JPH0779085A - Electromagnetic wave-shield molding and its molding method - Google Patents

Electromagnetic wave-shield molding and its molding method

Info

Publication number
JPH0779085A
JPH0779085A JP24359093A JP24359093A JPH0779085A JP H0779085 A JPH0779085 A JP H0779085A JP 24359093 A JP24359093 A JP 24359093A JP 24359093 A JP24359093 A JP 24359093A JP H0779085 A JPH0779085 A JP H0779085A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
amorphous alloy
alloy particles
wave shield
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24359093A
Other languages
Japanese (ja)
Inventor
Kazuhisa Sakuma
一久 佐久間
Kazuhiro Nishimura
和弘 西村
Koichi Takashima
功一 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP24359093A priority Critical patent/JPH0779085A/en
Publication of JPH0779085A publication Critical patent/JPH0779085A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a shield material such as an electromagnetic wave shielded case for small components such as electric and electronic circuit components with a smaller number of components and in a smaller number of processes. CONSTITUTION:A laminate 4 which is made by putting high-permeability amorphous alloy particles 2 between board members 1 high in conductivity with excellent plastic workability such as aluminum and copper is subjected to a plastic processing into a desired shape to manufacture an electromagnetic wave shield molding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電磁波シールドが必要
な物体を囲んで施される電磁波シールド成形体及びこれ
を成形するための成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave shield molding which is applied to surround an object requiring an electromagnetic wave shield and a molding method for molding the same.

【0002】[0002]

【従来の技術】電磁波障害による精密機器やOA機器の
誤動作や測定ミスを防止するため、電車や自動車等によ
って生ずる磁界の乱れ、地磁気の変動、送電線やトラン
スなどから生ずる低周波の磁界などをシールドする必要
性は年々重要となってきている。
2. Description of the Related Art In order to prevent malfunctions and measurement errors of precision equipment and office automation equipment due to electromagnetic interference, disturbances in the magnetic field caused by trains and automobiles, fluctuations in the earth's magnetism, low-frequency magnetic fields caused by power lines and transformers, etc. The need to shield is becoming more important year by year.

【0003】電磁波のシールドは、電磁波シールドが必
要な物体を、電磁波シールド材料で全面、ある一面、又
は複数面を覆うことによって可能であり、小は電気回路
内の部品から、大は建築的規模迄、広く施されている。
Shielding of electromagnetic waves is possible by covering an object requiring electromagnetic wave shielding with an electromagnetic wave shielding material over the entire surface, one surface or a plurality of surfaces. Small ones are parts in an electric circuit, and large ones are of architectural scale. Until now, it is widely used.

【0004】電磁波シールド理論によれば、電界波(ハ
イインピーダンス波)に対しては導電率の高いもの程良
好なシールド効果を示す。しかしながら磁界波(ローイ
ンピーダンス波)をシールドするには、単に導電率が高
いだけではうまくいかず、高透磁率の磁性材料が必要で
あることが知られている。
According to the electromagnetic wave shield theory, the higher the conductivity, the better the shielding effect against electric field waves (high impedance waves). However, in order to shield a magnetic field wave (low impedance wave), it is known that merely high conductivity does not work, and a magnetic material having high magnetic permeability is required.

【0005】しかしながら、単材で高導電率で、高透磁
率の材料はなく、また、シールド層の厚みを増すことに
よりシールド効果を向上させることは、シールド層の重
量増につながり好ましくない。
However, there is no single material having a high conductivity and a high magnetic permeability, and it is not preferable to increase the shield effect by increasing the thickness of the shield layer, because it increases the weight of the shield layer.

【0006】そこで、高導電率の銅箔やアルミ箔で非晶
質合金フレークを挟み、加熱圧着した導電性非晶質合金
積層シート等が考えられている。この構成のシールド材
は、建築的規模のシールド室の壁の表面に張り着けるに
は良いが、電気・電子回路部品等の小物のシールドケー
スや、筐体などの用途に対しては、立体的形状に成形す
るための加工性、成形性が悪いため、部品点数が多くな
り、加工が困難になるなどの欠点がある。
Therefore, a conductive amorphous alloy laminated sheet in which amorphous alloy flakes are sandwiched between high conductivity copper foils or aluminum foils and heated and pressed is considered. The shield material with this configuration is good for sticking to the surface of the wall of a shield room on an architectural scale, but it is three-dimensional for small electric shield cases such as electric / electronic circuit parts and cases. Since the workability for forming into a shape and the formability are poor, there are drawbacks such as an increase in the number of parts and difficulty in processing.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来の電磁
波シールド材の上記の問題点にかんがみ、電気・電子回
路部品等の小物のシールドケースや筐体などのシールド
材を所要の形状に成形することができ部品点数、加工工
数の削減に寄与する電磁波シールド成形体とその成形方
法を提供することを課題とする。
SUMMARY OF THE INVENTION In consideration of the above problems of the conventional electromagnetic wave shield material, the present invention forms a shield material such as a shield case or a case for small articles such as electric / electronic circuit parts into a required shape. An object of the present invention is to provide an electromagnetic wave shield molded body and a molding method thereof that can reduce the number of parts and the number of processing steps.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決する本
発明の電磁波シールド成形体の成形方法は、高透磁率非
晶質合金粒子の層を、アルミ、銅等の高導電率且つ塑性
加工容易な板材料で挟み込み、塑性加工を施して所要の
立体的形状に成形することを特徴とする。
A method of forming an electromagnetic wave shield molding according to the present invention which solves the above-mentioned problems is a method of forming a layer of high magnetic permeability amorphous alloy particles with high conductivity and plastic working of aluminum, copper or the like. It is characterized in that it is sandwiched between easy plate materials and subjected to plastic working to form it into a desired three-dimensional shape.

【0009】又、上記の課題を解決する本発明の電磁波
シールド成形体は、高透磁率非晶質合金粒子の層と、こ
れを両側より挟む高導電率且つ、塑性加工容易なアル
ミ、銅等の板部材とが積層されて成る積層体を塑性加工
を施して所要の立体形状に成形して成ることを特徴とす
る。
Further, the electromagnetic wave shield molding of the present invention which solves the above-mentioned problems has a layer of high magnetic permeability amorphous alloy particles and aluminum, copper or the like which has a high electrical conductivity sandwiching the layer from both sides and is easily plastically worked. It is characterized in that it is formed into a desired three-dimensional shape by subjecting a laminated body formed by laminating the plate member of (1) to plastic working.

【0010】高透磁率非晶質合金粒子の層を保持するの
に、高透磁率非晶質合金粒子をプラスチックフィルムで
挟み込むようにすれば取扱いが容易である。
In order to hold the layer of high magnetic permeability amorphous alloy particles, it is easy to handle if the high magnetic permeability amorphous alloy particles are sandwiched by plastic films.

【0011】高透磁率非晶質合金粒子の形状は鱗片状、
板状、あるいは略長球状であり、厚さが5〜100μ
m、アスペクト比が10〜15,000のものが使用さ
れ、この粒子を分散重量50〜2500g/m2 で略均
一に分散した状態で層を形成し、その両側を厚さが0.1
〜10mmのアルミ、銅等の高導電率且つ、塑性加工が容
易な板材料で挟み込み積層体を形成する。
The high magnetic permeability amorphous alloy particles have a scaly shape,
Plate-shaped or approximately ellipsoidal with a thickness of 5-100 μ
m having an aspect ratio of 10 to 15,000 is used. A layer is formed in a state where the particles are dispersed substantially uniformly at a dispersion weight of 50 to 2500 g / m 2 , and the thickness is 0.1 on both sides.
A sandwiched body is formed by sandwiching a plate material having a high conductivity and easy plastic working, such as aluminum or copper having a thickness of 10 mm.

【0012】[0012]

【作用】上記の積層体は、塑性加工が容易なアルミ、銅
等の板材料で非晶質合金粒子の層を挟んだものであるか
ら、電気回路や電子回路内の部品のシールドケースや筐
体などの小型の立体的形状のものを塑性加工により容易
に形成することができ、部品点数及び加工工数を従来に
比して大幅に軽減することができる。
The above laminated body has a layer of amorphous alloy particles sandwiched by plate materials such as aluminum and copper which are easily plastically worked, and therefore, it is a shield case or a casing for parts in an electric circuit or an electronic circuit. A small three-dimensional shape such as a body can be easily formed by plastic working, and the number of parts and the number of working steps can be significantly reduced as compared with the related art.

【0013】又、この方法で得られた電磁波シールド成
形体は、非晶質合金粒子の特性である100,000に達
する透磁率により、放射電磁波における磁界波(ローイ
ンピーダンス波)、特に波源に近い(言い換えれば低周
波)領域でのシール効果が高い。一方、非晶質合金粒子
層を挟み込んでいる銅やアルミ等の高導電率板材料は、
その導電率の高さにより、電界波(ハイインピーダンス
波)のシールド効果が高い。よって、上記の電磁波シー
ルド成形体は、電磁波における電界波と磁界波との両方
に対して高いシールド効果を発揮することができる。
The electromagnetic wave shield molded body obtained by this method is close to a magnetic field wave (low impedance wave) in radiated electromagnetic waves, particularly a wave source due to the magnetic permeability of 100,000 which is a characteristic of amorphous alloy particles. The sealing effect is high in the region of low frequency (in other words, low frequency). On the other hand, the high-conductivity plate material such as copper or aluminum sandwiching the amorphous alloy particle layer is
Due to its high conductivity, the effect of shielding electric field waves (high impedance waves) is high. Therefore, the above-mentioned electromagnetic wave shield molding can exhibit a high shielding effect against both electric field waves and magnetic field waves in electromagnetic waves.

【0014】非晶質合金粒子の厚さを5μm未満にする
と、粒子の製造が困難であり、又、100μmを超えて
厚くなると非晶質化が難しくなるので、この厚さは5〜
100μmとすることが必要であり、特に好ましい厚さ
は20〜60μmである。
If the thickness of the amorphous alloy particles is less than 5 μm, it is difficult to produce the particles, and if it exceeds 100 μm, it becomes difficult to amorphize.
It is necessary to set the thickness to 100 μm, and a particularly preferable thickness is 20 to 60 μm.

【0015】非晶質合金フレークのアスペクト比が10
未満では、非晶質合金粒子の集合体を成形体にした際の
非晶質合金粒子相互間の電気抵抗値が高くなり、且つ、
非晶質合金粒子の透磁率が低下する。他方、非晶質合金
フレークのアスペクト比が15,000を超えると、非晶
質合金粒子の取扱いが面倒になり、生産性が低下するよ
うになり、且つ、非晶質合金粒子同志の絡みつきが生
じ、成形した時の非晶質合金粒子の密度が著しく低下す
る。したがって、非晶質合金粒子のアスペクト比は10
〜15,000とするのがよく、特に好ましい範囲は50
〜10,000である。
The aspect ratio of the amorphous alloy flakes is 10
When the amount is less than, the electrical resistance value between the amorphous alloy particles becomes high when the aggregate of the amorphous alloy particles is formed into a compact, and,
The magnetic permeability of the amorphous alloy particles is reduced. On the other hand, when the aspect ratio of the amorphous alloy flakes exceeds 15,000, the handling of the amorphous alloy particles becomes troublesome, the productivity decreases, and the entanglement of the amorphous alloy particles with each other occurs. The density of the amorphous alloy particles when formed is significantly reduced. Therefore, the aspect ratio of the amorphous alloy particles is 10
It is preferable to set it to 15,000, and a particularly preferable range is 50.
It is about 10,000.

【0016】非晶質合金粒子の分散重量が50g/m2
未満では、均一に分散することが困難で、且つ分散され
ている非晶質合金の占積率が低いため、電磁波シールド
効果が低くなるので、非晶質合金粒子の分散重量は50
g/m2 以上でなくてはならない。他方、非晶質合金粒
子の分散重量が2,500g/m2 より大きいと、非晶質
合金粒子と、アルミ、銅等の高導電率且つ塑性加工容易
な材料とのヤング率の違いにより塑性加工する際の加工
性が悪く、非晶質合金粒子とアルミ、銅等の高導電率且
つ、塑性加工容易な材料との一体化が困難になるため、
非晶質合金粒子の分散重量は2,500g/m2 以下でな
くてはならない。非晶質合金粒子の分散重量の特に好ま
しい範囲は100〜2,000g/m2 である。
The dispersion weight of the amorphous alloy particles is 50 g / m 2.
If it is less than 1.0, it is difficult to disperse it uniformly, and the space factor of the dispersed amorphous alloy is low, so that the electromagnetic wave shielding effect becomes low. Therefore, the dispersed weight of the amorphous alloy particles is 50.
Must be at least g / m 2 . On the other hand, if the dispersed weight of the amorphous alloy particles is more than 2,500 g / m 2 , the amorphous alloy particles have plasticity due to the difference in Young's modulus between the materials having high conductivity and easy plastic working such as aluminum and copper. The workability at the time of processing is poor, and it becomes difficult to integrate the amorphous alloy particles with a material having high conductivity and easy plastic working such as aluminum and copper.
The dispersed weight of the amorphous alloy particles should be 2,500 g / m 2 or less. A particularly preferable range of the dispersed weight of the amorphous alloy particles is 100 to 2,000 g / m 2 .

【0017】アルミ、銅等の高導電率且つ、塑性加工が
容易な材料の厚さが0.1mm未満では塑性加工する際の加
工力に材料が耐え切れず、加工途中で破壊してしまうの
で、その材料の厚さは0.1mm以上でなくてはならない。
他方、アルミ、銅等の高導電率且つ、塑性加工が容易な
材料の厚さが10mmより大きいと、塑性加工する際の加
工熱により、非晶質合金粒子の全体あるいは一部が結晶
化してしまう場合や、塑性加工の際、アルミ、銅等の高
導電性且つ、塑性加工容易な材料の変形率が大きくなる
ために、非晶質合金粒子層にむらが生じ、電磁波シール
ド効果を低下させる場合があるため、アルミ、銅等の高
導電率且つ、塑性加工容易な材料の厚さは10mm以下で
なくてはならない。その材料の厚さの特に好ましい範囲
は0.3〜6mmである。
If the thickness of a material such as aluminum or copper which has high conductivity and is easy to plastically work is less than 0.1 mm, the material cannot withstand the working force at the time of plastic working and is broken during the working. , The material must have a thickness of at least 0.1 mm.
On the other hand, if the thickness of a material such as aluminum or copper, which has high conductivity and is easy to plastically process, is larger than 10 mm, the whole or part of the amorphous alloy particles is crystallized due to the processing heat during the plastic processing. In the case of the metal alloy or the plastic working, the deformation rate of the material having high conductivity and easy plastic working such as aluminum and copper becomes large, so that the amorphous alloy particle layer becomes uneven and the electromagnetic wave shielding effect is reduced. In some cases, the thickness of a material such as aluminum or copper that has high conductivity and is easy to be plastically processed must be 10 mm or less. A particularly preferred range for the thickness of the material is 0.3-6 mm.

【0018】[0018]

【実施例】以下に、本発明の電磁波シールド成形体の実
施例を図面に基づいて具体的に説明する。図1は、本発
明の電磁波シールド成形体の、塑性加工前の平板状積層
体の一部を示す断面図である。積層体4は、高透磁率非
晶質合金フレーク2を、500g/m2 の分散重量で均
一に分散し、接着剤3をバインダとし、両側を0.5mm厚
さの1対のアルミ板1で挟み込み接着剤3により一体化
させて形成されている。
EXAMPLES Examples of the electromagnetic wave shield molding of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a part of a flat plate-shaped laminated body before plastic working of an electromagnetic wave shield molded body of the present invention. The laminated body 4 has the high magnetic permeability amorphous alloy flakes 2 uniformly dispersed at a dispersed weight of 500 g / m 2 , the adhesive 3 as a binder, and a pair of aluminum plates 1 having a thickness of 0.5 mm on both sides. It is formed integrally with the sandwiching adhesive 3.

【0019】上記積層体4をプレス機によりしぼり加工
し、図2に示すような有底円筒状成形体5、あるいは図
3に示すような有底四角筒状成形体6を製作した。しぼ
り加工により成形された成形体5及び6の壁の曲り部の
断面は、図4に示すとおり、塑性加工前の積層体4の構
成と殆んど同じで、非晶質合金フレーク2が所定の分散
重量で均一に分散された状態を維持していた。
The laminated body 4 was squeezed by a pressing machine to produce a bottomed cylindrical molded body 5 as shown in FIG. 2 or a bottomed square cylindrical molded body 6 as shown in FIG. As shown in FIG. 4, the cross-sections of the curved portions of the walls of the formed bodies 5 and 6 formed by squeezing are almost the same as the structure of the laminated body 4 before plastic working, and the amorphous alloy flakes 2 have a predetermined shape. It was maintained uniformly dispersed by the dispersed weight of.

【0020】上記の本発明の成形方法により、従来の複
数の部品を組立てて筐型等の電磁波シールドを製作する
場合に比して、加工時間を約90%、加工コストを約6
0%低減させることができた。
By the above-described molding method of the present invention, the processing time is about 90% and the processing cost is about 6 as compared with the conventional case of assembling a plurality of parts to manufacture a casing type electromagnetic wave shield.
It could be reduced by 0%.

【0021】図5は、電磁波シールドのシールド効果を
測定するための測定装置の一例を示す図である。例えば
図3に示す電磁波シールド成形体6のシールド効果を測
定するに際しては、電磁波シールド成形体6を、図5に
示す如く、グランドプレーン8上に載置されたスイッチ
ング電源7を包囲して設置し、実際にスイッチング電源
7を作動させた時の放射電磁波を、電磁波シールド成形
体6の外側に設けたアンテナ9で検出し、スペクトラム
アナライザ10により電磁波シールド効果の測定を行な
った。結果は基本周波数である20kHz 及び第5高調波
までの各周波数において、磁界波のシールド効果が30
dB以上と、高いシールド効果を示した。
FIG. 5 is a diagram showing an example of a measuring device for measuring the shielding effect of the electromagnetic wave shield. For example, when measuring the shielding effect of the electromagnetic wave shield molded body 6 shown in FIG. 3, the electromagnetic wave shield molded body 6 is installed so as to surround the switching power supply 7 mounted on the ground plane 8 as shown in FIG. The electromagnetic wave radiated when the switching power supply 7 was actually operated was detected by the antenna 9 provided outside the electromagnetic wave shield molding 6, and the electromagnetic wave shield effect was measured by the spectrum analyzer 10. The result shows that at each frequency up to the fundamental frequency of 20 kHz and the 5th harmonic, the magnetic field wave shield effect is 30
It showed a high shielding effect of over dB.

【0022】[0022]

【発明の効果】以上の如く、本発明によれば、小型の筐
形電磁波シールドを製作する場合、従来の複数部品を組
立てるのに比して、加工工数、部品点数を大幅に削減す
ることができ、コストの低減に顕著な効果を得ることが
できるとともに、高いシールド効果を得ることができ
る。
As described above, according to the present invention, when manufacturing a small casing type electromagnetic wave shield, the number of processing steps and the number of parts can be greatly reduced as compared with the conventional assembly of a plurality of parts. Therefore, it is possible to obtain a remarkable effect in cost reduction and a high shield effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電磁波シールド成形体を塑性加工する
ための材料となる積層体の一部の断面を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a partial cross section of a laminated body which is a material for plastically working an electromagnetic wave shield molded body of the present invention.

【図2】塑性加工された電磁波シールド成形体の一実施
例を示す斜視図である。
FIG. 2 is a perspective view showing an embodiment of a plastically processed electromagnetic wave shield molding.

【図3】塑性加工された電磁波シールド成形体の他の実
施例を示す斜視図である。
FIG. 3 is a perspective view showing another embodiment of a plastically processed electromagnetic wave shield molding.

【図4】塑性加工された電磁波シールド成形体の曲がり
部の断面を示す断面図である。
FIG. 4 is a cross-sectional view showing a cross section of a bent portion of a plastically processed electromagnetic wave shield molding.

【図5】電磁波シールド成形体の電磁波シールド効果を
測定するための装置の一例を示す説明図である。
FIG. 5 is an explanatory diagram showing an example of an apparatus for measuring an electromagnetic wave shielding effect of an electromagnetic wave shield molded body.

【符号の説明】[Explanation of symbols]

1 アルミ板(高導電率且つ塑性加工容易な板部材) 2 高透磁率非晶質合金フレーク(高透磁率非晶質合金
粒子) 3 接着剤 4 積層体 5、6 電磁波シールド成形体 7 スイッチング電源 8 グランドプレーン 9 アンテナ 10 スペクトラムアナライザ
1 Aluminum plate (plate member having high electrical conductivity and easy plastic working) 2 High magnetic permeability amorphous alloy flakes (high magnetic permeability amorphous alloy particles) 3 Adhesive 4 Laminated body 5, 6 Electromagnetic wave shield molding 7 Switching power supply 8 ground plane 9 antenna 10 spectrum analyzer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高透磁率非晶質合金粒子の層を、アル
ミ、銅等の高導電率且つ塑性加工容易な板材料で挟み込
み、塑性加工を施して所要の立体的形状に成形すること
を特徴とする電磁波シールド成形方法。
1. A method of sandwiching a layer of high-permeability amorphous alloy particles between plate materials, such as aluminum and copper, which have high electrical conductivity and are easy to be plastically worked, and plastically worked them into a desired three-dimensional shape. Characteristic electromagnetic wave shield molding method.
【請求項2】 高透磁率非晶質合金粒子の層と、これを
両側より挟む高導電率且つ塑性加工容易なアルミ、銅等
の板材料とが積層されて成る積層体を塑性加工を施して
所要の立体形状に成形して成ることを特徴とする電磁波
シールド成形体。
2. A plastic laminate is formed by laminating a layer of high-permeability amorphous alloy particles, and a plate material such as aluminum or copper sandwiching the layers from both sides, which has high conductivity and is easy to plastically form. An electromagnetic wave shield molded body, characterized by being molded into a desired three-dimensional shape.
【請求項3】 上記の高透磁率非晶質合金粒子の層が、
高透磁率非晶質合金粒子をプラスチックフィルムで挟み
込んで形成されていることを特徴とする請求項2に記載
の電磁波シールド成形体。
3. A layer of said high magnetic permeability amorphous alloy particles,
The electromagnetic wave shield molding according to claim 2, which is formed by sandwiching high magnetic permeability amorphous alloy particles between plastic films.
【請求項4】 上記の高透磁率非晶質合金粒子が鱗片
状、板状、あるいは略長球形であり、厚さ5〜100μ
m、アスペクト比10〜15,000である請求項2又は
3に記載の電磁波シールド成形体。
4. The high-permeability amorphous alloy particles are scale-shaped, plate-shaped, or substantially ellipsoidal, and have a thickness of 5 to 100 μm.
The electromagnetic wave shield molding according to claim 2 or 3, wherein m and an aspect ratio are 10 to 15,000.
【請求項5】 上記の高透磁率非晶質合金粒子層の高透
磁率非晶質合金粒子は略均一に分散され、その分散重量
が、50g/m2 〜2500g/m2 であることを特徴
とする請求項2乃至4のいずれか1項に記載の電磁波シ
ールド成形体。
Wherein said high-permeability amorphous alloy particle layer of high permeability amorphous alloy particles are dispersed substantially uniformly, that the dispersion weight, is 50g / m 2 ~2500g / m 2 The electromagnetic wave shield molding according to any one of claims 2 to 4, which is characterized in that.
【請求項6】 上記の高導電率且つ、塑性加工容易なア
ルミ、銅等の板状材料の厚さが0.1mm〜10mmであるこ
とを特徴とする請求項2乃至5のいずれか1項に記載の
電磁波シールド成形体。
6. A plate-like material such as aluminum or copper which has a high electrical conductivity and is easy to be plastically worked, has a thickness of 0.1 mm to 10 mm. The electromagnetic wave shield molded article according to.
JP24359093A 1993-09-06 1993-09-06 Electromagnetic wave-shield molding and its molding method Pending JPH0779085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24359093A JPH0779085A (en) 1993-09-06 1993-09-06 Electromagnetic wave-shield molding and its molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24359093A JPH0779085A (en) 1993-09-06 1993-09-06 Electromagnetic wave-shield molding and its molding method

Publications (1)

Publication Number Publication Date
JPH0779085A true JPH0779085A (en) 1995-03-20

Family

ID=17106084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24359093A Pending JPH0779085A (en) 1993-09-06 1993-09-06 Electromagnetic wave-shield molding and its molding method

Country Status (1)

Country Link
JP (1) JPH0779085A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138701A1 (en) * 2020-12-25 2022-06-30 富士フイルム株式会社 Electromagnetic-wave shielding material, electronic component, and electronic apparatus
WO2024004698A1 (en) * 2022-06-29 2024-01-04 富士フイルム株式会社 Electromagnetic wave shielding material, electronic component, and electronic device
WO2024004697A1 (en) * 2022-06-29 2024-01-04 富士フイルム株式会社 Electromagnetic wave shielding material, electronic part, and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138701A1 (en) * 2020-12-25 2022-06-30 富士フイルム株式会社 Electromagnetic-wave shielding material, electronic component, and electronic apparatus
WO2024004698A1 (en) * 2022-06-29 2024-01-04 富士フイルム株式会社 Electromagnetic wave shielding material, electronic component, and electronic device
WO2024004697A1 (en) * 2022-06-29 2024-01-04 富士フイルム株式会社 Electromagnetic wave shielding material, electronic part, and electronic apparatus

Similar Documents

Publication Publication Date Title
US6603080B2 (en) Circuit board having ferrite powder containing layer
US10546678B2 (en) Magnetic core, inductor and module including inductor
EP2680683B1 (en) Near-field-noise-suppressing sheet
US20070047278A1 (en) Wiring board, electronic device, and power supply unit
US4474676A (en) Electromagnetic interference shielding material
WO1996008946A1 (en) Multi-layer emi/rfi gasket shield
US20050178496A1 (en) Low cost electrically conductive tapes and films manufactured from conductive loaded resin-based materials
WO1998009788A1 (en) Method of manufacturing composite magnetic sheet
Sarto et al. Electromagnetic performance of innovative lightweight shields to reduce radiated emissions from PCBs
US8043727B2 (en) Electromagnetic wave-absorption multilayer substrate
JPH0779085A (en) Electromagnetic wave-shield molding and its molding method
JP4069480B2 (en) Electromagnetic wave and magnetic shielding soft magnetic powder and shielding sheet
EP1511370B1 (en) Counter emi component and counter emi method
JPS58101499A (en) Electrically shielding artificial resin
JP2970297B2 (en) High resistance magnetic shield material
JPH02172299A (en) Manufacture of shielding apparatus
JPH1126977A (en) Sheet for absorbing electromagnetic wave
JP2725248B2 (en) Panel for electromagnetic shielding
KR100755775B1 (en) Electromagnetic noise supression film and process of production thereof
JP2001076913A (en) Electromagnetic interference suppressor and manufacture thereof
JP2000091783A (en) Laminated wide-band wave absorber
JPH07227813A (en) Particle board having electromagnetic wave shielding function, and manufacture thereof
JPH0236320Y2 (en)
JPH0677684A (en) Printed-circuit board and its manufacture
JPH023679Y2 (en)