1 掬い面 2a 第1逃げ面 2b 第2逃げ面 A Cutting action part B Base material C Hard carbon film 1 Scooping surface 2a 1st flank surface 2b 2nd flank surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも切削作用部を硬質炭素膜で被
覆してなるミニチュアドリルにおいて、切刃稜部におけ
る硬質炭素膜の被覆厚さ(t1 )を逃げ面における硬質
炭素膜の被覆厚さ(t2 )よりも大きくしたものである
ことを特徴とする硬質炭素膜被覆ミニチュアドリル。
1. In a miniature drill in which at least a cutting action portion is covered with a hard carbon film, the coating thickness (t 1 ) of the hard carbon film at the cutting edge portion is the coating thickness of the hard carbon film at the flank ( A hard carbon film-covered miniature drill characterized by being made larger than t 2 ).
【請求項2】 膜厚t1 とt2 の比(t1 /t2 )が
1.0超1.5以下である請求項1記載の硬質炭素膜被
覆ミニチュアドリル。
2. The hard carbon film-coated miniature drill according to claim 1 , wherein the ratio (t 1 / t 2 ) between the film thicknesses t 1 and t 2 is more than 1.0 and not more than 1.5.
【請求項3】 捻じれ角が20〜30度である請求項1
または2記載の硬質炭素膜被覆ミニチュアドリル。
3. The twist angle is 20 to 30 degrees.
Alternatively, the hard carbon film-coated miniature drill described in 2.
【請求項4】 軸径が0.5mm以下である請求項1〜
3のいずれかに記載の硬質炭素膜被覆ミニチュアドリ
ル。
4. A shaft diameter of 0.5 mm or less
The hard carbon film-coated miniature drill according to any one of 3 above.
JP22870393A 1993-09-14 1993-09-14 Miniature drill coated with hard carbon film Pending JPH0780713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22870393A JPH0780713A (en) 1993-09-14 1993-09-14 Miniature drill coated with hard carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22870393A JPH0780713A (en) 1993-09-14 1993-09-14 Miniature drill coated with hard carbon film

Publications (1)

Publication Number Publication Date
JPH0780713A true JPH0780713A (en) 1995-03-28

Family

ID=16880486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22870393A Pending JPH0780713A (en) 1993-09-14 1993-09-14 Miniature drill coated with hard carbon film

Country Status (1)

Country Link
JP (1) JPH0780713A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653812A (en) * 1995-09-26 1997-08-05 Monsanto Company Method and apparatus for deposition of diamond-like carbon coatings on drills
JP2012223882A (en) * 2012-08-16 2012-11-15 Sumitomo Electric Ind Ltd Drilling tool and drilling method of fiber-reinforced composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653812A (en) * 1995-09-26 1997-08-05 Monsanto Company Method and apparatus for deposition of diamond-like carbon coatings on drills
JP2012223882A (en) * 2012-08-16 2012-11-15 Sumitomo Electric Ind Ltd Drilling tool and drilling method of fiber-reinforced composite material

Similar Documents

Publication Publication Date Title
JP5866650B2 (en) Surface coated cutting tool
JP5079998B2 (en) Method of machining a metal workpiece with a coated cutting tool insert and a coated cutting tool insert
US7732066B2 (en) Surface-coated machining tools
JP5414883B2 (en) Cutting tools
JP4854359B2 (en) Surface coated cutting tool
WO2009107648A1 (en) Surface coated member and cutting tool
JPH02106210A (en) Helical tooth polycrystalline diamond tool and manufacture thereof
KR20130025381A (en) Surface-coated cutting tool
JP2007229821A (en) Surface-coated cutting tool
JPH09174304A (en) Surface coated cemented carbide-made cutting tool excellent in pitching resistance
JPH0780713A (en) Miniature drill coated with hard carbon film
JP3250414B2 (en) Method for producing cutting tool coated with titanium carbonitride layer surface
JP4351521B2 (en) Surface coated cutting tool
JP3519431B2 (en) Hard carbon film coated drill
JP2004090150A (en) Surface cover cutting tool
JPH11229144A (en) Coated tool
JP3419140B2 (en) Surface coated cutting tool
JPS6150724B2 (en)
JPH11335870A (en) Titanium carbonitride-aluminum oxide-coated tool
JP2556088B2 (en) Surface coated tungsten carbide based cemented carbide cutting tip
JPH0569204A (en) Hard layer coated tungsten carbide group cemented carbide made cutting tool
JP2001179504A (en) Hard carbon film-coated tool
JPH0788713A (en) Drill covered with carbon film and manufacture thereof
JPH05220604A (en) Surface coated cutting tool having superior adhesiveness of hard coating layer
JP2002263913A (en) Covering hard member

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030715