JPH0777272B2 - Switching element and driving method thereof - Google Patents

Switching element and driving method thereof

Info

Publication number
JPH0777272B2
JPH0777272B2 JP61243684A JP24368486A JPH0777272B2 JP H0777272 B2 JPH0777272 B2 JP H0777272B2 JP 61243684 A JP61243684 A JP 61243684A JP 24368486 A JP24368486 A JP 24368486A JP H0777272 B2 JPH0777272 B2 JP H0777272B2
Authority
JP
Japan
Prior art keywords
electrical state
electrode
film
switching element
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61243684A
Other languages
Japanese (ja)
Other versions
JPS6396956A (en
Inventor
健 江口
邦裕 酒井
春紀 河田
宏 松田
有子 森川
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61243684A priority Critical patent/JPH0777272B2/en
Priority to DE3751376T priority patent/DE3751376T2/en
Priority to EP87309045A priority patent/EP0268370B1/en
Publication of JPS6396956A publication Critical patent/JPS6396956A/en
Priority to US07/964,481 priority patent/US5359204A/en
Publication of JPH0777272B2 publication Critical patent/JPH0777272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • G11C13/0019RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material comprising bio-molecules
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/50Bistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/701Organic molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/701Langmuir Blodgett films
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/331Metal complexes comprising an iron-series metal, e.g. Fe, Co, Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は、有機絶縁層を有するMIM素子に関し、該有機
絶縁層が周期的な層構造を有することを特徴としたMIM
構造スイッチング素子およびその駆動方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a MIM element having an organic insulating layer, wherein the organic insulating layer has a periodic layered structure.
The present invention relates to a structure switching element and a driving method thereof.

〔従来技術〕[Prior art]

最近有機分子の機能性を電子デバイスなどに応用しよう
とする分子エレクトロニクスに対する関心が高まってお
り、分子電子デバイスの構築技術の一つとみられるラン
グミユアーブロジエツト膜(LB膜)についての研究が活
発化してきている。LB膜は有機分子を規則正しく1分子
層ずつ積層したもので、膜厚の制御は分子長の単位で行
なうことができ、一様で均質な超薄膜を形成できること
からこれを絶縁膜として使う多くの試みが行なわれてき
た。例えば、(G.L.Larkins et al Thin Solid films 9
9.1983)金属・絶縁体・金属(MIM)構造のトンネル接
合素子〔G.L.Larkins et al著「エレクトロニツクス・
レターズ」(Electronics Letters)の「シン・ソリツ
ド・フイルムズ」(Thin Solid Films)第99巻(1983
年)〕や金属・絶縁体・半導体(MIS)構造の発光素子
〔G.G.Roberts et al著「エレクトロニツクス・レター
ズ」(Electronics Letters)第20巻、489頁(1984
年)〕あるいはスイツチング素子[N.J.Thomas et al著
「エレクトロニツクス・レターズ」(Electronics Lett
ers)第20巻、838頁(1984年)〕がある。
Recently, interest in molecular electronics, which is trying to apply the functionality of organic molecules to electronic devices, etc., is increasing, and research on Langmuir-Burdiet film (LB film), which is considered to be one of the construction technologies for molecular electronic devices, has been activated. I'm doing it. The LB film is a stack of organic molecules ordered one by one. The film thickness can be controlled in units of molecular length, and a uniform and uniform ultra-thin film can be formed. Attempts have been made. For example, (GLLarkins et al Thin Solid films 9
9.1983) Tunnel junction device with metal-insulator-metal (MIM) structure [GL Larkins et al.
"Thin Solid Films" Volume 99 (1983) of "Electronics Letters"
)] Or a light-emitting element having a metal / insulator / semiconductor (MIS) structure [GG Roberts et al, "Electronics Letters", Vol. 20, p. 489 (1984).
Year)] or switching element [NJ Thomas et al, "Electronics Letters"]
ers) Vol. 20, 838 (1984)].

これら一連の研究によって素子特性の検討がされている
が未だ素子ごとの特性のバラツキ、経時変化など再現性
と安定性の欠如は未解決の問題として残った。
Although the device characteristics have been investigated by these series of studies, the lack of reproducibility and stability such as the variation of the characteristics of each device and the change with time remained as an unsolved problem.

従来、上記の如き検討は取扱いが比較的容易な脂肪酸の
LB膜を中心に進められてきた。しかし最近これまで劣る
とされていた耐熱性、機械強度に対してもこれを克服し
た有機材料が次々に生まれている。
Conventionally, the above-mentioned studies have been conducted on fatty acids that are relatively easy to handle.
LB films have been the main focus. However, recently, organic materials have been born one after another that overcome the heat resistance and mechanical strength, which are considered to be inferior until now.

〔発明の目的〕[Object of the Invention]

我々はこれらの材料を用いたLB膜を絶縁体として用いて
再現性と安定性にすぐれたMIM素子を作製すべく鋭意研
究の結果、従来のMIM素子にはない、全く新しいスイツ
チング現象を発現するMIM素子を発明に至った。即ち本
発明は極めて信頼性にすぐれたメモリー機能を有するス
イッチング素子を提供することを目的とする。
As a result of diligent research to fabricate a MIM element with excellent reproducibility and stability by using an LB film made of these materials as an insulator, we have developed a completely new switching phenomenon that conventional MIM elements do not have. Invented MIM device. That is, it is an object of the present invention to provide a switching element having a memory function with excellent reliability.

〔発明の概要〕[Outline of Invention]

本発明は、基板上の第1の電極と、第2の電極と、前記
第1の電極と前記第2の電極間に挟持されたπ電子準位
を含む単分子累積膜からなる有機薄膜と、を備えたスイ
ッチング素子において、 前記第1の電極が貴金属あるいは酸化物導電体からな
り、 第1の抵抗値を示す第1の電気的状態と第2の抵抗値を
示す第2の電気的状態を有し、第1の電気的状態から第
2の電気的状態に遷移する第1のしきい値電圧と、第2
の電気的状態から第1の電気的状態に遷移する第2のし
きい値電圧とが異なり、 前記第1の電気的状態と前記第2の電気的状態がそれぞ
れ保持されるメモリー特性を有することを特徴とする。
The present invention provides a first electrode on a substrate, a second electrode, and an organic thin film composed of a monomolecular cumulative film containing a π electron level sandwiched between the first electrode and the second electrode. In the switching element, the first electrode is made of a noble metal or an oxide conductor, and has a first electrical state showing a first resistance value and a second electrical state showing a second resistance value. And a first threshold voltage that transitions from the first electrical state to the second electrical state, and
Different from the second threshold voltage at which the first electrical state transits to the first electrical state, and has memory characteristics in which the first electrical state and the second electrical state are held respectively. Is characterized by.

また本発明はスイッチング素子の駆動方法の発明をも包
含する。すなわち、本発明のスイッチング素子の駆動方
法は、基板上の第1の電極と、第2の電極と、前記第1
の電極と前記第2の電極間に挟持されたπ電子準位を含
む単分子累積膜からなる有機薄膜と、を備えたスイッチ
ング素子の駆動方法において、 前記スイッチング素子の前記第1の電極が貴金属あるい
は酸化物導電体からなり、 前記スイッチング素子は、第1の抵抗値を示す第1の電
気的状態と第2の抵抗値を示す第2の電気的状態を有
し、 第1のしきい値電圧以上の電圧を印加して前記第1の電
気的状態から前記第2の電気的状態に遷移させ、前記第
1のしきい値電圧と異なる第2のしきい値電圧以上の電
圧を印加して前記第2の電気的状態から前記第1の電気
的状態に遷移させることを特徴とする。
The present invention also includes the invention of a method for driving a switching element. That is, the switching element driving method of the present invention includes a first electrode on a substrate, a second electrode, and the first electrode.
And an organic thin film composed of a monomolecular cumulative film containing a π electron level sandwiched between the second electrode and the second electrode, wherein the first electrode of the switching element is a noble metal. Alternatively, the switching element includes an oxide conductor, the switching element has a first electrical state exhibiting a first resistance value and a second electrical state exhibiting a second resistance value, and a first threshold value. A voltage of not less than a voltage is applied to cause the transition from the first electrical state to the second electrical state, and a voltage of a second threshold voltage or more different from the first threshold voltage is applied. A transition from the second electrical state to the first electrical state.

本発明は比較的大きいπ(パイ)準位をもつ群とのσ
(シグマ)電子準位をもつ群とを有する分子を周期的に
積層し、電気的ポテンシヤルの周期構造を有する有機絶
縁体中において周期方向と平行な方向に電流を流すこと
により、従来公知のMIM素子とは異なる非線型電流電圧
特性が発現することを期待し、かつその実現を図ったも
のである。さらに、係る特性を用いたスイツチングメモ
リー機能を有する新規MIM素子を実現したものである。
The present invention uses σ with a group having a relatively large π (pi) level.
(SIGMA) Molecules having electronic groups are periodically stacked, and a current is flowed in a direction parallel to the periodic direction in an organic insulator having a periodic structure of electric potential, so that a conventionally known MIM is obtained. It is expected that a non-linear current-voltage characteristic different from that of the device will be developed, and the realization thereof is intended. Further, the present invention realizes a new MIM element having a switching memory function using such characteristics.

〔発明の態様の詳細な説明〕[Detailed Description of Embodiments of the Invention]

一般に有機材料のほとんどは絶縁性若しくは半絶縁性を
示すことから係る本発明に於いて、適用可能なπ電子準
位をもつ群を有する有機材料は著しく多岐にわたる。
In general, most of the organic materials exhibit an insulating property or a semi-insulating property. In the present invention, the organic materials having a group having an applicable π-electron level are remarkably diverse.

本発明に好適なπ電子系を有する色素の構造としては例
えば、フタロシアニン、テトラフエニルポルフイン等の
ポルフイリン骨格を有する色素、スクアリリウム基及び
クロコニツクメチン基を結合鎖としてもつアズレン系色
素及びキノリン、ベンゾチアゾール、ベンゾオキサゾー
ル等の2ケの含窒素複素環をスクアリリウム基及びクロ
コニツクメチン基により結合したシアニン系類似の色
素、またはシアニン色素、アントラセン及びピレン等の
縮合多環芳香族、及び芳香環及び複素環化合物が重合し
た鎖状化合物及びジアセチレン基の重合体、さらにはテ
トラキノジメタンまたはテトラチアフルバレンの誘導体
およびその類縁体およびその電荷移動錯体また更にはフ
エロセン、トリスビピリジンルテニウム錯体等の金属錯
体化合物が挙げられる。
The structure of the dye having a π-electron system suitable for the present invention, for example, phthalocyanine, a dye having a porphyrin skeleton such as tetraphenyl porphyrin, azulene-based dye and quinoline having a squarylium group and a croconitucumethine group as a binding chain, A cyanine-like dye in which two nitrogen-containing heterocycles such as benzothiazole and benzoxazole are bound by a squarylium group and a croconitumethine group, or a condensed polycyclic aromatic compound such as a cyanine dye, anthracene and pyrene, and an aromatic ring, Chain compounds obtained by polymerizing heterocyclic compounds and polymers of diacetylene groups, further derivatives of tetraquinodimethane or tetrathiafulvalene and its analogs and charge transfer complexes thereof, and further metals such as ferrocene and trisbipyridine ruthenium complexes. Complex compounds .

有機絶縁層の形成に関しては、具体的には蒸着法やクラ
スターイオンビーム法等の適用も可能であるが、制御
性、容易性そして再現性から公知の従来技術の中ではLB
法が極めて好適である。
Regarding the formation of the organic insulating layer, a vapor deposition method, a cluster ion beam method, or the like can be specifically applied, but among the known conventional techniques, the LB
The method is very suitable.

このLB法によれば、1分子中に疎水性部位と親水性部位
とを有する有機化合物の単分子膜またはその累積膜を基
板上に容易に形成することができ、分子オーダの厚みを
有し、かつ大面積にわたって均一、均質な有機超薄膜を
安定に供給することができる。
According to this LB method, a monomolecular film of an organic compound having a hydrophobic site and a hydrophilic site in one molecule or a cumulative film thereof can be easily formed on a substrate and has a molecular order thickness. It is possible to stably supply a uniform and homogeneous organic ultra-thin film over a large area.

LB法は、分子内に親水性部位と疎水性部位とを有する構
造の分子において、両者のバランス(両親媒性のバラン
ス)が適度に保たれている時、分子は水面上で親水性基
を下に向けて単分子の層になることを利用して単分子膜
またはその累積膜を作成する方法である。
In the LB method, in a molecule having a structure having a hydrophilic site and a hydrophobic site in the molecule, when the balance between the two (an amphipathic balance) is appropriately maintained, the molecule has a hydrophilic group on the water surface. This is a method of forming a monomolecular film or a cumulative film thereof by utilizing the fact that it becomes a monomolecular layer downward.

疎水性部位を構成する基としては、一般に広く知られて
いる飽和及び不飽和炭化水素基や縮合多環芳香族基及び
鎖状多環フエニル基等の各種疎水基が挙げられる。これ
らは各々単独又はその複数が組み合わされて疎水性部分
を構成する。一方、親水性部分の構成要素として最も代
表的なものは、例えばカルボキシル基、エステル基、酸
アミド基、イミド基、ヒドロキシル基、更にはアミノ基
(1,2,3級及び4級)等の親水性基等が挙げられる。こ
れらも各々単独又はその複数が組み合わされて上記分子
の親水性部分を構成する。
Examples of the group constituting the hydrophobic moiety include various widely-known hydrophobic groups such as a saturated and unsaturated hydrocarbon group, a condensed polycyclic aromatic group and a chain polycyclic phenyl group. Each of these alone or in combination of a plurality thereof constitutes a hydrophobic portion. On the other hand, the most typical constituents of the hydrophilic part include, for example, carboxyl group, ester group, acid amide group, imide group, hydroxyl group, and further amino group (1, 2, 3, 4 and 4). A hydrophilic group etc. are mentioned. Each of these also constitutes a hydrophilic part of the above-mentioned molecule, either alone or in combination.

これらの疎水性基と親水性基をバランス良く併有し、か
つ適度な大きさをもつπ電子系を有する色素分子であれ
ば、水面上で単分子膜を形成することが可能であり、本
発明に対して極めて好適な材料となる。
A dye molecule having both a hydrophobic group and a hydrophilic group in a well-balanced manner and having a π electron system with an appropriate size can form a monomolecular film on the water surface. It is a very suitable material for the invention.

具体例としては、例えば下記の如き分子等が挙げられ
る。
Specific examples include the following molecules and the like.

〔I〕クロコニツクメチン色素 ここでR1は前述のσ電子準位をもつ群に相当したもの
で、しかも水面上で単分子膜を形成しやすくするために
導入された長鎖アルキル基で、その炭素数nは5n
30が好適である。以上具体例として挙げた化合物は基本
構造のみであり、これら化合物の種々な置換体も本発明
に於いて好適であることは言うにおよばない。
[I] Croconitcoumethine dye Here, R 1 is equivalent to the group having the above-mentioned σ electron level, and is a long-chain alkyl group introduced to facilitate formation of a monomolecular film on the water surface, and its carbon number n is 5n.
30 is preferred. It goes without saying that the compounds given as the specific examples above have only basic structures, and various substitution products of these compounds are also suitable in the present invention.

[II]スクアリリウム色素 [I]で挙げた化合物のクロコニツクメチン基を下記の
構造をもつクスアリリウム基でおきかえた化合物。
[II] Squarylium dye A compound in which the croconitumethine group of the compound mentioned in [I] is replaced by a kuskrylium group having the following structure.

[III]ポルフイリン系色素化合物 Rは単分子膜を形成しやすくするために導入されたもの
で、ここで挙げた置換基にかぎるものではない。又、R1
〜R4,Rは前述したσ電子準位をもつ群に相当している。
[III] Porphyrin dye compound R is introduced to facilitate the formation of a monomolecular film, and is not limited to the substituents listed here. Also, R 1
~ R 4 and R correspond to the group having the σ electron level mentioned above.

[IV]縮合多環芳香族化合物 [V]ジアセチレン化合物 Xは親水基で一般的には−COOHが用いられるが−OH,−C
ONH2等も使用できる。
[IV] Fused polycyclic aromatic compounds [V] Diacetylene compound X is a hydrophilic group, -COOH is generally used, but -OH, -C
ONH 2 etc. can also be used.

[VI]その他 尚、上記以外でもLB法に適している色素材料であれば、
本発明に好適なのは言うまでもない。例えば近年研究が
盛んになりつつある生体材料(例えばパクデリオロドプ
シンやチトクロームc)や合成ポリペプチド(PBLGな
ど)等も適用が可能である。係る両親媒性の分子は水面
上で親水基を下に向けて単分子の層を形成する。このと
き、水面上の単分子層は二次元系の特徴を有し、分子が
まばらに散開しているときは、一分子当り面積Aと表面
圧πとの間に二次元理想気体の式、 πA=kT が成り立ち、“気体膜”となる。ここに、kはボルツマ
ン定数、Tは絶対温度である。Aを十分小さくすれば分
子間相互作用が強まり、二次元固体の“凝縮膜(または
固定膜)”になる。凝縮膜はガラスや樹脂の如き種々の
材質や形状を有する任意の物体の表面へ一層ずつ移すこ
とができる。この方法を用いて、単分子膜またはその累
積膜を形成し、これを本発明が示すスイツチング素子用
の周期的な層構造を有する絶縁層として使用することが
できる。
[VI] Other In addition to the above, if it is a dye material suitable for the LB method,
Needless to say, it is suitable for the present invention. For example, biomaterials (eg, pacdeliorhodopsin and cytochrome c), which have been actively researched in recent years, synthetic polypeptides (PBLG, etc.) and the like are also applicable. Such amphipathic molecules form a monomolecular layer on the water surface with the hydrophilic groups facing down. At this time, the monolayer on the water surface has the characteristic of a two-dimensional system, and when the molecules are scattered, the two-dimensional ideal gas equation between the area A per molecule and the surface pressure π, πA = kT holds, and becomes a “gas film”. Here, k is the Boltzmann constant and T is the absolute temperature. If A is made sufficiently small, the intermolecular interaction will be strengthened, and a two-dimensional solid "condensed film (or fixed film)" will be formed. The condensation film can be transferred layer by layer to the surface of any object having various materials and shapes such as glass and resin. By using this method, a monomolecular film or a cumulative film thereof can be formed and used as an insulating layer having a periodic layer structure for the switching element shown in the present invention.

具体的な製法としては、例えば以下に示す方法を挙げる
ことができる。
As a specific manufacturing method, for example, the following method can be mentioned.

所望の有機化合物をクロロホルム、ベンゼン、アセトニ
トル等の溶剤に溶解させる。次に添付図面の第1図に示
す如き適当な装置を用いて、係る溶液を水相1上に展開
させて有機化合物を膜状に形成させる。
The desired organic compound is dissolved in a solvent such as chloroform, benzene, or acetonitol. Then, using a suitable apparatus as shown in FIG. 1 of the accompanying drawings, the solution is spread on the aqueous phase 1 to form an organic compound in the form of a film.

次にこの展開層が水相上を自由に拡散して広がりすぎな
いように仕切板(または浮子)3を設け、展開面積を制
限して膜物質の集合状態を制御し、その集合状態に比例
した表面圧πを得る。この仕切板3を動かし、展開面積
を縮小して膜物質の集合状態を制御し、表面圧を徐々に
上昇させ、膜の製造に適する表面圧πを設定することが
できる。この表面圧を維持しながら、静かに清浄な基板
2を垂直に上昇又は下降させることにより有機化合物の
単分子膜の基板2上に移し取られる。このような単分子
膜は第2a図または第2b図に模式的に示す如く分子が秩序
正しく配列した膜である。
Next, a partition plate (or float) 3 is provided to prevent the spreading layer from freely diffusing over the water phase and spreading too much, limiting the spreading area to control the aggregation state of the membrane substance, and proportional to the aggregation state. The obtained surface pressure π is obtained. The partition plate 3 can be moved to reduce the development area to control the aggregated state of the membrane substances, gradually increase the surface pressure, and set the surface pressure π suitable for the production of the membrane. While maintaining this surface pressure, the clean substrate 2 is gently raised or lowered vertically to be transferred onto the substrate 2 of the organic compound monomolecular film. Such a monomolecular film is a film in which molecules are arranged in an orderly manner as schematically shown in FIG. 2a or 2b.

単分子膜は以上で製造されるが、前記の操作を繰り返す
ことにより所望の累積数の累積膜が形成される。単分子
膜を基板上に移すには、上述した垂直浸漬法の他、水平
付着法、回転円筒法等の方法でも可能である。
Although the monomolecular film is manufactured as described above, a desired cumulative number of cumulative films is formed by repeating the above operation. In addition to the vertical dipping method described above, the monomolecular film can be transferred onto the substrate by a horizontal attachment method, a rotating cylinder method, or the like.

水平付着法は、基板を水面に水平に接触させて単分子膜
を移し取る方法であり、回転円筒法は円筒形の基板を水
面上を回転させて単分子膜を基板表面に移し取る方法で
ある。
The horizontal attachment method is a method of transferring the monomolecular film by contacting the substrate horizontally with the water surface, and the rotating cylinder method is a method of rotating the cylindrical substrate on the water surface to transfer the monomolecular film to the substrate surface. is there.

前述した垂直浸漬法では、表面が親水性である基板を水
面を横切る方向に水中から引き上げると有機化合物の親
水性基が基板側に向いた有機化合物の単分子膜が基板上
に形成される(第2b図)。前述のように基板を上下させ
ると、各行程ごとに一枚ずつ単分子膜が積み重なって累
積膜が形成される。成膜分子の向きが引上行程と浸漬行
程で逆になるので、この方法によると単分子膜の各層間
は有機化合物の疎水基と疎水基が向かいあうY型膜が形
成される(第3a図)。これに対し、水平付着法は、有機
化合物の疎水性基が基板側に向いた単分子膜が基板上に
形成される(第2a図)。この方法では、単分子膜を累積
しても成膜分子の向きの交代はなく全ての層において、
疎水性基が基板側に向いたX型膜が形成される(第3b
図)。反対に全ての層において親水性基が基板側に向い
た累積膜はZ型膜と呼ばれる(第3c図)。
In the above-mentioned vertical dipping method, when a substrate whose surface is hydrophilic is pulled up from the water in a direction crossing the water surface, a monomolecular film of the organic compound in which the hydrophilic groups of the organic compound face the substrate is formed on the substrate ( (Fig. 2b). When the substrate is moved up and down as described above, the monomolecular films are stacked one by one in each step to form a cumulative film. Since the orientation of the film-forming molecules is opposite between the pulling up process and the dipping process, this method forms a Y-type film in which the hydrophobic groups of the organic compound face each other between the layers of the monomolecular film (Fig. 3a). ). On the other hand, in the horizontal attachment method, a monomolecular film in which the hydrophobic groups of the organic compound face the substrate is formed on the substrate (Fig. 2a). In this method, even if the monomolecular film is accumulated, there is no change in the direction of the film-forming molecules, and in all layers,
An X-type film is formed with the hydrophobic groups facing the substrate (3b
Figure). On the contrary, a cumulative film in which hydrophilic groups in all layers face the substrate is called a Z-type film (Fig. 3c).

単分子膜を基板上に移す方法は、上記方法に限定される
わけではなく、大面積基板を用いる時には、ロールから
水相中に基板を押し出していく方法なども採り得る。ま
た、前述した親水性基および疎水性基の基板への向きは
原則であり、基板の表面処理等によって変えることもで
きる。
The method of transferring the monomolecular film onto the substrate is not limited to the above method, and when a large-area substrate is used, a method of extruding the substrate from a roll into the aqueous phase may be employed. Further, the orientations of the hydrophilic group and the hydrophobic group described above to the substrate are in principle, and can be changed by surface treatment of the substrate.

以上の如くして有機化合物の単分子膜またはその累積膜
からなるポテンシヤル障壁層が基板上に形成される。
As described above, the potent barrier layer composed of a monomolecular film of an organic compound or a cumulative film thereof is formed on the substrate.

本発明において、上記の如き無材及び有機材料が積層さ
れた薄膜を支持するための基板は、金属、ガラス、セラ
ミツクス、プラスチツク材料等いずれの材料でもよく、
更に耐熱性の著しく低い生体材料も使用できる。
In the present invention, the substrate for supporting the thin film in which the non-material and the organic material as described above are laminated may be any material such as metal, glass, ceramics, and plastic material,
Furthermore, a biomaterial having extremely low heat resistance can also be used.

上記の如き基板は、任意の形状でよく平板状であるのが
好ましいが、平板に何ら限定されない。すなわち前記成
膜法においては、基板の表面がいかなる形状あってもそ
の形状通りに膜を形成し得る利点を有するからである。
It is preferable that the substrate as described above has an arbitrary shape and is a flat plate, but is not limited to a flat plate. That is, the film forming method has an advantage that a film can be formed according to the shape of the substrate, regardless of the shape of the surface.

またLB法によれば分子オーダーで絶縁層の層厚を自由に
制御できるが、本発明に於いては数Å〜数1000Åの層厚
のものにスイツチング特性が発現されるているがスイツ
チング特性上好ましくは10Å〜1000Åの範囲の層厚をも
つものが良い。
Further, according to the LB method, the layer thickness of the insulating layer can be freely controlled on a molecular order, but in the present invention, the switching characteristics are expressed in the layer thickness of several Å to several 1000 Å, but in terms of the switching characteristics. Preferably, it has a layer thickness in the range of 10Å to 1000Å.

一方、係るLB膜を挟持する電極材料も高い伝導性を有す
るものであれば良く、例えはAu,Pt,Ag,Pd,Al,In,Sn,Pb
などの金属やこれらの合金、さらにはグラフアイトやシ
リサイド、またさらにはITOなどの導電性酸化物を始め
として数多くの材料が挙げられ、これらの本発明への適
用が考えられる。係る材料を用いた電極形成法としても
従来公知の薄膜技術で充分である。但し、ここで注意を
要するのは本発明におけるMIM素子作成において該LB膜
上に設け、電極形成の際、LB層に損傷を与えてはなら
ず、そのためには高温(>100℃)を要する製造或いは
処理工程を避ける。また基板上に直接形成される電極材
料はその電極必要があることである。表面がLB膜形成の
際、絶縁性の酸化膜をつくらない導電材料、例えば貴金
属やITOなどの酸化物導電体を用いることが好ましい。
On the other hand, the electrode material sandwiching the LB film may also have high conductivity, for example, Au, Pt, Ag, Pd, Al, In, Sn, Pb.
There are many materials such as metals and alloys thereof, graphite and silicide, and conductive oxides such as ITO, and their application to the present invention can be considered. As a method of forming an electrode using such a material, conventionally known thin film technology is sufficient. However, it should be noted here that the MIM element in the present invention is provided on the LB film, and the LB layer should not be damaged at the time of forming an electrode, which requires a high temperature (> 100 ° C.). Avoid manufacturing or processing steps. Further, the electrode material formed directly on the substrate requires that electrode. When forming the LB film on the surface, it is preferable to use a conductive material that does not form an insulating oxide film, for example, an oxide conductor such as a noble metal or ITO.

以下実施例により詳細な説明を行なう。A detailed description will be given below with reference to examples.

〔実施例1〕 ヘキサメチルジシラン(HMDS)の飽和蒸気中に一昼夜放
置して疎水処理したガラス基板(コーニング社製#750
9)上に下引き層としてCrを真空蒸着法により厚さ500Å
堆積させ、更にAuを同法により蒸着(膜厚1000Å)し、
幅1mmのストライプ状の下地電極を形成した。係る基板
を担体としてLB法によりスクアリリユムビス−6−オク
チルアズレン(SOAZ)の単分子膜の累積を行なった累積
方法の詳細を記す。
[Example 1] A glass substrate (# 750 manufactured by Corning Co., Ltd.) which was subjected to a hydrophobic treatment by leaving it in a saturated vapor of hexamethyldisilane (HMDS) for a whole day and night.
9) Cr as an undercoat layer with a thickness of 500Å by vacuum deposition
Accumulate and then vapor deposit Au by the same method (film thickness 1000Å),
A stripe-shaped base electrode having a width of 1 mm was formed. The details of the accumulation method in which a monomolecular film of squarylium bis-6-octylazulene (SOAZ) was accumulated by the LB method using the substrate as a carrier will be described.

SOAZを濃度0.2mg/mlで溶かしたクロロホルム溶液をKHCO
3でpH6.7に調整したCdCl2濃度5×10-4mol/l、水温20℃
の水相上に展開し、水面上に単分子膜を形成した。溶媒
の蒸発除去を待って係る単分子膜の表面圧を20mN/mまで
高め、更にこれを一定に保ちながら前記基板を水面を横
切る方向に速度10mm/分で静かに浸漬した後、続いて5mm
/分で静かに引き上げ2層のY型単分子膜の累積を行な
った。係る操作を適当回数繰り返すことによって前記基
板上に2,4,8,12,20,30,40,60層の8種類の累積膜を形成
した。次に係る膜面上に下地電極と直交するように幅1m
mのストライプ状のAl電極(膜厚1500Å)を基板温度を
室温以下に保持し真空蒸着し上部電極とした。
Chloroform solution of SOAZ dissolved in 0.2 mg / ml was added to KHCO
CdCl 2 concentration adjusted to pH 6.7 with 3 5 × 10 -4 mol / l, water temperature 20 ° C
Was spread on the water phase and a monomolecular film was formed on the water surface. The surface pressure of the monolayer film waiting for the evaporation and removal of the solvent is increased to 20 mN / m, and further while keeping it constant, the substrate is gently immersed in the direction across the water surface at a speed of 10 mm / min, and then 5 mm.
The film was gently pulled up at a rate of / min and two layers of Y-type monomolecular film were accumulated. By repeating the above operation a proper number of times, eight kinds of cumulative films of 2,4,8,12,20,30,40,60 layers were formed on the substrate. Width of 1m on the film surface
An m-striped Al electrode (thickness 1500Å) was vacuum-deposited while keeping the substrate temperature at room temperature or lower to form an upper electrode.

以上の様にして作成した試料の上下電極間に電圧を印加
したときの電流特性(VI特性)を測定した。その他の試
料ではこれまで知られていないメモリー性のスイツチン
グ特性を観測した(第5図)。更に第6図に示すような
安定なON状態(抵抗値数十Ω)とOFF状態(抵抗値MΩ
以上)をつくることができ、ON→OFFへのスイツチング
は一定のシキイ値電圧(1〜2V程度/20層)を示し、OFF
→ONへのスイツチングは−2〜5V程度でおこり、またス
イツチング速度は1μsec以下でON/OFF比(ON状態とOFF
状態の抵抗値の比)が5桁以上であった。
The current characteristics (VI characteristics) when a voltage was applied between the upper and lower electrodes of the sample prepared as described above were measured. In other samples, a memory-like switching characteristic which has not been known so far was observed (Fig. 5). Furthermore, as shown in Fig. 6, stable ON state (resistance value tens of Ω) and OFF state (resistance value MΩ)
The above can be made, and the switching from ON to OFF shows a constant voltage value (about 1 to 2 V / 20 layers) and OFF.
→ Switching to ON occurs at about -2 to 5V, and switching speed is 1μsec or less, ON / OFF ratio (ON state and OFF
The ratio of the resistance value in the state) was 5 digits or more.

スイツチングのシキイ値電圧は絶縁層の層数が増すと高
くなる傾向を示した。
The threshold voltage of the switching tends to increase as the number of insulating layers increases.

その結果2層試料ではスイツチング特性は不安定で、ま
た80層試料ではOFF→ONのスイツングがおこりにくい
が、なおSOAZ色素1層あたりの厚さは小角X線回折法か
ら求めた値は約15Åであった。
As a result, the switching characteristics of the two-layer sample are unstable, and switching from OFF to ON is less likely to occur in the 80-layer sample, but the thickness per layer of the SOAZ dye is about 15Å as determined by the small-angle X-ray diffraction method. Met.

〔実施例2〕 ITOを従来公知の方法により1mm幅のストライプ状にエツ
チングした基板を担体としてLB法によりルテチウム、ジ
フタロシアニン[LuH(Pc)]の単分子膜の累積を行
なった。LuH(Pc)を濃度0.5mg/mlで溶かした溶液
(溶媒:クロロホルム/トリメチルベンゼン/アセトン
の1/1/2混合溶媒)を水温20℃の前記基板をあらかじめ
浸漬してある純水上に展開し、水面上の単分子膜を形成
した。溶媒の蒸発除去を待って係る単分子膜の表面圧を
20mN/mまで高め、更にこれを一定に保ちながらあらかじ
め浸漬しておいた前記基板を水面を横切る方向に速度3m
m/分で静かに引き上げ、1層の単分子膜を電極基板上に
累積した。続いて上下速度が同じく3mm/分で静かに水面
を横切るように浸漬・引き上げを繰り返し行なう事によ
りITO上に11層,21,31層の累積膜を形成した。次に係る
膜面上にITO電極と直交する様に幅1mmのストライプ状の
Au電極(膜厚1000Å)及びAl電極(膜厚1500Å)を実施
例1と同様にして形成した試料を作成した。
[Example 2] A monomolecular film of lutetium and diphthalocyanine [LuH (Pc) 2 ] was accumulated by the LB method using a substrate obtained by etching ITO in a stripe shape having a width of 1 mm by a conventionally known method as a carrier. A solution of LuH (Pc) 2 dissolved at a concentration of 0.5 mg / ml (solvent: a mixed solvent of chloroform / trimethylbenzene / acetone 1/1/2) is placed on pure water in which the substrate at a water temperature of 20 ° C. is previously immersed. It was developed to form a monomolecular film on the water surface. Wait for the solvent to evaporate and remove the surface pressure of the monolayer.
Increase the speed up to 20mN / m, and keep it constant while pre-immersing the substrate in the direction across the water surface at a speed of 3m.
It was gently pulled up at m / min, and a monolayer of monomolecular film was accumulated on the electrode substrate. Subsequently, the vertical speed was the same at 3 mm / min, and dipping and pulling up were repeated so as to gently cross the water surface to form 11-, 21-, and 31-layer cumulative films on the ITO. Next, on the film surface concerned, in a stripe shape with a width of 1 mm so as to be orthogonal to the ITO electrode
A sample in which an Au electrode (thickness 1000 Å) and an Al electrode (thickness 1500 Å) were formed in the same manner as in Example 1 was prepared.

以上の様に作成した試料を実施例1と同様にしてVI特性
を測定した結果、作成したすべての試料とメモリー性の
スイツチング特性を観測した(第7図)。
The VI characteristics of the samples prepared as described above were measured in the same manner as in Example 1. As a result, all the prepared samples and the memory switching characteristics were observed (FIG. 7).

シキイ値電圧は上部電極の違いによらずほぼ一定に値を
示した。
The threshold voltage was almost constant regardless of the difference in the upper electrode.

ON状態の抵抗値は数十Ωで実施例1と同程度であるがOF
F状態の抵抗値は実施例1の場合と比べ1桁程度小さい
が4桁程度のON/OFF比は得らている。
The resistance value in the ON state is several tens of Ω, which is about the same as that of the first embodiment
Although the resistance value in the F state is about one digit smaller than that of the first embodiment, an ON / OFF ratio of about four digits is obtained.

OFF状態の抵抗値が小さくなるのはLuH(Pc)が半導体
的性質を有しているためと考えられる。またスイツチン
グ速度は0.1μsecであった。
The reason that the resistance value in the OFF state becomes small is considered to be that LuH (Pc) 2 has a semiconductor property. The switching speed was 0.1 μsec.

また使用する有機色素によりそのVI特性はわずかに変化
し、電極とのコンタクトに起因するものではなく絶縁層
の性質を反映している。
In addition, the VI characteristics change slightly depending on the organic dye used and reflect the properties of the insulating layer rather than the contact with the electrode.

〔実施例3〜11〕 表1に示した電極材料と絶縁材料及びその層数を用いて
実施例1,2と同様の素子構造を有する試料を作成した。
金属電極は抵抗加熱法による真空蒸着により行なった。
[Examples 3 to 11] Samples having the same element structure as in Examples 1 and 2 were prepared by using the electrode materials, the insulating materials and the number of layers thereof shown in Table 1.
The metal electrode was formed by vacuum vapor deposition by the resistance heating method.

実施例1,2と同様にしてVI特性の測定を行なった所、表
に示す結果を得た。表中○印で示した様にほとんどの試
料に関しメモリー性のスイツチング特性が認められた。
When VI characteristics were measured in the same manner as in Examples 1 and 2, the results shown in the table were obtained. As indicated by the circles in the table, memory-like switching characteristics were recognized for most of the samples.

実施例4に於いて、実施例1と同様に絶縁材料としてSO
AZを用いたにもかかわらず、同一条件で作成した12個の
試料すべてOFF状態のみを示し、ON状態へのスイツチン
グは確認できなかった。これはSn電極表面に絶縁性の酸
化膜が生じているためと考えられる。
In Example 4, as the insulating material, SO was used as in Example 1.
Despite the use of AZ, all 12 samples prepared under the same conditions showed only the OFF state, and no switching to the ON state could be confirmed. This is probably because an insulating oxide film is formed on the surface of the Sn electrode.

以上述べてきた実施例中では色素絶縁層の形成にLB法を
使用してきたが、極めて薄く均一な絶縁性の有機薄膜が
作成できる成膜法であればLB法に限らず使用可能であ
る。具体的には真空蒸着法や電解重合法、CVD法等が挙
げられ使用可能な有機材料の範囲が広がる。
Although the LB method has been used for forming the dye insulating layer in the above-mentioned embodiments, any film forming method capable of forming an extremely thin and uniform insulating organic thin film can be used without being limited to the LB method. Specifically, a vacuum vapor deposition method, an electrolytic polymerization method, a CVD method and the like can be mentioned to expand the range of usable organic materials.

電極の形成に関しても既に述べている様に、有機薄膜層
上に均一な薄膜を作成しうる成膜法であれば使用可能で
あり、真空蒸着法やスパツタ法に限られるものではな
い。
As described above with respect to the formation of the electrodes, any film forming method capable of forming a uniform thin film on the organic thin film layer can be used, and is not limited to the vacuum vapor deposition method and the sputtering method.

更に基板材料やその形状も本発明は何ら限定するもので
はない。
Further, the present invention does not limit the substrate material and the shape thereof.

〔本発明による効果〕 有機色素単分子膜をLB法により累積した薄膜を絶縁
層としたMIM構造素子に於いて、従来のMIM素子にはみら
れないメモリー性のスイツチング特性が得られることを
示した。
[Effects of the Present Invention] In a MIM structure element having a thin film obtained by accumulating an organic dye monomolecular film by the LB method as an insulating layer, it is shown that a switching characteristic with a memory property, which is not found in a conventional MIM element, can be obtained. It was

単分子膜の累積によって絶縁層を形成する方法の
為、分子オーダ(数Å〜数十Å)による膜厚制御が容易
に実現できた。また制御性が優れている為、素子を形成
する時再現性が高く生産性に富む。
Since the insulating layer is formed by accumulating monomolecular films, the film thickness can be easily controlled by molecular order (several Å to several tens of Å). Further, since the controllability is excellent, the reproducibility is high and the productivity is high when the device is formed.

無機材料のみからなるMIM素子に比べ材料の自由度
が高く、従来、分子エレクトロニクス、バイオエレクト
ロニクス等生体との親和性の高い素子が提供できる。
The degree of freedom of the material is higher than that of the MIM element composed only of an inorganic material, and thus it is possible to provide an element having a high affinity with a living body such as molecular electronics and bioelectronics.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の有機色素絶縁層をLB法によって形成す
る方法を図解的に示す説明図である。第2a図と第2b図は
単分子膜の模式図であり、第3a図、第3b図と第3c図は累
積膜の模式図である。 第4図は本発明のMIM素子の具体例の構成概略図を示
す。また第5図と第7図は係る素子に於いて得られた電
気的特性(VI特性)を示す特性図で、第6図は係る素子
に於いて確認されたON状態及びOFF状態の電気的特性図
を示すものである。 1……水相、2……基板、3……浮子、4……単分子
膜、5……累積膜、6……親水性部位、7……疎水性部
位、8……上部電極、9……下部(下地)電極、10……
単分子累積膜層(LB膜層)
FIG. 1 is an explanatory view schematically showing the method of forming the organic dye insulating layer of the present invention by the LB method. FIGS. 2a and 2b are schematic views of the monolayer, and FIGS. 3a, 3b and 3c are schematic views of the cumulative film. FIG. 4 shows a schematic configuration diagram of a specific example of the MIM element of the present invention. 5 and 7 are characteristic diagrams showing the electrical characteristics (VI characteristics) obtained in the element, and FIG. 6 is the electrical characteristics in the ON state and the OFF state confirmed in the element. It is a characteristic diagram. 1 ... Water phase, 2 ... Substrate, 3 ... Float, 4 ... Monomolecular film, 5 ... Cumulative film, 6 ... Hydrophilic site, 7 ... Hydrophobic site, 8 ... Upper electrode, 9 ...... Lower (base) electrode, 10 ……
Monomolecular cumulative film layer (LB film layer)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 宏 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 森川 有子 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 中桐 孝志 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Matsuda 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Yuko Morikawa 3-30-2 Shimomaruko, Ota-ku, Tokyo Kya Non-corporation (72) Inventor Takashi Nakagiri 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基板上の第1の電極と、第2の電極と、前
記第1の電極と前記第2の電極間に挟持されたπ電子準
位を含む単分子累積膜からなる有機薄膜と、を備えたス
イッチング素子において、 前記第1の電極が貴金属あるいは酸化物導電体からな
り、 第1の抵抗値を示す第1の電気的状態と第2の抵抗値を
示す第2の電気的状態を有し、第1の電気的状態から第
2の電気的状態に遷移する第1のしきい値電圧と、第2
の電気的状態から第1の電気的状態に遷移する第2のし
きい値電圧とが異なり、 前記第1の電気的状態と前記第2の電気的状態がそれぞ
れ保持されるメモリー特性を有することを特徴とするス
イッチング素子。
1. An organic thin film comprising a first electrode on a substrate, a second electrode, and a monomolecular cumulative film containing a π electron level sandwiched between the first electrode and the second electrode. And a first electrical state in which the first electrode is made of a noble metal or an oxide conductor, a first electrical state exhibiting a first resistance value, and a second electrical state exhibiting a second resistance value. A first threshold voltage having a state and transitioning from the first electrical state to the second electrical state;
Different from the second threshold voltage at which the first electrical state transits to the first electrical state, and has memory characteristics in which the first electrical state and the second electrical state are held respectively. Is a switching element.
【請求項2】前記メモリー特性は、 第1の電気的状態のとき、前記第1のしきい値電圧より
絶対値が小さい電圧印加では第1の電気的状態が保持さ
れ、 第2の電気的状態のとき、前記第2のしきい値電圧より
絶対値が小さい電圧印加では第2の電気的状態が保持さ
れる特許請求の範囲第1項に記載のスイッチング素子。
2. The memory characteristic is such that, in the first electrical state, the first electrical state is maintained when a voltage whose absolute value is smaller than the first threshold voltage is applied, and the second electrical state is maintained. The switching element according to claim 1, wherein in the state, the second electrical state is maintained by applying a voltage having an absolute value smaller than the second threshold voltage.
【請求項3】前記有機薄膜が10〜1000Åの膜厚を有する
特許請求の範囲第1項または第2項に記載のスイッチン
グ素子。
3. The switching element according to claim 1 or 2, wherein the organic thin film has a film thickness of 10 to 1000 Å.
【請求項4】前記有機薄膜が分子中にπ電子準位をもつ
群とσ電子準位のみをもつ群とを有している特許請求の
範囲第1項ないし第3項のいずれか1項に記載のスイッ
チング素子。
4. The organic thin film according to claim 1, wherein the organic thin film has a group having a π electron level and a group having only a σ electron level in the molecule. The switching element described in.
【請求項5】前記単分子累積膜がラングミュアーブロシ
ェット膜である特許請求の範囲第1項ないし第4項のい
ずれか1項に記載のスイッチング素子。
5. The switching element according to claim 1, wherein the monomolecular cumulative film is a Langmuir-Brochette film.
【請求項6】前記単分子累積膜の累積数が2〜60である
特許請求の範囲第1項ないし第5項のいずれか1項に記
載のスイッチング素子。
6. The switching element according to claim 1, wherein the cumulative number of the monomolecular cumulative film is 2 to 60.
【請求項7】基板上の第1の電極と、第2の電極と、前
記第1の電極と前記第2の電極間に挟持されたπ電子準
位を含む単分子累積膜からなる有機薄膜と、を備えたス
イッチング素子の駆動方法において、 前記スイッチング素子の前記第1の電極が貴金属あるい
は酸化物導電体からなり、 前記スイッチング素子は、第1の抵抗値を示す第1の電
気的状態と第2の抵抗値を示す第2の電気的状態を有
し、 第1のしきい値電圧以上の電圧を印加して前記第1の電
気的状態から前記第2の電気的状態に遷移させ、前記第
1のしきい値電圧と異なる第2のしきい値電圧以上の電
圧を印加することで、前記第2の電気的状態から前記第
1の状態に遷移させることを特徴とするスイッチング素
子の駆動方法。
7. An organic thin film comprising a first electrode on a substrate, a second electrode, and a monomolecular cumulative film containing a π electron level sandwiched between the first electrode and the second electrode. In the method for driving a switching element, the first electrode of the switching element is made of a noble metal or an oxide conductor, and the switching element has a first electrical state exhibiting a first resistance value. Having a second electrical state exhibiting a second resistance value, applying a voltage equal to or higher than a first threshold voltage to cause the transition from the first electrical state to the second electrical state, A switching element characterized in that a transition is made from the second electrical state to the first state by applying a voltage equal to or higher than a second threshold voltage different from the first threshold voltage. Driving method.
JP61243684A 1986-10-13 1986-10-13 Switching element and driving method thereof Expired - Fee Related JPH0777272B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61243684A JPH0777272B2 (en) 1986-10-13 1986-10-13 Switching element and driving method thereof
DE3751376T DE3751376T2 (en) 1986-10-13 1987-10-13 Circuit element.
EP87309045A EP0268370B1 (en) 1986-10-13 1987-10-13 Switching device
US07/964,481 US5359204A (en) 1986-10-13 1992-10-21 Switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61243684A JPH0777272B2 (en) 1986-10-13 1986-10-13 Switching element and driving method thereof

Publications (2)

Publication Number Publication Date
JPS6396956A JPS6396956A (en) 1988-04-27
JPH0777272B2 true JPH0777272B2 (en) 1995-08-16

Family

ID=17107447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61243684A Expired - Fee Related JPH0777272B2 (en) 1986-10-13 1986-10-13 Switching element and driving method thereof

Country Status (1)

Country Link
JP (1) JPH0777272B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101067582B1 (en) * 2005-01-20 2011-09-27 삼성전자주식회사 Method for driving memory devices to exhibit multi-state

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3213757B2 (en) * 1990-04-03 2001-10-02 キヤノン株式会社 Information transfer method, information transfer device, and image reading device
ATE225557T1 (en) * 1991-07-17 2002-10-15 Canon Kk INFORMATION RECORDING/REPRODUCING APPARATUS OR METHOD FOR RECORDING/REPRODUCING INFORMATION TO/FROM AN INFORMATION RECORDING MEDIUM USING A MULTIPLE PROBE ELECTRODES
JP3437195B2 (en) * 1991-10-01 2003-08-18 キヤノン株式会社 MIM type electric element, method of manufacturing the same, and image display device and drawing device using the same
JPH06187675A (en) * 1992-09-25 1994-07-08 Canon Inc Information processor and information processing method using the same
ATE246390T1 (en) * 1993-03-09 2003-08-15 Canon Kk INFORMATION RECORDING METHOD AND DEVICE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101067582B1 (en) * 2005-01-20 2011-09-27 삼성전자주식회사 Method for driving memory devices to exhibit multi-state

Also Published As

Publication number Publication date
JPS6396956A (en) 1988-04-27

Similar Documents

Publication Publication Date Title
JP2556491B2 (en) Recording device and recording method
US5359204A (en) Switching device
US4939556A (en) Conductor device
JPS63161553A (en) Method and device for reproduction
Donhauser et al. Matrix-mediated control of stochastic single molecule conductance switching
EP0272937B1 (en) Switching device
KR100642113B1 (en) Organic electronic device and its manufacturing method
US5432379A (en) MIM-type electric device production thereof, and electronic apparatus employing the device
JPH0777272B2 (en) Switching element and driving method thereof
JP2694531B2 (en) Driving method of MIM type element
US5270965A (en) Method of driving device having metal-insulator-metal(mim)structure
JP2728123B2 (en) Switching element and manufacturing method thereof
JPH0748575B2 (en) Switching device
Hann Molecules for Langmuir—Blodgett film formation
JPH01165165A (en) Switching device
JPH07121917A (en) Recording medium, manufacture thereof and recording/ reproducing apparatus using the medium
JPS63296273A (en) Switching device
JPH04145664A (en) Driving method for organic electronic element
JPH01166579A (en) Organic thin film pressure sensitive device
JPH01175766A (en) Semiconductor element
JPH01245575A (en) Switching element
JP2859652B2 (en) Recording / reproducing method and recording / reproducing apparatus
JPH0779173B2 (en) Semiconductor element
JPH02257543A (en) Electron emitting element
JPH01300227A (en) Display element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees