JPH0779972A - Ultrasonograph - Google Patents

Ultrasonograph

Info

Publication number
JPH0779972A
JPH0779972A JP5224676A JP22467693A JPH0779972A JP H0779972 A JPH0779972 A JP H0779972A JP 5224676 A JP5224676 A JP 5224676A JP 22467693 A JP22467693 A JP 22467693A JP H0779972 A JPH0779972 A JP H0779972A
Authority
JP
Japan
Prior art keywords
unit
transmission pulse
signal
band
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5224676A
Other languages
Japanese (ja)
Other versions
JP3320853B2 (en
Inventor
Takuya Noda
拓也 野田
Atsuo Iida
安津夫 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22467693A priority Critical patent/JP3320853B2/en
Publication of JPH0779972A publication Critical patent/JPH0779972A/en
Application granted granted Critical
Publication of JP3320853B2 publication Critical patent/JP3320853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To allow correction of uneven sound velocities inside the body of a subject with a low-cost, and practical means, by dividing receiving signals depending on the frequency band and detecting time delay for respective receiv ing signals divided by the frequency band, and correcting the time delay indepen dently in each frequency band. CONSTITUTION:The transmission part is generating the transmission pulse having at least two frequency bands, synthesizing transmission pulses from respective frequency bands, and driving electric sound conversion device. By this method, transsmission driving voltage for ultrasonic waves to radiate is generated, and at the receiving part, for the frequency band dividing means, the received signals of electric sound conversion device is divided into at least two frequency bands. Then, after adjusting and timing phases of the receiving signal for each frequency band group, respective receiving signals are all added up to output at the display part. In the meantime, the time delay detecting part detects the time delay of the receiving signal for each frequency band, and instructs the delay amount correcting part to conduct the delay amount correction to the transmission pulse for each frequency band at the transmission part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波による被検体内
の断層像を表示する超音波診断装置に関し、特に被検体
内の音速の不均一性を補正する機能を有する超音波診断
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic diagnostic apparatus for displaying a tomographic image in a subject by ultrasonic waves, and more particularly to an ultrasonic diagnostic apparatus having a function of correcting non-uniformity of sound velocity in the subject. .

【0002】[0002]

【従来の技術】被検体内に超音波を送信し被検体内の組
織で反射して戻ってきた超音波を受信して受信信号を
得、この受信信号に基づいて被検体内の断層像を表示す
ることにより内臓等の疾患の診断に供する超音波診断装
置が用いられており、この超音波診断装置ではいわゆる
受信フォーカスの手法が用いられている。
2. Description of the Related Art An ultrasonic wave is transmitted to an inside of a subject, the ultrasonic wave returned by being reflected by a tissue inside the subject is received to obtain a reception signal, and a tomographic image inside the subject is obtained based on the reception signal. An ultrasonic diagnostic apparatus that is used to diagnose diseases such as internal organs by displaying the information is used. In this ultrasonic diagnostic apparatus, a so-called reception focus method is used.

【0003】図7は、この受信フォーカスの手法の説明
図である。所定の方向(図7の左右方向)に並んだn個
の電気音響変換素子(以下単に「素子」と呼ぶ)E1
2 ,…,Ei ,…,En に電気信号を与えると、これ
らの各素子E1 ,E2 ,…,Ei ,…,En で超音波に
変換され、この超音波が被検体内に向けて送信される。
FIG. 7 is an explanatory diagram of this receiving focus method. N electroacoustic transducers (hereinafter simply referred to as "elements") E 1 arranged in a predetermined direction (left-right direction in FIG. 7),
E 2, ..., E i, ..., when providing electrical signals to the E n, each of these elements E 1, E 2, ..., E i, ..., are converted into ultrasonic waves E n, the ultrasonic wave to be It is sent to the inside of the sample.

【0004】ここでこの超音波が、多数の素子E1 ,E
2 ,…,Ei ,…,En の中央0から被検体内に延びる
垂線上のa点で反射された場合について考察する。a点
からの反射波は、a点からの距離の遠い端部側にある素
子E1 とa点からの距離の近い中央側にある素子Ei
を比べると、遠くにある素子E1 よりも近くにある素子
i に先に到達する。この到達の時間差はa点から素子
1 ,Eiまでの距離をそれぞれL1,Liとしたとき
の距離差ΔL=L1−Liだけ超音波が進む時間とな
る。ここで仮に被検体内の音速が均一であると仮定し、
この音速をCとすると、この時間差はΔL/Cで表わさ
れる。このようにa点と各素子E1 ,E2 ,…,Ei
…,En との間の各距離どうしに各距離差があるため、
各距離差を各時間に換算し、各素子E1 ,E2 ,…,E
i ,…,En で得られた各受信信号を各時間差に相当す
る分だけ遅延させることによりこれらの受信信号の到達
時刻を互いに揃える整相処理が行われる。これによりa
点で反射された超音波に対応する受信信号を強調するこ
と、即ちa点に受信の焦点を結ばせることが可能とな
る。被検体内の深い位置で反射された超音波ほど各素子
に遅れて到達するため、各素子E1 ,E2 ,…,Ei
…,En で得られた各受信信号に対する各遅延量を順次
変化させながら互いに加算することにより、a点のみで
なくa点を含め中央0から被検体内に延びる垂線上の各
点に連続的に焦点を合わせるいわゆるダイナミックフォ
ーカスを行うこともできる。この垂線は走査線と呼ば
れ、各受信信号に対する各遅延量を変化させることによ
り、この走査線を電気音響変換素子E1 ,E2 ,…,E
i ,…,En の並ぶ方向(図7の左右方向)に平行に移
動させるいわゆるリニア走査やこの走査線を扇状に偏向
させるいわゆるセクタ走査を行うこともでき、これによ
り被検体内の2次元的な断層像を得ることができる。さ
らに図7の紙面に垂直な方向にも電気音響変換素子を配
列すること等によりこの配列方向にも走査して3次元立
体像を得ることができることも知られている。
Here, this ultrasonic wave is transmitted to a large number of elements E 1 , E
Consider a case where the light is reflected at a point a on a vertical line extending from the center 0 of 2 , ..., E i , ..., E n into the subject. The reflected wave from the point a is compared with the element E 1 on the end side far from the point a and the element E i on the center side close to the point a from the element E 1 far away. Also reaches the nearby element E i first. This arrival time difference is the time when the ultrasonic wave advances by the distance difference ΔL = L1-Li, where L1 and Li are the distances from the point a to the elements E 1 and E i , respectively. Here, assuming that the sound velocity in the subject is uniform,
When this speed of sound is C, this time difference is represented by ΔL / C. Thus, point a and each element E 1 , E 2 , ..., E i ,
..., since there is the difference in distance to each distance each other between the E n,
Converting each distance difference into each time, each element E 1 , E 2 , ..., E
i, ..., phasing processing is performed to align the time of arrival of the received signals from each other by delaying by the amount corresponding to the reception signal obtained by the E n each time difference. This gives a
It is possible to emphasize the received signal corresponding to the ultrasonic wave reflected at the point, that is, to focus the reception at the point a. The ultrasonic waves reflected deeper in the subject reach each element later, so that each element E 1 , E 2 , ..., E i ,
, E n , the delay amounts for the respective received signals are sequentially changed and added to each other, so that not only the point a but also points a on a perpendicular line extending from the center 0 to the inside of the subject from the center 0 are continuously added. It is also possible to perform so-called dynamic focus, in which the focal point is focused. This perpendicular line is called a scanning line, and by changing each delay amount for each received signal, this scanning line is converted into an electroacoustic conversion element E 1 , E 2 , ..., E.
i, ..., it can be a direction to perform a so-called sector scan to deflect the so-called linear scanning and the scanning line is moved in parallel to the (horizontal direction in FIG. 7) to the fan lined E n, thereby two-dimensionally in the subject A tomographic image can be obtained. Further, it is also known that a three-dimensional stereoscopic image can be obtained by arranging the electroacoustic transducers also in the direction perpendicular to the paper surface of FIG. 7 and scanning in this arranging direction.

【0005】ところが、人体内には脂肪層や筋肉、その
他種々の組織が存在し、特に脂肪層においては他の組織
と比べ音速が異なることが知られている。図8は、音速
が不均一の場合の受信フォーカスを示した図である。こ
の図8に示すように、例えば人体の腹部の肝臓の診断を
行う場合において、体表近傍には音速が約1470m/
secの比較的音速の遅い脂肪層が存在し、その下に音
速約1540m/secの筋肉層が存在し、さらにその
下部に同じく音速が約1540m/secの肝臓が存在
する。また、脂肪層は筋肉内や肝臓内に沈着する場合も
ある。
However, it is known that there are fat layers, muscles, and various other tissues in the human body, and the sound velocity in the fat layers is different from that in other tissues. FIG. 8 is a diagram showing the reception focus when the sound velocity is not uniform. As shown in FIG. 8, when diagnosing the liver of the abdomen of a human body, for example, the speed of sound is about 1470 m /
A fat layer having a relatively slow sound speed of sec exists, a muscle layer having a sound speed of about 1540 m / sec exists below the fat layer, and a liver having a sound speed of about 1540 m / sec exists below the muscle layer. In addition, the fat layer may be deposited in muscle or liver.

【0006】このように被検体内に音速の異なる部分が
あると、音速が均一であるという仮定の下に定めた各遅
延量を各受信信号に与えても、図8に示すように各受信
信号の到達時刻は揃わず、したがってこれらの各受信信
号を全て加算してもa点に焦点のあった信号とはならず
に断層像がボケてしまう結果となる。ここではこの各受
信信号の到達時刻のずれを「時間ずれ」と称することと
する。しかもこの脂肪層の厚さは人により異なるため、
各受信信号に対する各遅延量を一律に補正することはで
きない。
If there are portions of different sound speeds in the subject in this way, even if each received signal is given a delay amount determined under the assumption that the sound speeds are uniform, as shown in FIG. The arrival times of the signals are not uniform, and therefore, even if all of these received signals are added, the signal at the point a is not focused and the tomographic image is blurred. Here, the difference in arrival time of each received signal is referred to as "time difference". Moreover, the thickness of this fat layer varies from person to person,
It is not possible to uniformly correct each delay amount for each received signal.

【0007】これを解決する方法として、相互相関演算
を用いる方法([1]米国特許公報USP481761
4号、[2]S.W.FLAX AND M.O’DO
NNEL,”Phase−Aberration Co
rrection Using Signals F
rom Point Reflectors andD
iffuse Scatterres:Basic P
rinciples” IEEE TRANSACTI
ON ON ULTRASONICS, FERROE
L ECTRICS, AND FREQUENCY
CONTROL, VOL35,NO.6, NOVE
MBER 1988, p758〜p767 参照)が
知られている。
As a method for solving this, a method using a cross-correlation calculation ([1] US Pat.
No. 4, [2] S. W. FLAX AND M. O'DO
NNEL, "Phase-Aberration Co
redirection Using Signals F
rom Point Reflectors andD
iffuse Scatterres: Basic P
rinciples ”IEEE TRANSACTI
ON ON ULTRASONICS, FERROE
L ECTRICS, AND FREQUENCY
CONTROL, VOL35, NO. 6, NOVE
MBER 1988, p758-p767) are known.

【0008】図9は、相互相関法を用いた時間ずれを補
正する方法の説明図である。ここでは先ず被検体内の音
速が均一であると仮定した上で各受信信号に各遅延量を
与え、この各遅延量を与えた後の各受信信号の一部を相
関計算領域として切り出し、この相関計算領域内の各受
信信号に基づいて以下のようにして時間ずれが求められ
る。即ち、この切り出された各受信信号のうち、互いに
隣接する2つの受信信号間で相互相関演算が行われ、求
められた相互相関関数のピーク値の存在する位置から隣
接素子間の時間ずれΔτが求められる。
FIG. 9 is an explanatory diagram of a method for correcting a time shift using the cross correlation method. Here, first, assuming that the sound velocity in the subject is uniform, each delay amount is given to each reception signal, and a part of each reception signal after giving each delay amount is cut out as a correlation calculation region. The time lag is obtained as follows based on each received signal in the correlation calculation area. That is, among the cut-out received signals, the cross-correlation operation is performed between two received signals adjacent to each other, and the time shift Δτ between adjacent elements is calculated from the position where the peak value of the obtained cross-correlation function exists. Desired.

【0009】この時間ずれΔτが互いに隣接する2つの
受信信号の全てについて求められ、この求められた各時
間ずれΔτが例えば図の1番左側の素子に対応する受信
信号の到達時刻を基準にして順次積算され、これにより
基準の受信信号に対する他の受信信号の各時間ずれΔt
が求められ、この各時間ずれΔtが補正されるように各
受信信号に対する各遅延量が変更され、これにより、全
ての素子の受信信号の到達時刻を揃えることができるこ
ととなる。
This time shift Δτ is calculated for all two received signals adjacent to each other, and each of the calculated time shifts Δτ is based on the arrival time of the received signal corresponding to the leftmost element in the figure, for example. Sequential integration is performed, whereby each time difference Δt of other received signals with respect to the reference received signal is increased.
Is calculated, and the respective delay amounts for the respective received signals are changed so that the respective time lags Δt are corrected, whereby the arrival times of the received signals of all the elements can be made uniform.

【0010】尚、従来提案されている各受信信号の時間
ずれを検出する方法としては、上記の相互相関法のほか
直交検波法と呼ばれる方法も知られている([3]米国
特許公報USP4835689号参照)。この直交検波
法では受信信号間の狭義の時間ずれの代わりに受信信号
間の位相差が求められるが、本発明はこの時間ずれの検
出方法に依存するものではないため、ここでは「時間ず
れ」は広義に解釈し「位相差」も含むものとする。
As a conventionally proposed method for detecting the time lag of each received signal, a method called a quadrature detection method is known in addition to the above-mentioned cross correlation method ([3] US Pat. No. 4,835,689). reference). In this quadrature detection method, the phase difference between the received signals is obtained instead of the narrowly-defined time difference between the received signals. However, the present invention does not depend on this time difference detection method, so here, “time difference” is used. Is interpreted in a broad sense to include “phase difference”.

【0011】[0011]

【発明が解決しようとする課題】図10は、被検体内の
任意の位置P(例えばフォーカス点)からの反射波が、
電気音響変換素子のある素子Eiに達する場合の概略図
である。図10に示すように点Pからの反射波は、音速
不均一境界面Fの形状により様々に屈折し、様々な経路
で素子Eiに達する。音速不均一境界面Fの形状が複雑
であればあるほど、また音速不均一境界面Fが電気音響
変換素子と離れる程、点Pからの反射波が素子Ei に到
達する経路は複雑になる。こうしたマルチパスの反射
波、すなわち様々な位相差、振幅をもつ信号を合成した
ものが、素子Ei の受信信号となる。
FIG. 10 shows that a reflected wave from an arbitrary position P (for example, a focus point) in the subject is
It is a schematic diagram when it reaches the element Ei with an electroacoustic conversion element. As shown in FIG. 10, the reflected wave from the point P is refracted variously due to the shape of the sound velocity non-uniform boundary surface F and reaches the element Ei through various paths. The more complicated the shape of the sonic non-uniform boundary surface F is, and the farther the sonic non-uniform boundary surface F is from the electroacoustic conversion element, the more complicated the path of the reflected wave from the point P reaching the element E i. . Such multipath reflected waves, that is, a combination of signals having various phase differences and amplitudes becomes a reception signal of the element E i .

【0012】従来の生体内音速不均一補正法は、隣接素
子間相関法に代表されるように、2つの受信信号のパタ
ーンマッチングであり、2つの受信信号の到達時間差
(時間ずれ)の情報しかもたず、時間的な補正しか行っ
ていない。したがって、反射波1のみが受信信号であれ
ば、相互層間法は有効な補正法と言えるが、実際には、
各反射波をf1 (t),f2 (t),…とすると式、 f(t)=f1 (t)+f2 (t)+f3 (t)+… ……(1) に示すように、マルチパスからの反射波が積算されたも
のとなるため、単純な時間的な補正のみではその補正効
果が期待薄である。
The conventional in-vivo sound velocity non-uniformity correction method is pattern matching of two reception signals, as represented by the correlation method between adjacent elements, and is information on the arrival time difference (time shift) between the two reception signals. No, I am only making time corrections. Therefore, if only the reflected wave 1 is the received signal, the mutual layer method can be said to be an effective correction method, but in reality,
Letting each reflected wave be f 1 (t), f 2 (t), ..., It is shown in the formula, f (t) = f 1 (t) + f 2 (t) + f 3 (t) + ... (1) As described above, since the reflected waves from the multipaths are integrated, the correction effect is not expected to be expected with a simple time correction.

【0013】したがって、生体内の音速不均一性を補正
するには、位相差(時間ずれ)並びに、振幅の補正も行
う必要があるといわれている。この補正法の一例がMa
rhias A Finkらによって紹介されている
(IEEE TRANSACTION ON ULTR
ASONICS, FERROELECTRICS,
AND FREQUENCY CONTROLVol.
39 No.5 p.555〜p.592)。この補正
法の原理は、各電気音響変換素子で受信された受信信号
を時間的に反転させて送信時の各電気音響変換素子に対
する印加電圧に用いるものである。受信信号は周波数毎
の位相差(時間ずれ)、振幅情報を含んだものであるた
め、時間的に反転させて送信印加電圧とすることで周波
数毎の時間ずれ、振幅の歪みを一度に補正することが可
能であると報告している。
Therefore, it is said that it is necessary to correct the phase difference (time shift) and the amplitude in order to correct the non-uniformity of the sound velocity in the living body. An example of this correction method is Ma
introduced by rhias A Fink and others (IEEE TRANSACTION ON ULTR
ASONICS, FERROELECTRICS,
AND FREQUENCY CONTROL Vol.
39 No. 5 p. 555-p. 592). The principle of this correction method is that the reception signal received by each electroacoustic conversion element is temporally inverted and used as a voltage applied to each electroacoustic conversion element during transmission. Since the received signal contains the phase difference (time shift) for each frequency and amplitude information, it is possible to correct the time shift for each frequency and the amplitude distortion at once by reversing it temporally to obtain the transmission applied voltage. Reports that it is possible.

【0014】しかしこの補正法の問題点は、点ターゲッ
トのような、非常に反射強度の強い部分からの反射波を
必要とし、散乱体からの反射波では補正効果が期待でき
ないことにある。実際の人体において、点ターゲットの
ような強反射体は血管壁のようなものに限られるため、
上記補正方法は実用的ではない。さらにこの補正法の欠
点は莫大なコストがかかることである。まず各電気音響
変換素子毎に、受信信号をサンプリングするためにA/
D変換器が必要となる。さらにA/D変換された受信信
号を保持するために各電気音響変換素子毎にメモリが必
要となる。そして更に受信信号を送信に使用するため、
各電気音響変換素子毎にD/A変換器とアンプが必要と
なる。アンプは、その特性が線型で、広帯域で、高増幅
率(約100倍程度)でなければならず、非常に高価と
なる。
However, the problem with this correction method is that it requires a reflected wave from a portion having a very strong reflection intensity, such as a point target, and a correction effect cannot be expected with a reflected wave from a scatterer. In the actual human body, strong reflectors such as point targets are limited to things like blood vessel walls,
The above correction method is not practical. A further disadvantage of this correction method is the enormous cost. First, in order to sample the received signal for each electroacoustic conversion element, A /
A D converter is required. Furthermore, a memory is required for each electroacoustic conversion element to hold the A / D converted reception signal. And to further use the received signal for transmission,
A D / A converter and an amplifier are required for each electroacoustic conversion element. The amplifier must be linear in characteristics, have a wide band, and have a high amplification factor (about 100 times), which is very expensive.

【0015】現在、電気音響変換素子が多素子化するな
かで、素子毎にA/D変換器,メモリ,D/A変換器,
アンプを取付けることは非常にコスト高につながり、実
用的でないことが問題である。本発明は、上記事情に鑑
み、被検体内の音速不均一性を低コストかつ実用的な補
正手段により補正する機能を備えた超音波診断装置を提
供することを目的とする。
At present, as the number of electroacoustic conversion elements increases, an A / D converter, a memory, a D / A converter,
Mounting an amplifier is very costly and impractical. The present invention has been made in view of the above circumstances, and an object thereof is to provide an ultrasonic diagnostic apparatus having a function of correcting sound velocity nonuniformity in a subject with a low-cost and practical correction unit.

【0016】[0016]

【課題を解決するための手段】上記目的を達成する本発
明の超音波診断装置は、所定の方向に並んだ複数の電気
音響変換素子と、これら複数の電気音響変換素子から被
検体内に送信される超音波が該被検体内に延びる走査線
上の所定の送信フォーカス点で焦点を結ぶように各所定
のタイミングの送信パルスを前記複数の電気音響変換素
子に印加する送信部と、前記被検体内で反射した超音波
を前記複数の電気音響変換素子で受信することにより得
られた複数の受信信号を、前記被検体内の互いに略同一
の位置で略同時に反射された超音波に対応する受信信号
どうしが略同時に得られるようにそれぞれ遅延すること
により、これら複数の受信信号を互いに整相する受信部
と、整相処理後の前記複数の受信信号を互いに加算する
ことにより加算信号を得る加算部と、前記加算部で得ら
れた加算信号を輝度信号に変換し該輝度信号に基づいて
前記被検体の断層像を表示する表示部とを備えた超音波
診断装置において、 (1)互いに中心周波数が異なる複数の各周波数帯域に
分割された各帯域別受信信号それぞれに基づいて、各帯
域別受信信号どうしの相対的な時間ずれを求める時間ず
れ検出部 (2)時間ずれ検出部で求められた時間ずれが補正され
るように受信部における受信信号の遅延量を補正する遅
延量補正部 を備えたことを特徴とするものである。
An ultrasonic diagnostic apparatus of the present invention that achieves the above object transmits a plurality of electroacoustic transducers arranged in a predetermined direction to the inside of a subject. A transmitting unit that applies a transmission pulse at each predetermined timing to the plurality of electroacoustic conversion elements so that the ultrasonic waves focused at a predetermined transmission focus point on a scanning line extending into the subject; A plurality of reception signals obtained by receiving the ultrasonic waves reflected inside by the plurality of electroacoustic transducers are received corresponding to the ultrasonic waves reflected at substantially the same position in the subject at substantially the same time. By delaying the signals so that they can be obtained substantially at the same time, a receiving unit that phases the plurality of received signals with each other, and the addition signal by adding the plurality of received signals after the phasing processing to each other. (1) An ultrasonic diagnostic apparatus comprising: an addition unit that obtains a signal and a display unit that converts the addition signal obtained by the addition unit into a luminance signal and displays a tomographic image of the subject based on the luminance signal. ) A time shift detecting unit that obtains a relative time shift between the received signals of each band based on the received signals of each band divided into a plurality of frequency bands having different center frequencies from each other (2) Time shift detection unit It is characterized in that a delay amount correcting unit for correcting the delay amount of the received signal in the receiving unit is provided so that the time lag obtained in step 1 is corrected.

【0017】ここで、上記遅延量補正部は、受信部にお
ける受信信号の遅延量を補正するとともに、送信部にお
ける、送信パルスの、電気音響変換素子への印加のタイ
ミングを補正するものであってもよい。また、各帯域別
受信信号の相対的な時間ずれを求めるにあたり、本発明
では、1回の超音波の送受信あたり、複数の帯域別受信
信号のうちのいずれか1つの帯域別受信信号の時間ずれ
を求める態様と、1回の超音波の送受信で、複数の帯域
別受信信号のそれぞれについての各時間ずれを求める態
様がある。
Here, the delay amount correction unit corrects the delay amount of the reception signal in the reception unit and also corrects the timing of application of the transmission pulse to the electroacoustic conversion element in the transmission unit. Good. Further, in obtaining the relative time lag of each band-based reception signal, in the present invention, the time lag of any one of the plurality of band-based reception signals per ultrasonic wave transmission / reception. And a mode of obtaining each time lag for each of a plurality of band-based reception signals by transmitting and receiving ultrasonic waves once.

【0018】即ち、前者の態様においては、上記受信部
が、電気音響変換素子で得られた受信信号が中心周波数
の互いに異なる複数の各周波数帯域毎に分割されてなる
複数の帯域別受信信号のうちのいずれか1つの帯域別受
信信号を選択するフィルタと、選択された帯域別受信信
号を整相する整相手段とを備え、上記遅延量補正部が、
選択された帯域別受信信号に基づいて求められた時間ず
れが補正されるように、上記整相手段における帯域別受
信信号の遅延量を補正する構成が備えられる。
That is, in the former mode, the receiving unit is configured to divide the reception signal obtained by the electroacoustic conversion element into a plurality of frequency band reception signals divided into a plurality of frequency bands having different center frequencies. The delay amount correction unit includes a filter for selecting any one of the band-based reception signals and a phasing unit for phasing the selected band-based reception signal.
A configuration is provided for correcting the delay amount of the band-based reception signal in the phasing means so that the time shift obtained based on the selected band-based reception signal is corrected.

【0019】また後者の態様においては、上記受信部
が、電気音響変換素子で得られた受信信号を互いに中心
周波数が異なる複数の各周波数帯域毎に分割して複数の
各帯域別受信信号を生成する周波数分割手段と、各帯域
別受信信号をそれぞれ整相する整相手段と、整相手段で
整相された各帯域別受信信号を合成する合成手段とを備
え、上記遅延量補正部が、各帯域別受信信号に基づいて
求められた各時間ずれがそれぞれ補正されるように、上
記整相手段における各帯域別受信信号の遅延量を補正す
る構成が備えられる。
In the latter mode, the receiving unit divides the received signal obtained by the electroacoustic conversion element into a plurality of frequency bands having different center frequencies to generate a plurality of band-based received signals. Frequency division means, phasing means for phasing the reception signals for each band, and combining means for synthesizing the reception signals for each band phased by the phasing means, the delay amount correction unit, A configuration is provided for correcting the delay amount of the reception signal for each band in the phasing means so that each time shift obtained based on the reception signal for each band is corrected.

【0020】また、送信部における、送信パルスの電気
音響変換素子への印加のタイミングの補正を行う場合
も、以下のようにいくつかの態様がある。即ちその1つ
は、上記送信部が、各帯域別受信信号の各中心周波数に
対応した各送信パルスのうちのいずれか1つの送信パル
スを選択的に生成する送信パルス生成手段と、選択的に
生成された送信パルスを遅延することにより、その送信
パルスの、電気音響変換素子への印加のタイミングを調
整して電気音響変換素子に印加する送信パルス遅延手段
とを備え、上記遅延量補正部が、上記受信部における受
信信号の遅延量の補正とともに、選択的に生成された送
信パルスに対応する中心周波数を有する帯域別受信信号
に基づいて求められた時間ずれに対応する遅延量だけ上
記送信パルス遅延手段における送信パルスの遅延量を補
正するものである。
Also, in the case of correcting the timing of application of the transmission pulse to the electroacoustic conversion element in the transmission section, there are some aspects as follows. That is, one of them is a transmission pulse generation means for selectively generating any one transmission pulse among the transmission pulses corresponding to each center frequency of the reception signal for each band by the transmission unit, and selectively. By delaying the generated transmission pulse, the transmission pulse delay means for adjusting the timing of application of the transmission pulse to the electroacoustic conversion element and applying it to the electroacoustic conversion element, wherein the delay amount correction unit is provided. , The correction of the delay amount of the reception signal in the receiving unit, and the transmission pulse by the delay amount corresponding to the time lag obtained based on the band-specific reception signal having the center frequency corresponding to the selectively generated transmission pulse The delay amount of the transmission pulse in the delay means is corrected.

【0021】他の1つは、上記送信部が、各帯域別受信
信号の各中心周波数に対応した各送信パルスを生成する
送信パルス手段と、生成された各送信パルスを遅延する
ことにより、送信パルスの、電気音響変換素子への印加
のタイミングを調整する送信パルス遅延手段と、タイミ
ングが調整された各送信パルスを合成して電気音響変換
素子へ印加する送信パルス合成手段とを備え、上記遅延
量補正部が、上記受信部における受信信号の遅延量の補
正とともに、各帯域別受信信号それぞれに基づいて求め
られた各時間ずれに対応する遅延量だけ上記送信パルス
遅延手段における各送信パルスの遅延量を補正するもの
である。
In the other one, the transmitting section delays each generated transmission pulse by transmitting pulse means for generating each transmission pulse corresponding to each center frequency of the reception signal for each band, thereby transmitting the transmission pulse. The delay is provided with a transmission pulse delay means for adjusting the timing of application of a pulse to the electroacoustic conversion element, and a transmission pulse composition means for combining each transmission pulse with adjusted timing and applying it to the electroacoustic conversion element. The amount correction unit corrects the delay amount of the reception signal in the reception unit and delays each transmission pulse in the transmission pulse delay unit by the delay amount corresponding to each time shift obtained based on each band-specific reception signal. It corrects the quantity.

【0022】また、上記受信部が、互いに異なる複数の
参照周波数で直交検波する直交検波器を備えるととも
に、上記時間ずれ検出部に代えて、上記複数の参照周波
数それぞれで直交検波された各直交検波信号それぞれに
基づいて、受信信号の各参照周波数における時間ずれを
検出する時間ずれ検出部を備えた構成としてもよい。
Further, the receiving section includes a quadrature detector for performing quadrature detection at a plurality of reference frequencies different from each other, and instead of the time shift detection section, each quadrature detection is performed at each of the plurality of reference frequencies. It may be configured to include a time shift detection unit that detects a time shift at each reference frequency of the received signal based on each signal.

【0023】さらに、上記表示部が、上記断層像の一走
査線あたり複数走査線分の信号を記憶するメモリと、そ
のメモリから読み出された一走査線あたり複数走査線分
の信号をその一走査線の信号に合成する信号合成手段
と、合成された信号に基づいて断層像を表示するモニタ
とを備えた構成とすることが好ましい。また、上記時間
ずれ検出部を、被検体内の互いに異なる複数の深さの各
点それぞれから反射した超音波を受信することにより得
られた、それらの各点それぞれについての受信信号の各
時間ずれを求めるように構成してもよい。
Further, the display unit stores a memory for storing signals of a plurality of scanning lines per one scanning line of the tomographic image and a signal of a plurality of scanning lines for one scanning line read from the memory. It is preferable to have a configuration that includes a signal synthesizing unit that synthesizes a signal of the scanning line and a monitor that displays a tomographic image based on the synthesized signal. Further, the time shift detection unit, obtained by receiving the ultrasonic waves reflected from each of a plurality of different depths in the subject, each time shift of the received signal for each of those points May be configured to be calculated.

【0024】[0024]

【作用】従来の生体内音速不均一補正法は、従来例であ
る隣接素子間の受信信号を用いた相互相関法に代表され
るように、2つの受信信号のパターンマッチングであ
り、2つの受信信号の到達時間差(時間ずれ)の情報し
かもたず、時間的な補正しか行っていない。したがっ
て、図10の反射波1のみが受信信号であれば、相互相
関法は有効な補正法と言える。しかし実際には、図10
の反射波1〜4のようなマルチパスの反射波が加算され
た受信信号が得られるものであり、この場合単純な時間
的補正のみでは補正しきれないことを以下に述べる。
The conventional in-vivo sound velocity nonuniformity correction method is pattern matching of two reception signals, as represented by a cross-correlation method using reception signals between adjacent elements, which is a conventional example. Only the arrival time difference (time difference) of the signals is provided, and only the temporal correction is performed. Therefore, if only the reflected wave 1 in FIG. 10 is the received signal, the cross-correlation method can be said to be an effective correction method. However, in reality, FIG.
It is possible to obtain a reception signal to which multipath reflected waves such as the reflected waves 1 to 4 are added. In this case, it will be described below that the correction cannot be completed only by simple temporal correction.

【0025】図10の反射波1をf(t)、そのフーリ
エ変換関数をF(ω)とする。素子Ei での受信信号を
f’(t)、フーリエ逆変換をF-1とすると、 f’(t)=F-1[F(ω){1+a2 exp(−jθ2 (ω)) +a3 exp(−jθ3 (ω))+… +an exp(−jθn (ω))}] ……(2) ここでは、ai はf(t)の振幅に対する各マルチパス
反射波の振幅、expはf(t)の位相に対する各マル
チパス反射波の位相差を表わす。
The reflected wave 1 in FIG. 10 is f (t), and its Fourier transform function is F (ω). When the received signal at the element E i is f ′ (t) and the inverse Fourier transform is F −1 , f ′ (t) = F −1 [F (ω) {1 + a 2 exp (−jθ 2 (ω)) + A 3 exp (−jθ 3 (ω)) + ... + a n exp (−jθ n (ω))}] (2) Here, a i is the amplitude of each multipath reflected wave with respect to the amplitude of f (t). The amplitude and exp represent the phase difference of each multipath reflected wave with respect to the phase of f (t).

【0026】{}内を加算することで、ai は周波数ω
の関数a(ω)とみなせるため、(2)式は次式で表わ
せる。 f’(t)=F-1{F(ω)a(ω)exp(−jθ(ω))} ……(3) (3)式から、マルチパス反射波を含んだ受信信号は、
その振幅および位相が周波数ωに依存することは明白で
ある。したがって、生体内の音速不均一性を補正するに
は、周波数毎に、位相差並びに振幅の補正を行う必要が
ある。
By adding the values in {}, a i can be
Since it can be regarded as the function a (ω) of, the equation (2) can be expressed by the following equation. f ′ (t) = F −1 {F (ω) a (ω) exp (−jθ (ω))} (3) From the equation (3), the received signal including the multipath reflected wave is
It is clear that its amplitude and phase depend on the frequency ω. Therefore, in order to correct the non-uniformity of sound velocity in the living body, it is necessary to correct the phase difference and the amplitude for each frequency.

【0027】ここで、われわれの調査では、振幅強度に
関しては約20%程度の誤差を含んでも画像劣化の程度
は小さく、時間ずれに関しては隣接素子間で超音波の中
心周波数の1/8波に相当する時間ずれ(例えば3.5
MHzでは約30ns)が生じると、画像が劣化の程度
が大きいことが判明している。したがって、時間ずれを
各周波数毎に補正することにより、音速不均一性による
波面歪の補正を行うことができる。
Here, in our research, the degree of image deterioration is small even if an error of about 20% is included in the amplitude intensity, and the time shift is 1/8 of the center frequency of the ultrasonic wave between the adjacent elements. Corresponding time lag (eg 3.5
It has been found that the degree of deterioration of the image is large when about 30 ns at MHz occurs. Therefore, by correcting the time lag for each frequency, it is possible to correct the wavefront distortion due to the non-uniformity of sound velocity.

【0028】本発明は、各周波数毎の時間ずれを補正す
るものであり、生体内音速不均一性によって生じる画像
劣化の補正効果向上につながり、分解能の高い高画質の
断層像を得ることが可能となる。
The present invention corrects the time lag for each frequency, which leads to the improvement of the effect of correcting the image deterioration caused by the inhomogeneity of the sound velocity in the living body and makes it possible to obtain a high-resolution tomographic image with high resolution. Becomes

【0029】[0029]

【実施例】以下、本発明の実施例について説明する。図
1は、本発明の超音波診断装置の一実施例の全体構成を
表わすブロック図である。図中に示す電気音響変換素子
は、被検体内に超音波を送信するとともに被検体内で反
射された反射超音波を受信する機能を有する。
EXAMPLES Examples of the present invention will be described below. FIG. 1 is a block diagram showing the overall configuration of an embodiment of the ultrasonic diagnostic apparatus of the present invention. The electroacoustic conversion element shown in the figure has a function of transmitting ultrasonic waves into the subject and receiving reflected ultrasonic waves reflected in the subject.

【0030】送信部は、その1つの態様として、少くと
も2つ以上の周波数帯域をもった送信パルスを発生さ
せ、発生させた送信パルスに対し、各周波数帯域毎に、
後述する遅延量補正部における各周波数帯域の時間ずれ
に応じた補正を行い、それらの周波数帯域毎の送信パル
スを合成し、電気音響変換素子を駆動して、超音波を放
射するための送信駆動電圧を発生させる。
As one aspect thereof, the transmitting section generates a transmission pulse having at least two or more frequency bands, and with respect to the generated transmission pulse, for each frequency band,
Correction is performed according to the time lag of each frequency band in the delay amount correction unit described below, the transmission pulse for each frequency band is synthesized, the electroacoustic conversion element is driven, and the transmission drive for radiating ultrasonic waves is performed. Generate voltage.

【0031】受信部中の周波数分割手段は、電気音響変
換素子の受信信号を少くとも2つ以上の周波数帯域に分
ける機能を有する。またはこの受信部は、分けられた周
波数帯域毎の受信信号それぞれの整相処理を行い、整相
処理後の各受信信号を加算する機能を有する。時間ずれ
検出部は、受信部の周波数分割手段で分割された各周波
数帯域毎に受信信号の時間ずれを検出する機能を有す
る。時間ずれ検出方法は従来の相互相関法や直交検波法
により構成すればよい。遅延量補正部は時間ずれ検出部
で検出された各周波数帯域毎の時間ずれに基づき、受信
部の周波数分割手段で分割された各周波数帯域毎の受信
信号ならびに送信部における各周波数帯域毎の送信パル
スに対し遅延量補正を行う機能を有する。また、加算部
は受信部で整相処理され加算された各電気音響変換素子
に対応する受信信号どうしを互いに加算する。表示部
は、加算部で加算された信号を輝度信号に変換してCR
T等に表示する。
The frequency dividing means in the receiving section has a function of dividing the received signal of the electroacoustic conversion element into at least two frequency bands. Alternatively, the receiving unit has a function of performing a phasing process on each of the received signals for each of the divided frequency bands and adding the received signals after the phasing process. The time shift detecting unit has a function of detecting a time shift of the received signal for each frequency band divided by the frequency dividing unit of the receiving unit. The time shift detection method may be configured by the conventional cross-correlation method or quadrature detection method. The delay amount correction unit, based on the time shift for each frequency band detected by the time shift detection unit, the received signal for each frequency band divided by the frequency division means of the reception unit and the transmission for each frequency band in the transmission unit. It has a function of correcting the delay amount for the pulse. Further, the adder adds the received signals corresponding to the respective electroacoustic transducers that have been subjected to the phasing processing and added by the receiver to each other. The display unit converts the signal added by the addition unit into a luminance signal, and CR
Display on T etc.

【0032】図2は、本発明の超音波診断装置の第一実
施例の受信部のブロック図である。受信部3は、各電気
音響変換素子1に対応してそれぞれ設けられた、周波数
分割手段31,整相手段32,合成手段33より構成さ
れている。周波数分割手段31では、電気音響変換素子
1からの受信信号がフィルタ等により複数の周波数帯域
に分割され、整相手段32とゲート部6に入力される。
整相手段32では、生体内組織の音速が均一であるとの
仮定に基づいて受信フォーカス遅延を合せるのみなら
ず、周波数分割手段31により帯域制限された各周波数
帯域毎の各帯域別受信信号に対し、後述する遅延量補正
部8における、周波数帯域毎の時間ずれに応じた補正が
行われる。合成手段33では、整相処理された各周波数
帯域毎の受信信号が時間軸上で合成される。
FIG. 2 is a block diagram of the receiving section of the first embodiment of the ultrasonic diagnostic apparatus of the present invention. The receiving unit 3 is composed of a frequency dividing unit 31, a phasing unit 32, and a synthesizing unit 33, which are provided corresponding to each electroacoustic conversion element 1. In the frequency dividing means 31, the received signal from the electroacoustic conversion element 1 is divided into a plurality of frequency bands by a filter or the like, and input to the phasing means 32 and the gate section 6.
The phasing unit 32 not only adjusts the reception focus delay based on the assumption that the speed of sound of the tissue in the living body is uniform, but also converts the reception signal for each band for each frequency band band-limited by the frequency dividing unit 31. On the other hand, the delay amount correction unit 8 described later performs the correction according to the time shift for each frequency band. The synthesizing means 33 synthesizes the received signals for each frequency band subjected to the phasing processing on the time axis.

【0033】また、ゲート部6は周波数分割手段31で
帯域制限された帯域別受信信号それぞれについて、時間
ずれ検出に必要な領域を切り出すものであり、時間ずれ
検出部7ではゲート部6で切り出された各帯域別受信信
号に基づいて各周波数帯域毎の時間ずれが検出され、遅
延量補正部8では時間ずれ検出部7で検出された各周波
数帯域毎の時間ずれを基に、各周波数帯域毎の、各素子
に対応する受信信号の遅延の補正量が決定される。
Further, the gate unit 6 cuts out an area necessary for time shift detection for each band-based received signal band-limited by the frequency dividing means 31, and the time shift detection unit 7 cuts out the region. The time lag for each frequency band is detected based on the received signal for each band, and the delay amount correction unit 8 determines the time lag for each frequency band based on the time lag for each frequency band detected by the time lag detector 7. The correction amount of the delay of the received signal corresponding to each element is determined.

【0034】また、加算部4は受信部3における整相処
理後の各素子の受信信号を加算し、最終的には図1に示
した表示部に送られる。なお図2においては、周波数分
割手段31は、受信信号を2つの周波数帯域に分割する
場合の例として図示されているが、3つ以上の周波数帯
域に分割するように周波数分割手段31を構成してもよ
い。
The adder 4 adds the received signals of the respective elements after the phasing processing in the receiver 3 and finally sends them to the display unit shown in FIG. In FIG. 2, the frequency dividing means 31 is illustrated as an example in which the received signal is divided into two frequency bands, but the frequency dividing means 31 is configured to divide into three or more frequency bands. May be.

【0035】また時間ずれ検出部7は、分割した周波数
帯域毎の時間ずれ検出を行うように構成されるものであ
る。図2においては2つの周波数帯域のそれぞれ時間ず
れ検出を行うように構成されている。当然のことなが
ら、受信信号を3つ以上の周波数帯域に分割する周波数
分割手段31を備えた場合は、時間ずれ検出部7も3つ
以上の周波数帯域毎に時間ずれ検出を行うように構成さ
れる。時間ずれ検出の方法は従来の相互相関法や直交検
波法により構成すればよく、説明は割愛する。さらに図
2においては、各周波数帯域毎の隣接素子間で時間ずれ
検出を行っているが、例えば隣接素子群間で時間ずれ検
出を行ってもよい。
The time shift detecting section 7 is configured to detect a time shift for each of the divided frequency bands. In FIG. 2, the time difference detection is performed for each of the two frequency bands. As a matter of course, when the frequency dividing means 31 that divides the received signal into three or more frequency bands is provided, the time shift detection unit 7 is also configured to perform the time shift detection for each of the three or more frequency bands. It The time shift detection method may be constituted by the conventional cross-correlation method or quadrature detection method, and a description thereof will be omitted. Further, in FIG. 2, the time shift detection is performed between the adjacent elements for each frequency band, but the time shift detection may be performed between the adjacent element groups, for example.

【0036】また、図2は、超音波の1回の送受信で得
られた受信信号を複数の周波数帯域に分割し、この分割
により得られた複数の帯域別受信信号全てを同時に処理
する例であるが、1回の送受信では、得られた受信信号
から1つの帯域別受信信号を選択して処理し、別の送受
信の際に他の帯域別受信信号を選択して処理するように
構成してもよい。
FIG. 2 shows an example in which a received signal obtained by transmitting and receiving ultrasonic waves once is divided into a plurality of frequency bands, and all the plurality of band-based received signals obtained by this division are simultaneously processed. However, in one transmission / reception, one band-based reception signal is selected and processed from the obtained reception signals, and another band-based reception signal is selected and processed in another transmission / reception. May be.

【0037】図3は、本発明の超音波診断装置の第二の
実施例の送信部のブロックと、その送信部の各部の信号
波形イメージを示した図である。送信部2は、ある帯域
幅をもった送信パルスを発生させる、送信パルス発生手
段21、送信パルス発生手段21で発生された送信パル
スをフィルタ等により少くとも2つ以上の周波数帯域に
分割する送信パルス分割手段22、生体内組織の音速が
均一であるとの仮定に基づいた送信フォーカス遅延を合
わせるのみならず、帯域制限された各送信パルス毎に、
遅延量補正部8(図2参照)で決められた遅延量を基に
送信パルスの遅延量補正を行うように構成された送信パ
ルス遅延手段23、各周波数帯域毎に遅延量補正された
送信パルスを時間軸上で合成する送信パルス合成手段2
4、および、合成された送信パルスを所望の電圧レベル
まで増幅するアンプ25により構成されている。
FIG. 3 is a diagram showing a block of the transmitting section of the second embodiment of the ultrasonic diagnostic apparatus of the present invention and a signal waveform image of each section of the transmitting section. The transmission unit 2 generates a transmission pulse having a certain bandwidth, and transmits the transmission pulse generated by the transmission pulse generating means 21 and the transmission pulse generating means 21 into at least two or more frequency bands by a filter or the like. The pulse dividing means 22 not only adjusts the transmission focus delay based on the assumption that the speed of sound of the tissue in the living body is uniform, but also for each band-limited transmission pulse.
Transmission pulse delay means 23 configured to correct the delay amount of the transmission pulse based on the delay amount determined by the delay amount correction unit 8 (see FIG. 2), the transmission pulse having the delay amount corrected for each frequency band. Pulse synthesizing means 2 for synthesizing on the time axis
4 and an amplifier 25 for amplifying the combined transmission pulse to a desired voltage level.

【0038】なおこの第二実施例においては、送信パル
スを2つの周波数帯域に分割する場合の例として図示し
ているが、3つ以上の周波数帯域に分割するように構成
してもよい。さらに、送信パルス分割手段22と周波数
分割手段31(図2参照)の各周波数帯域は一致してい
ることが望ましい。
In the second embodiment, the transmission pulse is divided into two frequency bands, but it may be divided into three or more frequency bands. Further, it is desirable that the frequency bands of the transmission pulse dividing means 22 and the frequency dividing means 31 (see FIG. 2) match.

【0039】図4は、本発明の超音波診断装置の第三実
施例の送信部のブロックと、その送信部の各部の信号波
形イメージを示した図である。この図に示す送信部2は
送信パルス発生手段21、送信パルス遅延手段23、お
よびアンプ25により構成され、超音波の1回の送信に
おいては、1つの周波数帯域に対応する送信パルスが電
気音響変換素子1に印加される。
FIG. 4 is a diagram showing a block of a transmitter of the ultrasonic diagnostic apparatus according to the third embodiment of the present invention and a signal waveform image of each part of the transmitter. The transmission unit 2 shown in this figure is composed of a transmission pulse generation means 21, a transmission pulse delay means 23, and an amplifier 25. In one transmission of ultrasonic waves, a transmission pulse corresponding to one frequency band is electroacoustic converted. Applied to element 1.

【0040】送信パルス発生手段21では、少くとも2
つの異なる周期のパルス状電圧が発生される。送信パル
ス遅延手段23は、生体内組織の音速が均一であるとの
仮定に基づいた送信フォーカス遅延を合わせるのみなら
ず、遅延量補正部8において、送信パルスの周期に対応
する周波数帯域の帯域別受信信号に基づいて求められ
た、時間ずれを補正するための遅延量をもとに、送信パ
ルスの遅延量補正を行うように構成される。またアンプ
25は、各周波数帯域の送信パルスを所望の電圧レベル
まで増幅するように構成される。
In the transmission pulse generating means 21, at least 2
Pulsed voltages with three different periods are generated. The transmission pulse delay means 23 not only adjusts the transmission focus delay based on the assumption that the speed of sound of the tissue in the living body is uniform, but also in the delay amount correction unit 8, it divides the frequency band corresponding to the cycle of the transmission pulse. The delay amount of the transmission pulse is corrected based on the delay amount for correcting the time shift, which is obtained based on the received signal. The amplifier 25 is also configured to amplify the transmission pulse of each frequency band to a desired voltage level.

【0041】ここで、送信パルスの周波数は、遅延量補
正部8の周波数帯域の中心周波数に設定することが好ま
しい。なお、送信パルス発生手段21で生成された送信
パルスは、周期的、つまり異なる時相の送信パルスとし
て電気音響変換素子1に与えられる。つまり、1つの周
波数の送信パルスに対し一回の走査(一回の走査とは全
ての走査線について送受信を行い1枚の1画像を得るた
めの工程を意味する)が必要となる。例えば、2つの周
波数の送信パルスを異なる時相で発生させた場合、2回
の走査で1画像が生成される。この方式を採用すると、
フレームレートは落ちるものの、周波数分割手段31
(図2参照)が不必要となり、さらに時間ずれ検出部7
の、例えば相互相関法により時間ずれ検出する場合の相
関器等も各周波数帯域毎に容易する必要がなくなり、相
関器は、例えば隣接素子間または素子群間毎につき1つ
で済むため、大きなコスト削減につながる。なお図4に
示す第三実施例では、異なる2つの周波数の送信パルス
を発生する場合の例を示しているが、3つ以上の異なる
周波数の送信パルスを発生させるように構成してもよ
い。
Here, the frequency of the transmission pulse is preferably set to the center frequency of the frequency band of the delay amount correction section 8. The transmission pulse generated by the transmission pulse generation means 21 is given to the electroacoustic conversion element 1 as a transmission pulse that is periodic, that is, with a different time phase. That is, it is necessary to perform one scan for one transmission pulse of one frequency (one scan means a process of transmitting and receiving for all scanning lines to obtain one image of one sheet). For example, when transmitting pulses of two frequencies are generated at different time phases, one image is generated by scanning twice. With this method,
Although the frame rate drops, the frequency dividing means 31
(See FIG. 2) becomes unnecessary, and the time shift detection unit 7
However, it is not necessary to provide a correlator or the like for each frequency band when detecting a time shift by the cross-correlation method, for example, and only one correlator is required between adjacent elements or between element groups. It leads to reduction. Note that the third embodiment shown in FIG. 4 shows an example in which transmission pulses of two different frequencies are generated, but it may be configured to generate transmission pulses of three or more different frequencies.

【0042】また、第三実施例における異なる時相の送
信パルスを、送信多段フォーカスを行う場合の各段の送
信パルスとして用いてもよい。通常、近距離にフォーカ
スする場合には送信パルスの周波数は高く、深部にフォ
ーカスするにつれ送信パルスの周波数を低くする。従っ
て、例えば図4に示すように2つの周波数帯域にわけた
送信パルスであるならば、2段送信フォーカスが可能と
なる。
Further, the transmission pulses of different time phases in the third embodiment may be used as the transmission pulses of each stage when the transmission multi-stage focusing is performed. Usually, the frequency of the transmission pulse is high when focusing on a short distance, and the frequency of the transmission pulse is lowered as focusing on a deep portion. Therefore, for example, if the transmission pulse is divided into two frequency bands as shown in FIG. 4, the two-stage transmission focus becomes possible.

【0043】このように本発明は多段フォーカスの技術
と組合わせ、生体内の浅い位置と深い位置との二段、も
しくはさらに多段で、それぞれ異なる周波数帯域の受信
信号それぞれにより時間ずれ検出を行ってもよい。図5
は、本発明の超音波診断装置の第四実施例の表示部のブ
ロック図である。図5(A)に示すように、受信部3で
整相処理された各素子毎の受信信号は、加算部4におい
て同期加算される。加算された受信信号は、表示部5の
信号変換手段51において輝度信号に変換される。変換
された輝度信号は画像メモリ52にメモリされる。画像
メモリ52は、少くとも2つの異なる周波数毎に用意さ
れ、各周波数毎の信号が各画像メモリに記憶される。例
えば、モニタ53に表示する1走査線情報を得るために
異なる2つの周波数で送受信するならば、画像メモリ5
2は2つ必要となる。画像メモリ52から読み出された
各周波数毎の輝度信号は互いに加算され、1走査線とし
てモニタ53に表示される。
As described above, the present invention is combined with the technique of multi-stage focusing to detect time lag by receiving signals of different frequency bands in two stages of a shallow position and a deep position in a living body, or even in multiple stages. Good. Figure 5
FIG. 8 is a block diagram of a display unit of a fourth embodiment of the ultrasonic diagnostic apparatus of the invention. As shown in FIG. 5A, the reception signals of the respective elements that have been subjected to the phasing processing by the reception unit 3 are synchronously added by the addition unit 4. The added received signal is converted into a luminance signal in the signal conversion means 51 of the display unit 5. The converted luminance signal is stored in the image memory 52. The image memory 52 is prepared for at least two different frequencies, and the signal for each frequency is stored in each image memory. For example, when transmitting and receiving at two different frequencies in order to obtain one scanning line information to be displayed on the monitor 53, the image memory 5
2 is required for 2. The luminance signals for each frequency read from the image memory 52 are added together and displayed on the monitor 53 as one scanning line.

【0044】図5(B)に示すように、図5(A)に示
す画像メモリ52の代わりにRFメモリ54を用いて構
成してもよい。受信部3で整相処理された各素子毎の受
信信号は、加算部4において同期加算され、加算された
受信信号は、表示部5のRFメモリ54に記憶される。
RFメモリ54は、少くとも2つの異なる周波数毎に用
意され、各周波数ごとの各信号がRFメモリ54に記憶
される。例えば、モニタ53に表示する1走査線情報を
得るために異なる2つの周波数で送受信するならば、R
Fメモリ54は2つ必要となる。RFメモリ54の各周
波数ごとの受信信号は互いに加算され、信号変換手段5
1においてモニタ53に表示するための輝度信号に変換
され、1走査線としてモニタ53に表示される。
As shown in FIG. 5 (B), an RF memory 54 may be used instead of the image memory 52 shown in FIG. 5 (A). The reception signals for each element subjected to the phasing processing in the reception unit 3 are synchronously added in the addition unit 4, and the added reception signals are stored in the RF memory 54 of the display unit 5.
The RF memory 54 is prepared for at least two different frequencies, and each signal for each frequency is stored in the RF memory 54. For example, if transmitting and receiving at two different frequencies to obtain one scan line information to be displayed on the monitor 53, R
Two F memories 54 are required. The received signals for each frequency of the RF memory 54 are added to each other, and the signal conversion means 5
At 1, the luminance signal is converted to a luminance signal for display on the monitor 53 and displayed on the monitor 53 as one scanning line.

【0045】図6は、本発明の超音波診断装置の第五実
施例の受信部および時間ずれ検出部のブロック図であ
る。各素子の受信信号は、ミキサとローパスフィルタL
PFとの組合せにより周波数ωの参照信号で直交検波さ
れ、位相差検出器によりその逆正接が演算され、これに
より、周波数ωにおける参照信号との時間ずれ(位相
差)を得ることが可能であることが知られている。ここ
で周波数ωを変更することにより所望の周波数における
時間ずれを検出することが可能であり、これにより、図
2に示す周波数分割手段31、時間ずれ検出部7の機構
が省略でき、コスト低減につながる。
FIG. 6 is a block diagram of the receiving section and the time shift detecting section of the ultrasonic diagnostic apparatus according to the fifth embodiment of the present invention. The received signal of each element is a mixer and a low-pass filter L.
In combination with PF, quadrature detection is performed with the reference signal of frequency ω, and the arc tangent is calculated by the phase difference detector, which makes it possible to obtain the time shift (phase difference) from the reference signal at frequency ω. It is known. By changing the frequency ω here, it is possible to detect the time shift at a desired frequency, and thus the mechanism of the frequency division means 31 and the time shift detection unit 7 shown in FIG. 2 can be omitted, and the cost can be reduced. Connect

【0046】尚、上記各実施例において、被検体内の一
定深さにおける時間ずれ検出、送受信補正をするにとど
まらず、少くとも2つ以上の深さにおいて、時間ずれ検
出、送受信補正をするように構成してもよい。
In each of the above-described embodiments, not only the time lag detection and transmission / reception correction at a certain depth in the subject, but also the time lag detection and transmission / reception correction at at least two depths are performed. You may comprise.

【0047】[0047]

【発明の効果】以上説明したように、本発明によれば、
各周波数ごとの時間ずれを補正することで、各周波数ご
との位相差を補正することが可能となり、その結果、生
体内の音速度不均一性による超音波の波面歪を補正する
機能を有する超音波診断装置の性能向上に寄与するとこ
ろが大きい。
As described above, according to the present invention,
By correcting the time lag for each frequency, it becomes possible to correct the phase difference for each frequency, and as a result, it has the function of correcting the wavefront distortion of ultrasonic waves due to non-uniform sound velocity in the living body. It greatly contributes to the performance improvement of the ultrasonic diagnostic apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超音波診断装置の一実施例の全体構成
を表わすブロック図である。
FIG. 1 is a block diagram showing the overall configuration of an embodiment of an ultrasonic diagnostic apparatus of the present invention.

【図2】本発明の超音波診断装置の第一実施例の受信部
のブロック図である。
FIG. 2 is a block diagram of a receiving unit of the first embodiment of the ultrasonic diagnostic apparatus of the invention.

【図3】本発明の超音波診断装置の第二の実施例の送信
部のブロックと、その送信部の各部の信号波形イメージ
を示した図である。
FIG. 3 is a diagram showing a block of a transmitter and a signal waveform image of each part of the transmitter of the second embodiment of the ultrasonic diagnostic apparatus of the present invention.

【図4】本発明の超音波診断装置の第三実施例の送信部
のブロックと、その送信部の各部の信号波形イメージを
示した図である。
FIG. 4 is a diagram showing a block of a transmitter and a signal waveform image of each part of the transmitter of the third embodiment of the ultrasonic diagnostic apparatus of the invention.

【図5】本発明の超音波診断装置の第四実施例の表示部
のブロック図である。
FIG. 5 is a block diagram of a display unit of a fourth embodiment of the ultrasonic diagnostic apparatus of the invention.

【図6】本発明の超音波診断装置の第五実施例の受信部
および時間ずれ検出部のブロック図である。
FIG. 6 is a block diagram of a receiver and a time shift detector of a fifth embodiment of the ultrasonic diagnostic apparatus of the invention.

【図7】受信フォーカスの手法の説明図である。FIG. 7 is an explanatory diagram of a method of receiving focus.

【図8】音速が不均一の場合の受信フォーカスを示した
図である。
FIG. 8 is a diagram showing reception focus when the sound velocity is not uniform.

【図9】相互相関法を用いた時間ずれを補正する方法の
説明図である。
FIG. 9 is an explanatory diagram of a method of correcting a time shift using a cross correlation method.

【図10】被検体内の任意の位置(例えばフォーカス
点)からの反射波が、電気音響変換素子のうちのある素
子に達する場合を示す概略図である。
FIG. 10 is a schematic diagram showing a case where a reflected wave from an arbitrary position (for example, a focus point) in the subject reaches a certain element of the electroacoustic conversion element.

【符号の説明】[Explanation of symbols]

1 電気音響変換素子 2 送信部 21 送信パルス発生手段 22 送信パルス分割手段 23 送信パルス遅延手段 24 送信パルス合成手段 25 アンプ 3 受信部 31 周波数分割手段 32 整相手段 33 合成手段 4 加算部 5 表示部 51 信号変換手段 52 画像メモリ 53 モニタ 54 RFメモリ 6 ゲート部 7 時間ずれ検出部 8 遅延量補正部 DESCRIPTION OF SYMBOLS 1 electroacoustic conversion element 2 transmission section 21 transmission pulse generation means 22 transmission pulse division means 23 transmission pulse delay means 24 transmission pulse synthesis means 25 amplifier 3 reception section 31 frequency division means 32 phasing means 33 synthesis means 4 addition section 5 display section 51 signal converting means 52 image memory 53 monitor 54 RF memory 6 gate unit 7 time difference detecting unit 8 delay amount correcting unit

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 所定の方向に並んだ複数の電気音響変換
素子と、これら複数の電気音響変換素子から被検体内に
送信される超音波が該被検体内に延びる走査線上の所定
の送信フォーカス点で焦点を結ぶように各所定のタイミ
ングの送信パルスを前記複数の電気音響変換素子に印加
する送信部と、前記被検体内で反射した超音波を前記複
数の電気音響変換素子で受信することにより得られた複
数の受信信号を、前記被検体内の互いに略同一の位置で
略同時に反射された超音波に対応する受信信号どうしが
略同時に得られるようにそれぞれ遅延することにより、
これら複数の受信信号を互いに整相する受信部と、整相
処理後の前記複数の受信信号を互いに加算することによ
り加算信号を得る加算部と、前記加算部で得られた加算
信号を輝度信号に変換し該輝度信号に基づいて前記被検
体の断層像を表示する表示部とを備えた超音波診断装置
において、 互いに中心周波数が異なる複数の各周波数帯域に分割さ
れた各帯域別受信信号それぞれに基づいて、該各帯域別
受信信号どうしの相対的な時間ずれを求める時間ずれ検
出部と、 該時間ずれ検出部で求められた前記時間ずれが補正され
るように前記受信部における前記受信信号の遅延量を補
正する遅延量補正部とを備えたことを特徴とする超音波
診断装置。
1. A plurality of electroacoustic conversion elements arranged in a predetermined direction, and a predetermined transmission focus on a scanning line in which ultrasonic waves transmitted from the plurality of electroacoustic conversion elements into the subject are extended into the subject. A transmitting unit that applies a transmission pulse at each predetermined timing to the plurality of electroacoustic transducers so as to focus at a point, and an ultrasonic wave reflected in the subject is received by the plurality of electroacoustic transducers. By delaying a plurality of received signals obtained by, respectively so that the received signals corresponding to the ultrasonic waves reflected at substantially the same position in the subject at substantially the same time are obtained at substantially the same time,
A receiving unit for phasing the plurality of reception signals with each other, an addition unit for obtaining an addition signal by adding the plurality of reception signals after the phasing processing, and a luminance signal with the addition signal obtained by the addition unit An ultrasonic diagnostic apparatus including a display unit that displays the tomographic image of the subject based on the luminance signal, and the received signals for each band divided into a plurality of frequency bands having different center frequencies, respectively. On the basis of the above, the time difference detection unit for obtaining a relative time difference between the reception signals for each band, and the reception signal at the reception unit so that the time difference obtained by the time difference detection unit is corrected. An ultrasonic diagnostic apparatus, comprising: a delay amount correction unit that corrects the delay amount of
【請求項2】 前記遅延量補正部が、前記受信部におけ
る前記受信信号の遅延量の補正とともに、前記送信部に
おける、前記送信パルスの、前記電気音響変換素子への
印加のタイミングを補正するものであることを特徴とす
る請求項1記載の超音波診断装置。
2. The delay amount correcting section corrects the delay amount of the received signal in the receiving section and the timing of applying the transmission pulse to the electroacoustic conversion element in the transmitting section. The ultrasonic diagnostic apparatus according to claim 1, wherein:
【請求項3】 前記受信部が、前記電気音響変換素子で
得られた前記受信信号が中心周波数の互いに異なる複数
の各周波数帯域毎に分割されてなる複数の帯域別受信信
号のうちのいずれか1つの帯域別受信信号を選択するフ
ィルタと、選択された前記帯域別受信信号を整相する整
相手段とを備え、 前記遅延量補正部が、選択された前記帯域別受信信号に
基づいて求められた時間ずれが補正されるように、前記
整相手段における前記帯域別受信信号の遅延量を補正す
るものであることを特徴とする請求項1記載の超音波診
断装置。
3. The receiving unit according to any one of a plurality of band-based reception signals obtained by dividing the reception signal obtained by the electroacoustic conversion element into a plurality of frequency bands having different center frequencies. A filter for selecting one reception signal for each band, and a phasing unit for phasing the reception signal for each band selected, wherein the delay amount correction unit is determined based on the reception signal for each band selected 2. The ultrasonic diagnostic apparatus according to claim 1, wherein the delay amount of the reception signal for each band in the phasing means is corrected so that the obtained time lag is corrected.
【請求項4】 前記受信部が、前記電気音響変換素子で
得られた前記受信信号を互いに中心周波数が異なる複数
の各周波数帯域毎に分割して複数の各帯域別受信信号を
生成する周波数分割手段と、前記各帯域別受信信号をそ
れぞれ整相する整相手段と、前記整相手段で整相された
前記各帯域別受信信号を合成する合成手段とを備え、 前記遅延量補正部が、前記各帯域別受信信号に基づいて
求められた各時間ずれがそれぞれ補正されるように、前
記整相手段における前記各帯域別受信信号の遅延量を補
正するものであることを特徴とする請求項1記載の超音
波診断装置。
4. The frequency division in which the reception section divides the reception signal obtained by the electroacoustic conversion element into a plurality of frequency bands having mutually different center frequencies to generate a plurality of reception signals for respective bands. Means, phasing means for phasing the reception signals for each band, and a synthesizing means for synthesizing the reception signals for each band phasing by the phasing means, the delay amount correction unit, The delay amount of the reception signal for each band in the phasing unit is corrected so that each time shift obtained based on the reception signal for each band is corrected. 1. The ultrasonic diagnostic apparatus according to 1.
【請求項5】 前記送信部が、前記各帯域別受信信号の
各中心周波数に対応した各送信パルスのうちのいずれか
1つの送信パルスを選択的に生成する送信パルス生成手
段と、選択的に生成された前記送信パルスを遅延するこ
とにより、該送信パルスの、前記電気音響変換素子への
印加のタイミングを調整して該電気音響変換素子に印加
する送信パルス遅延手段とを備え、 前記遅延量補正部が、前記受信部における前記受信信号
の遅延量の補正とともに、選択的に生成された前記送信
パルスに対応する中心周波数を有する前記帯域別受信信
号に基づいて求められた時間ずれに対応する遅延量だけ
前記送信パルス遅延手段における前記送信パルスの遅延
量を補正するものであることを特徴とする請求項2記載
の超音波診断装置。
5. The transmission pulse generation means for selectively generating any one transmission pulse of the transmission pulses corresponding to each center frequency of the reception signal for each band by the transmission unit, and selectively. By delaying the generated transmission pulse, the transmission pulse delay means for adjusting the timing of applying the transmission pulse to the electroacoustic conversion element and applying the transmission pulse to the electroacoustic conversion element. The correction unit corrects the delay amount of the reception signal in the reception unit and also corresponds to the time shift obtained based on the band-based reception signal having the center frequency corresponding to the transmission pulse that is selectively generated. The ultrasonic diagnostic apparatus according to claim 2, wherein the delay amount of the transmission pulse in the transmission pulse delay means is corrected by the delay amount.
【請求項6】 前記送信部が、前記各帯域別受信信号の
各中心周波数に対応した各送信パルスを生成する送信パ
ルス手段と、生成された前記各送信パルスを遅延するこ
とにより、該送信パルスの、前記電気音響変換素子への
印加のタイミングを調整する送信パルス遅延手段と、タ
イミングが調整された前記各送信パルスを合成して前記
電気音響変換素子へ印加する送信パルス合成手段とを備
え、 前記遅延量補正部が、前記受信部における前記受信信号
の遅延量の補正とともに、前記各帯域別受信信号に基づ
いて求められた各時間ずれに対応する遅延量だけ前記送
信パルス遅延手段における前記各送信パルスの遅延量を
補正するものであることを特徴とする請求項2記載の超
音波診断装置。
6. The transmission pulse, wherein the transmission unit delays the generated transmission pulse by generating transmission pulse means for generating each transmission pulse corresponding to each center frequency of the reception signal for each band. The transmission pulse delaying means for adjusting the timing of application to the electroacoustic conversion element, and the transmission pulse synthesizing means for synthesizing each of the transmission pulses with adjusted timing and applying the transmission pulse to the electroacoustic conversion element, The delay amount correcting unit corrects the delay amount of the received signal in the receiving unit, and the delay amounts in the transmission pulse delaying unit corresponding to the respective time lags obtained based on the reception signals for each band. The ultrasonic diagnostic apparatus according to claim 2, characterized in that the delay amount of the transmission pulse is corrected.
【請求項7】 前記受信部が、互いに異なる複数の参照
周波数で直交検波する直交検波器を備えるとともに、 前記時間ずれ検出部に代えて、前記複数の参照周波数そ
れぞれで直交検波された各直交検波信号それぞれに基づ
いて、前記受信信号の各参照周波数における時間ずれを
検出する時間ずれ検出部を備えたことを特徴とする請求
項1記載の超音波診断装置。
7. The receiving unit includes a quadrature detector that performs quadrature detection at a plurality of reference frequencies different from each other, and instead of the time shift detection unit, each quadrature detection unit performs a quadrature detection at each of the plurality of reference frequencies. The ultrasonic diagnostic apparatus according to claim 1, further comprising a time shift detection unit that detects a time shift at each reference frequency of the received signal based on each signal.
【請求項8】 前記表示部が、前記断層像の一走査線あ
たり複数走査線分の信号を記憶するメモリと、該メモリ
から読み出された一走査線あたり複数走査線分の信号を
該一走査線の信号に合成する信号合成手段と、合成され
た信号に基づいて断層像を表示するモニタとを備えたこ
とを特徴とする請求項1記載の超音波診断装置。
8. The display unit stores a memory for storing signals of a plurality of scanning lines per scanning line of the tomographic image and a signal of a plurality of scanning lines for one scanning line read from the memory. The ultrasonic diagnostic apparatus according to claim 1, further comprising: a signal synthesizing unit that synthesizes the signal of the scanning line and a monitor that displays a tomographic image based on the synthesized signal.
【請求項9】 前記時間ずれ検出部が、被検体内の互い
に異なる複数の深さの各点それぞれから反射した超音波
を受信することにより得られた、前記各点それぞれにつ
いての前記受信信号の各時間ずれを求めるものであるこ
とを特徴とする請求項1記載の超音波診断装置。
9. The received signal for each of the points obtained by the time shift detecting section receiving ultrasonic waves reflected from each of a plurality of different depths in the subject. The ultrasonic diagnostic apparatus according to claim 1, wherein each time lag is obtained.
JP22467693A 1993-09-09 1993-09-09 Ultrasound diagnostic equipment Expired - Fee Related JP3320853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22467693A JP3320853B2 (en) 1993-09-09 1993-09-09 Ultrasound diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22467693A JP3320853B2 (en) 1993-09-09 1993-09-09 Ultrasound diagnostic equipment

Publications (2)

Publication Number Publication Date
JPH0779972A true JPH0779972A (en) 1995-03-28
JP3320853B2 JP3320853B2 (en) 2002-09-03

Family

ID=16817479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22467693A Expired - Fee Related JP3320853B2 (en) 1993-09-09 1993-09-09 Ultrasound diagnostic equipment

Country Status (1)

Country Link
JP (1) JP3320853B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128389A2 (en) 2008-04-14 2009-10-22 Canon Kabushiki Kaisha Image forming method using ultrasound and aberration correction method
JP2011229817A (en) * 2010-04-30 2011-11-17 Hitachi Aloka Medical Ltd Ultrasonic diagnostic apparatus
WO2014133210A1 (en) * 2013-02-28 2014-09-04 알피니언메디칼시스템 주식회사 Method for confirming location of focal point, and ultrasonic medical apparatus therefor
JP2015027445A (en) * 2013-06-26 2015-02-12 キヤノン株式会社 Subject information acquisition device, signal processing method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128389A2 (en) 2008-04-14 2009-10-22 Canon Kabushiki Kaisha Image forming method using ultrasound and aberration correction method
WO2009128389A3 (en) * 2008-04-14 2010-01-07 Canon Kabushiki Kaisha Image forming method using ultrasound and aberration correction method
US9689974B2 (en) 2008-04-14 2017-06-27 Canon Kabushiki Kaisha Image forming method using ultrasound and aberration correction method
JP2011229817A (en) * 2010-04-30 2011-11-17 Hitachi Aloka Medical Ltd Ultrasonic diagnostic apparatus
WO2014133210A1 (en) * 2013-02-28 2014-09-04 알피니언메디칼시스템 주식회사 Method for confirming location of focal point, and ultrasonic medical apparatus therefor
JP2015027445A (en) * 2013-06-26 2015-02-12 キヤノン株式会社 Subject information acquisition device, signal processing method, and program

Also Published As

Publication number Publication date
JP3320853B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
US6159153A (en) Methods and systems for ultrasound scanning using spatially and spectrally separated transmit ultrasound beams
JP4150866B2 (en) Method of operating an ultrasound imaging system
US6066099A (en) Method and apparatus for high-frame-rate high-resolution ultrasonic image data acquisition
US8602994B2 (en) Method for ultrasound vibrometry using orthogonal basis functions
KR100749973B1 (en) Prf adjustment method and apparatus, and ultrasonic wave imaging apparatus
JP4430997B2 (en) Ultrasonic transceiver
JP3803374B2 (en) 2D array operating method and connection device for phase deviation correction
JP2009240700A (en) Ultrasonic diagnostic device
JPH06125908A (en) Ultrasonic diagnostic device
JP2003310609A (en) Ultrasonic diagnostic equipment
US6733453B2 (en) Elevation compounding for ultrasound imaging
US20070083109A1 (en) Adaptive line synthesis for ultrasound
US5517995A (en) 2D array for phase aberration correction
JPH078492A (en) Ultrasonic diagnostic device
JP3474278B2 (en) Ultrasound diagnostic equipment
JP3320853B2 (en) Ultrasound diagnostic equipment
JP7044723B2 (en) High-speed synthetic focused ultrasound imaging with large linear array
JP2008167876A (en) Ultrasonic diagnostic apparatus
JPH08289891A (en) Ultrasonic diagnostic device
JP2003339698A (en) Ultrasonic diagnostic equipment
JP2007020915A (en) Ultrasonic diagnostic equipment
JP2013244206A (en) Ultrasonic diagnostic equipment and data processing method
JPH0731616A (en) Ultrasonic diagnostic apparatus
JP4580490B2 (en) Ultrasonic diagnostic equipment
JP3851704B2 (en) Ultrasonic diagnostic equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020611

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees