JPH0777094B2 - Hydraulic operating mechanism for circuit breaker - Google Patents

Hydraulic operating mechanism for circuit breaker

Info

Publication number
JPH0777094B2
JPH0777094B2 JP31329689A JP31329689A JPH0777094B2 JP H0777094 B2 JPH0777094 B2 JP H0777094B2 JP 31329689 A JP31329689 A JP 31329689A JP 31329689 A JP31329689 A JP 31329689A JP H0777094 B2 JPH0777094 B2 JP H0777094B2
Authority
JP
Japan
Prior art keywords
pressure
circuit breaker
operating mechanism
pressure system
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31329689A
Other languages
Japanese (ja)
Other versions
JPH03176917A (en
Inventor
弘和 高木
文雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31329689A priority Critical patent/JPH0777094B2/en
Publication of JPH03176917A publication Critical patent/JPH03176917A/en
Publication of JPH0777094B2 publication Critical patent/JPH0777094B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、遮断器の液圧操作機構に関するもので、特
に、高圧系と低圧系とを連通する漏液装置に改良を施し
た遮断器用液圧操作機構に係る。
Description: [Object of the invention] (Field of industrial application) The present invention relates to a hydraulic operating mechanism of a circuit breaker, and in particular, to a liquid leakage device for communicating a high pressure system and a low pressure system. The present invention relates to a circuit breaker hydraulic operation mechanism.

(従来の技術) 一般に、遮断器用液圧操作機構は、高速で遮断器の接点
を駆動するため、極めて短時間のうちに大きなエネルギ
ーを放出する必要があり、そのエネルギー源として30MP
a程度の高圧油を蓄えるアキュムレータを備えている。
このアキュムレータとしては、通常、ガス封入式のもの
が構造の小型化の観点から汎用されている。この様なア
キュムレータを備えた油圧操作機構を三相遮断器の各相
に独立して用いる場合、周囲の温度が上昇すると、アキ
ュムレータの封入ガスが膨張するため、高圧系の圧力増
加を引き起すが、この圧力増加量は、各相の油圧操作機
構を構成する弁類などの高圧油シール性能の微妙な相違
により、各々異なる値となり、三相間の高圧系に大きな
圧力差が生じることがある。従って、高圧系の圧力値に
比例する油圧操作機構の遮断力あるいは投入力が三相間
で大きく異なり、遮断あるいは投入指令が三相同時に入
力されても、遮断器可動部の動作速度が異なるため、接
点の開極あるいは投入時間に差が生じ、いわゆる三相不
揃時間が大きくなるという欠点があった。
(Prior Art) Generally, a hydraulic operating mechanism for a circuit breaker drives a contact of a circuit breaker at a high speed, so it is necessary to release a large amount of energy in an extremely short time.
It is equipped with an accumulator that stores high-pressure oil of about a.
As this accumulator, a gas-filled type is generally used from the viewpoint of downsizing of the structure. When the hydraulic operating mechanism equipped with such an accumulator is used independently for each phase of the three-phase circuit breaker, when the ambient temperature rises, the gas enclosed in the accumulator expands, causing an increase in pressure in the high pressure system. The amount of increase in pressure has different values due to subtle differences in the high-pressure oil seal performance of the valves that make up the hydraulic operating mechanism of each phase, and a large pressure difference may occur in the high-pressure system between the three phases. Therefore, the breaking force or throwing force of the hydraulic operating mechanism, which is proportional to the pressure value of the high-pressure system, greatly differs between the three phases, and even if a breaking or closing command is simultaneously input to the three phases, the operating speed of the circuit breaker moving part is different. There has been a drawback in that there is a difference in the contact opening or closing times, which increases the so-called three-phase misalignment time.

そこで、上記の不具合を回避するため、第6図に示す系
統を有する液圧操作機構の適用が考えられている。な
お、第6図は三相のうち一相について示したものであ
る。
Therefore, in order to avoid the above-mentioned inconvenience, application of a hydraulic operation mechanism having a system shown in FIG. 6 is considered. Incidentally, FIG. 6 shows one of the three phases.

即ち、第6図において、遮断器の接点1を駆動する油圧
シリンダ2は、シリンダ2aとピストン3とから成り、ピ
ストン3とシリンダ2aによって形成される一方の液室4a
は、ポンプ8にて昇圧された圧油を蓄えたアキュムレー
タ5に接続され、図中太線で示した高圧系7を構成して
いる。一方、ピストン3とシリンダ2aによって形成され
る他方の液室4bは、制御弁6を介してアキュムレータ5
又は細線で示した低圧系10を構成するタンク11に接続さ
れている。前記制御弁6は、電磁コイルなどにより電気
的信号によって動作し、その流路切換えによって液室4b
内に圧油を充排することで、ピストン3とそれに係合し
た接点1が駆動される。また、高圧系7には圧力スイッ
チ12が接続されており、その出力は制御リレー13を介し
てポンプ8を駆動するモータ9に伝えられ、圧力スイッ
チ12の第1の設定圧力でポンプ8を駆動し、第1の設定
圧力よりも高い第2の設定圧力でポンプ8を停止するよ
うに構成されている。
That is, in FIG. 6, the hydraulic cylinder 2 for driving the contact 1 of the circuit breaker comprises a cylinder 2a and a piston 3, and one liquid chamber 4a formed by the piston 3 and the cylinder 2a.
Is connected to the accumulator 5 that stores the pressure oil boosted by the pump 8, and constitutes a high pressure system 7 shown by a thick line in the figure. On the other hand, the other liquid chamber 4b formed by the piston 3 and the cylinder 2a is connected to the accumulator 5 via the control valve 6.
Alternatively, it is connected to the tank 11 that constitutes the low-voltage system 10 shown by the thin line. The control valve 6 is operated by an electric signal by an electromagnetic coil or the like, and by switching its flow path, the liquid chamber 4b
By charging / discharging the pressure oil inside, the piston 3 and the contact 1 engaged with it are driven. Further, a pressure switch 12 is connected to the high pressure system 7, the output of which is transmitted to a motor 9 for driving the pump 8 via a control relay 13 to drive the pump 8 at a first set pressure of the pressure switch 12. However, the pump 8 is stopped at the second set pressure higher than the first set pressure.

また、前記高圧系7と低圧系10は、漏液装置14を介して
常時連通されている。この漏液装置14は、第7図に示す
様に、高圧系7と低圧系10とを連通し、ブロック15を貫
通する穴15aにロッド16を嵌入して、漏油のための間隙1
7を形成したものである。また、この漏液装置14の漏油
量が、アキュムレータ5の封入ガスの周囲の温度上昇に
よる高圧系7の圧力増加よりも、漏油による圧力低下が
大となるように、ポンプ8が1日に数回程度、作動する
ように設定されている。
Further, the high pressure system 7 and the low pressure system 10 are always communicated with each other via a liquid leakage device 14. As shown in FIG. 7, this liquid leakage device 14 connects the high pressure system 7 and the low pressure system 10, and inserts a rod 16 into a hole 15a penetrating the block 15 to form a gap 1 for oil leakage.
Formed 7. Further, the pump 8 is used for one day so that the amount of oil leaking from the liquid leaking device 14 becomes larger than the pressure increase in the high pressure system 7 due to the temperature increase around the gas enclosed in the accumulator 5 due to the oil leak. It is set to operate several times.

上記の様に構成された従来の液圧操作機構においては、
遮断器の三相各相の高圧系の油圧を、圧力スイッチ12の
第1設定圧と第2設定圧の周囲内に保つことができるた
め、この圧力値に比例する遮断操作力あるいは投入操作
力の相間の相違を低減することができる。
In the conventional hydraulic operation mechanism configured as described above,
Since the hydraulic pressure of the high pressure system for each of the three phases of the circuit breaker can be maintained within the vicinity of the first set pressure and the second set pressure of the pressure switch 12, the breaking operation force or closing operation force proportional to this pressure value. The difference between the phases can be reduced.

(発明が解決しようとする課題) この様に、従来の液圧操作機構における漏液装置は、ブ
ロック15とロッド16の間隙17に流体抵抗を与え、高圧系
と低圧系の圧力差(30MPa程度)において、微小漏油量
を維持させようとするものであるが、この場合、間隙17
の大きさとして、通常、数ミクロン程度の微小間隙が要
求される。
(Problems to be Solved by the Invention) As described above, the liquid leakage device in the conventional hydraulic operation mechanism imparts fluid resistance to the gap 17 between the block 15 and the rod 16, and the pressure difference between the high pressure system and the low pressure system (about 30 MPa). ), The amount of minute oil leakage is to be maintained.
As a size, a small gap of about several microns is usually required.

しかし、第8図の流量特性を調べた実験結果で示される
様に、微小流量制御の場合、微小隙間の流量が時間の経
過と共に次第に減少する傾向がみられた。この現象はシ
ルティングと呼ばれ、その原因は、油に加えた不均一高
分子添加剤など、油中の長鎖状極性分子が金属表面に付
着して生ずる分子膜による隙間閉塞であると考えられて
いる。従って、シルティング現象により漏油量が低下
し、設定流量を維持できなくなるため、ポンプ8や圧力
スイッチ12を設定された時間間隔で作動させることがで
きなかった。
However, as shown by the experimental results of the flow rate characteristics shown in FIG. 8, in the case of the minute flow rate control, the flow rate in the minute gap tended to gradually decrease with the passage of time. This phenomenon is called silting, and it is thought that the cause is clogging due to a molecular film that occurs when long-chain polar molecules in oil, such as a heterogeneous polymer additive added to oil, adhere to the metal surface. Has been. Therefore, the siltation phenomenon reduces the amount of oil leakage, making it impossible to maintain the set flow rate, so that the pump 8 and the pressure switch 12 cannot be operated at set time intervals.

また、高圧系7と低圧系10とは漏液装置14によって常時
連通されているため、停電時にポンプ8が作動しなくな
ると、高圧系が大気圧に降下し、復旧時には相当な時間
が必要となるといった不具合が起る。さらに、漏液装置
14は数ミクロンの間隙17を維持させる必要があるが、三
相各相に用いた場合、各々の加工上の寸法変動により抵
抗特性に固体差を生じる。一方、各相の高圧系のシール
性能の優劣も生じるため、これらを合わせた総漏油量が
各相で大きく異なり、ポンプや圧力スイッチの作動時間
間隔が相間で著しく異なってくるが、これを容易に調整
することは非常に困難である。以上の様に、従来の漏液
装置を用いた液圧操作機構は、その動作信頼性を著しく
低下させるものであった。
Further, since the high-pressure system 7 and the low-pressure system 10 are constantly communicated with each other by the leak device 14, if the pump 8 stops operating during a power failure, the high-pressure system drops to atmospheric pressure, and a considerable amount of time is required for restoration. There is a problem such as. Furthermore, the leak device
14 needs to maintain a gap 17 of several microns, but when used for each of the three phases, a dimensional variation in each processing causes a solid difference in resistance characteristics. On the other hand, since the sealing performance of the high-pressure system of each phase also becomes inferior, the total amount of oil leakage, which is the sum of these, greatly differs for each phase, and the operating time intervals of the pump and pressure switch differ significantly between the phases. It is very difficult to adjust easily. As described above, the hydraulic operation mechanism using the conventional liquid leakage device significantly deteriorates the operation reliability.

本発明は、上記の様な問題点を解決するためになされた
ものであり、その目的は、遮断器の三相不揃時間を一定
値以下に制限すると共に、ポンプや圧力スイッチなどを
より安定した時間間隔で作動させることができる、精度
の高い遮断器用液圧操作機構を提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to limit the three-phase misalignment time of a circuit breaker to a fixed value or less and to make a pump, a pressure switch, etc. more stable. Another object of the present invention is to provide a highly accurate hydraulic operating mechanism for a circuit breaker, which can be operated at a predetermined time interval.

[発明の構成] (課題を解決するための手段) 本発明の遮断器用液圧操作機構は、流体の可変抵抗要素
である可動絞り弁と、固定抵抗要素となる螺旋状の流路
を有する固定絞りとを直列に接続して構成した漏液装置
を、遮断器各相の液圧操作機構の高圧系と低圧系との間
に設け、周囲温度の上昇による高圧系の圧力増加より
も、漏液装置の漏油による圧力減少を大きくするように
設定したことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) A hydraulic operating mechanism for circuit breaker according to the present invention includes a movable throttle valve that is a variable resistance element of a fluid, and a fixed flow passage that serves as a fixed resistance element. A leak device consisting of a throttle connected in series is installed between the high-pressure system and the low-pressure system of the hydraulic operating mechanism for each phase of the circuit breaker, so that the It is characterized in that it is set so as to increase the pressure decrease due to oil leakage of the liquid device.

(作用) 以上の構成を有する本発明の液体操作機構においては、
各相の高圧系と低圧系の間に、固定絞りと可変絞り弁か
ら成る漏液装置を設け、各相高圧系にその動作差圧が所
定値以上の圧力スイッチを設けたので、三相不揃時間を
一定値以下に保持できると共に、流路幅を大きく、流路
長を長くでき、しかも、小型化の可能な螺旋状流路を固
定絞りとしたため、長期間にわたって設定流量が安定し
て得られ、さらに、可変絞り弁を設けたため、微妙な流
量調整が簡便に実現でき、三相間において、ポンプや圧
力スイッチの作動間隔を一定に制御することが可能とな
る。
(Operation) In the liquid operation mechanism of the present invention having the above configuration,
A leak device consisting of a fixed throttle and a variable throttle valve was provided between the high-pressure system and low-pressure system of each phase, and a pressure switch whose operating differential pressure was above a specified value was provided in each phase of the high-pressure system. The fixed flow rate can be maintained over a long period of time because the spiral flow channel that can hold the alignment time below a certain value, can increase the flow channel width, lengthen the channel length, and can be downsized is used as the fixed throttle. Further, since the variable throttle valve is provided, delicate flow rate adjustment can be easily realized, and the operation intervals of the pump and the pressure switch can be controlled to be constant between the three phases.

(実施例) 以下、本発明の一実施例を第1図乃至第5図に基づいて
具体的に説明する。なお、第6図に示した従来例と同一
の部材には同一の符号を付して、説明は省略する。
(Embodiment) An embodiment of the present invention will be specifically described below with reference to FIGS. 1 to 5. The same members as those of the conventional example shown in FIG. 6 are designated by the same reference numerals, and the description thereof will be omitted.

本実施例においては、第1図に示した様に、高圧系7と
低圧系10とが漏液装置20を介して接続され、また、この
漏液装置20は、可変絞り弁21と固定絞り22を直列に接続
し、可変絞り弁21の上流端を高圧系7に、固定絞り22の
下流端を低圧系10に連通するように構成されている。
In the present embodiment, as shown in FIG. 1, the high pressure system 7 and the low pressure system 10 are connected via a liquid leakage device 20, and the liquid leakage device 20 includes a variable throttle valve 21 and a fixed throttle. 22 are connected in series, and the upstream end of the variable throttle valve 21 is connected to the high pressure system 7, and the downstream end of the fixed throttle 22 is connected to the low pressure system 10.

また、前記漏液装置20は、第2図に示した様に構成され
ている。即ち、可変絞り弁21と固定絞り22が、フィルタ
ー23と共にブロック24内に組込まれている。前記可変絞
り弁21は、通常のバネ式安全弁と同一構造で、高圧系7
からの流路を開閉する弁体25、この弁体25を常時閉方向
に押圧するバネ26及びバネ26の設定荷重を外部より調節
するための調整ネジ27とから構成されている。そして、
前記弁体25に作用する高圧系の圧力が、前記バネ26の設
定荷重以上になると弁体25が開き、それ以下で弁体25が
閉じるように作動する。また、前記弁体25が開き始める
圧力(クラッキング圧力)は、前記調整ネジ27を用いて
バネ26の設定荷重を変化させることにより調整する。
The liquid leakage device 20 is constructed as shown in FIG. That is, the variable throttle valve 21 and the fixed throttle 22 are incorporated in the block 24 together with the filter 23. The variable throttle valve 21 has the same structure as a normal spring type safety valve, and has a high pressure system 7
A valve body 25 for opening and closing the flow path from the above, a spring 26 for constantly pressing the valve body 25 in the closing direction, and an adjusting screw 27 for externally adjusting the set load of the spring 26. And
When the pressure of the high-pressure system acting on the valve element 25 becomes equal to or higher than the set load of the spring 26, the valve element 25 opens, and below that, the valve element 25 closes. The pressure at which the valve body 25 starts to open (cracking pressure) is adjusted by changing the set load of the spring 26 using the adjusting screw 27.

一方、固定絞り22は、第3図及び第4図に示した様な螺
旋状の溝28を両面に有する第1の円板29と、溝のない平
坦な第2の円板30とを交互に複数個重ね合わせて前記ブ
ロック24内に組込み、締付ネジ31で固定することにって
構成されている。また、第1の円板29上の螺旋状の溝28
は、第1の円板29の外縁部と、第1の円板29の中心部に
形成された貫通孔32とを連通するように形成されてい
る。そして、第1の円板29の側面にパッキン33を設け
て、上下両面が第1の円板29の側部から連通しないよう
に構成されている。
On the other hand, the fixed diaphragm 22 alternates between a first disc 29 having spiral grooves 28 on both sides as shown in FIGS. 3 and 4 and a flat second disc 30 having no grooves. A plurality of them are superposed on each other, assembled in the block 24, and fixed by a tightening screw 31. Also, the spiral groove 28 on the first disc 29
Are formed so that the outer edge portion of the first disc 29 and the through hole 32 formed in the central portion of the first disc 29 communicate with each other. A packing 33 is provided on the side surface of the first disc 29 so that the upper and lower surfaces thereof do not communicate with the side portions of the first disc 29.

なお、フィルター23は可変絞り弁21の上流側に配設さ
れ、異物の混入によって流路が詰まることを防止してい
る。また、第1の円板29及び第2の円板30は、締付ネジ
31により面圧を加えて接触されているため、第1の円板
29上で隣接する螺旋状の溝28同士が連通することはな
い。
The filter 23 is arranged on the upstream side of the variable throttle valve 21 to prevent the passage from being clogged with foreign matter. In addition, the first disc 29 and the second disc 30 are tightening screws.
Since it is contacted by applying surface pressure by 31, the first disc
Adjacent spiral grooves 28 on 29 do not communicate with each other.

この様に構成された漏液装置及びこの漏液装置を用いた
遮断器用液圧操作機構は、以下に述べる様に作用する。
即ち、第2図に示した漏液装置において、高圧系7から
流入した油は、フィルター23で濾過された後可変絞り弁
21を通る。この可変絞り弁21においては、その圧力がバ
ネ26の設定荷重以上になると弁体25が開き、設定荷重以
下で弁体25が閉じるように作動する。可変絞り弁21を通
った油は固定絞り22に導かれ、第1の円板29の片面外縁
部34→螺旋状の溝28→貫通孔32→第1の円板29の他面の
螺旋状の溝→第1の円板29の他面の外縁部→第2の円板
30とブロック24の隙間35→第1の円板29の片面外縁部へ
至る流路を、その積層数だけ繰返し、最終的に低圧系10
へと送られる。この様な固定絞り22によれば、比較的小
さなスペースで非常に長い流路を得ることができるた
め、流路断面(流路幅)を従来の方法に比べて102倍程
度大きくできる。即ち、従来では、流路幅(第7図中、
間隙17)に流路抵抗を持たせるものであったが、本実施
例では、流路長に抵抗を持たせたためである。その結
果、従来例において問題となっていた、時間と共に流量
が低下するシルティング現象を防止することができ、第
8図に示した設定値通りの安定した流量特性が得られる
ことが、実験的にも確認できた。
The liquid leakage device configured as described above and the liquid pressure operating mechanism for a circuit breaker using the liquid leakage device operate as described below.
That is, in the liquid leak device shown in FIG. 2, the oil that has flowed in from the high pressure system 7 is filtered by the filter 23, and then the variable throttle valve.
Pass 21 In this variable throttle valve 21, the valve body 25 opens when the pressure exceeds a set load of the spring 26, and the valve body 25 closes below the set load. The oil that has passed through the variable throttle valve 21 is guided to the fixed throttle 22, and the outer edge portion 34 of one side of the first disk 29 → spiral groove 28 → through hole 32 → spiral shape of the other surface of the first disk 29. Groove → the outer edge of the other surface of the first disk 29 → the second disk
The gap 35 between the block 30 and the block 24 → the flow path to the outer edge of the first disk 29 on one side is repeated for the number of laminated layers, and finally the low pressure system 10
Sent to. According to such a fixed throttle 22, a very long flow path can be obtained in a relatively small space, so that the flow path cross section (flow path width) can be increased by about 10 2 times as compared with the conventional method. That is, in the conventional case, the channel width (in FIG. 7,
This is because the gap 17) has a channel resistance, but in this embodiment, the channel length has a resistance. As a result, the silting phenomenon in which the flow rate decreases with time, which has been a problem in the conventional example, can be prevented, and stable flow rate characteristics as set values shown in FIG. 8 can be obtained. I was able to confirm.

また、第5図は漏液装置20の圧力−流量特性を示した図
である。可変絞り弁21がない場合、流量特性は固定絞り
22の抵抗値のみで決まるが、可変絞り弁21を接続するこ
とによりバネ26の設定荷重を調節できるため、クラッキ
ング圧力や流量特性を自由に設定することが可能であ
る。このため、ある圧力以下で可変絞り弁21が閉止し、
漏油が発生しないようにバネ力を調節した場合、モータ
9を駆動する電源が停電に陥った際に、高圧系7の圧力
が大気圧まで低下するという不具合は回避できる。ま
た、各相の高圧系のシール性能の優劣や、固定絞り22の
抵抗特性の固体差により、漏液量が各相で大きく異な
り、圧力スイッチ12やポンプ8の作動回数が各相間で著
しく異なる場合でも、可変絞り弁21を調整することによ
り、流量特性を微妙に変化させたり、漏油を完全に閉止
することができ、相間で安定したポンプ作動特性が得ら
れる。
Further, FIG. 5 is a diagram showing the pressure-flow rate characteristic of the liquid leakage device 20. If there is no variable throttle valve 21, the flow characteristics are fixed throttle.
Although it is determined only by the resistance value of 22, the setting load of the spring 26 can be adjusted by connecting the variable throttle valve 21, so it is possible to freely set the cracking pressure and the flow rate characteristic. Therefore, the variable throttle valve 21 closes below a certain pressure,
When the spring force is adjusted so that oil leakage does not occur, it is possible to avoid the problem that the pressure of the high pressure system 7 drops to the atmospheric pressure when the power supply for driving the motor 9 falls into a power failure. Also, due to the superiority or inferiority of the sealing performance of the high-pressure system of each phase and the solid difference in the resistance characteristic of the fixed throttle 22, the amount of liquid leakage greatly differs between each phase, and the number of times the pressure switch 12 and the pump 8 operate remarkably differs between each phase. Even in such a case, by adjusting the variable throttle valve 21, the flow rate characteristic can be subtly changed or the oil leakage can be completely closed, and stable pump operation characteristics can be obtained between the phases.

なお、漏液装置20として、可変絞り弁21のみを絞りとし
て用いることも考えられるが、高圧系7と低圧系10の圧
力差が30MPa以上であり、これを弁体の微小開度の変化
によって微小流量を制御することは困難であるので、本
実施例で示した様に、可変抵抗要素と固定抵抗要素とを
直列に接続して、抵抗値を分担する方法が得策である。
Although it is conceivable to use only the variable throttle valve 21 as the throttle as the liquid leakage device 20, the pressure difference between the high pressure system 7 and the low pressure system 10 is 30 MPa or more, and this is caused by a change in the minute opening of the valve body. Since it is difficult to control the minute flow rate, it is a good idea to connect the variable resistance element and the fixed resistance element in series to share the resistance value, as shown in this embodiment.

また、この様に構成された漏液装置20を三相各相の液圧
操作機構に設けることにより、各相の高圧系7の油圧を
圧力スイッチ12の第1設定圧と第2設定圧の範囲内に保
つことができ、遮断時あるいは投入時の三相不揃時間を
一定値以下にすることができる。例えば、第1設定圧を
32MPa、第2設定圧を33MPa程度として、その差圧(動作
差圧)を1MPaにすることにより、この圧力差に比例する
遮断力あるいは投入力の相間の相違を、最大3%程度に
抑えることができる。
Further, by providing the liquid leakage device 20 configured as described above in the hydraulic operation mechanism of each of the three phases, the hydraulic pressure of the high pressure system 7 of each phase is controlled between the first set pressure and the second set pressure of the pressure switch 12. It can be kept within the range, and the three-phase misalignment time at the time of interruption or at the time of making can be kept below a certain value. For example, the first set pressure
32MPa, the second set pressure is about 33MPa, and the differential pressure (operating differential pressure) is set to 1MPa, and the breaking force proportional to this pressure difference or the difference between the phases of throwing power is suppressed to about 3% at maximum. You can

この様に、本実施例によれば、遮断時あるいは投入時の
三相不揃時間を一定値以下にすることができる。また、
流路幅を大きく、流路長を長くすることのできる螺旋状
の流路を固定絞りとしたため、長期間にわたって安定し
た設定流量を得ることができる。さらに、可変絞り弁を
前記固定絞りと直列に設けたため、微妙な流量調整を容
易に行うことができ、三相間において、ポンプや圧力ス
イッチの作動間隔を一定に制御することが可能となる。
As described above, according to the present embodiment, the three-phase misalignment time at the time of shutting off or at the time of closing can be set to a fixed value or less. Also,
Since the spiral flow passage, which has a large flow passage width and a long flow passage length, is used as the fixed throttle, it is possible to obtain a stable set flow rate for a long period of time. Further, since the variable throttle valve is provided in series with the fixed throttle, delicate flow rate adjustment can be easily performed, and it becomes possible to control the operation intervals of the pump and the pressure switch to be constant between the three phases.

なお、本発明は上述した実施例に限定されるものではな
く、漏液装置の可変絞り弁を上流側に接続したが、固定
絞りを上流側に用いても同様の効果が得られる。また、
固定絞りとして用いられる第1及び第2の円板の積層枚
数は、特に限定されない。さらに、固定絞りとして長い
細管を螺旋状に巻回したものを用いても良い。また、フ
ィルターは、可変絞り弁の上流に設けたが、可変絞り弁
と固定絞りの間、あるいは両者に設けても同様の効果が
得られる。
The present invention is not limited to the above-described embodiment, and the variable throttle valve of the liquid leakage device is connected to the upstream side, but the same effect can be obtained by using the fixed throttle on the upstream side. Also,
The number of stacked first and second discs used as the fixed diaphragm is not particularly limited. Further, as the fixed diaphragm, a long thin tube spirally wound may be used. Although the filter is provided upstream of the variable throttle valve, the same effect can be obtained by providing the filter between the variable throttle valve and the fixed throttle, or both.

[発明の効果] 以上説明した様に、本発明によれば、流体の可変抵抗要
素である可動絞り弁と、固定抵抗要素となる螺旋状の流
路を有する固定絞りとを直列に接続して構成した漏液装
置を、遮断器各相の液圧操作機構の高圧系と低圧系との
間に設け、周囲温度の上昇による高圧系の圧力増加より
も、漏液装置の漏油による圧力減少を大きくするように
設定することによって、遮断器の三相不揃時間を一定値
以下に制限すると共に、ポンプや圧力スイッチなどをよ
り安定した時間間隔で作動させることができる、精度の
高い遮断器用液圧操作機構を提供することができる。
[Effects of the Invention] As described above, according to the present invention, a movable throttle valve that is a variable resistance element of a fluid and a fixed throttle having a spiral flow path that is a fixed resistance element are connected in series. The configured leak device is installed between the high pressure system and the low pressure system of the hydraulic operating mechanism for each phase of the circuit breaker, and the pressure due to oil leakage from the leak device decreases rather than the pressure increase in the high pressure system due to the rise in ambient temperature. By setting a large value, the three-phase misalignment time of the circuit breaker can be limited to a certain value or less, and the pump, pressure switch, etc. can be operated at more stable time intervals. A hydraulic operating mechanism can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の遮断器用液圧操作機構の一実施例を示
す系統図、第2図は本発明の遮断器用液圧操作機構に用
いられる漏液装置の一例を示す断面図、第3図は漏液装
置の固定絞りを構成する第1の円板の平面図、第4図は
第3図の縦断面図、第5図は漏液装置の圧力−流量特性
図、第6図は従来の遮断器用液圧操作機構の一例を示す
系統図、第7図は従来の漏液装置の断面図、第8図は従
来の漏液装置の流量特性図である。 1……遮断器の接点、2……油圧シリンダ、2a……シリ
ンダ、3……ピストン、4a,4b……液室、5……アキュ
ムレータ、6……制御弁、7……高圧系、8……ポン
プ、9……モータ、10……低圧系、11……タンク、12…
…圧力スイッチ、13……制御リレー、14……漏液装置、
15……ブロック、15a……穴、16……ロッド、17……間
隙、20……漏液装置、21……可変絞り弁、22……固定絞
り、23……フィルター、24……ブロック、25……弁体、
26……バネ、27……調整ネジ、28……螺旋状の溝、29…
…第1の円板、30……第2の円板、31……締付けネジ、
32……貫通孔、33……パッキン、34……第1の円板の片
面外縁部、35……第2の円板とブロックの隙間。
FIG. 1 is a system diagram showing an embodiment of a circuit breaker hydraulic pressure operating mechanism of the present invention, and FIG. 2 is a sectional view showing an example of a liquid leakage device used in the circuit breaker hydraulic pressure operating mechanism of the present invention. FIG. 4 is a plan view of the first disk constituting the fixed throttle of the liquid leakage device, FIG. 4 is a vertical sectional view of FIG. 3, FIG. 5 is a pressure-flow rate characteristic diagram of the liquid leakage device, and FIG. FIG. 7 is a system diagram showing an example of a conventional circuit breaker hydraulic pressure operating mechanism, FIG. 7 is a sectional view of a conventional liquid leakage device, and FIG. 8 is a flow characteristic diagram of the conventional liquid leakage device. 1 ... Circuit breaker contact, 2 ... Hydraulic cylinder, 2a ... Cylinder, 3 ... Piston, 4a, 4b ... Liquid chamber, 5 ... Accumulator, 6 ... Control valve, 7 ... High pressure system, 8 …… Pump, 9 …… Motor, 10 …… Low pressure system, 11 …… Tank, 12…
… Pressure switch, 13 …… Control relay, 14 …… Leakage device,
15 …… Block, 15a …… Hole, 16 …… Rod, 17 …… Gap, 20 …… Leakage device, 21 …… Variable throttle valve, 22 …… Fixed throttle, 23 …… Filter, 24 …… Block, 25 ... valve,
26 …… Spring, 27 …… Adjusting screw, 28 …… Spiral groove, 29…
… First disc, 30 …… Second disc, 31 …… Tightening screw,
32 …… through hole, 33 …… packing, 34 …… outer edge of one side of the first disc, 35 …… gap between the second disc and block.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガス封入形アキュムレータに油ポンプで蓄
圧し、前記アキュムレータの高圧油で遮断器を開閉させ
る液圧操作機構であって、前記アキュムレータと油ポン
プとを各組ごとに独立して設け、各相の高圧系側の油圧
を圧力スイッチで検出して、第1の設定圧力で前記油ポ
ンプを駆動し、前記第1の設定圧力よりも高い第2の設
定圧力で前記油ポンプを停止させる遮断器用液圧操作機
構において、 前記各相の高圧系と低圧系との間に、可変絞り弁と固定
絞りとを直列に接続して成る漏液装置を設け、前記可変
絞り弁によって前記高圧系から低圧系への漏油量を制御
するようにしたことを特徴とする遮断器用液圧操作機
構。
1. A hydraulic operation mechanism for accumulating a gas-filled accumulator with an oil pump and opening and closing a circuit breaker with high-pressure oil of the accumulator, wherein the accumulator and the oil pump are provided independently for each group. , The hydraulic pressure on the high pressure side of each phase is detected by a pressure switch, the oil pump is driven at a first set pressure, and the oil pump is stopped at a second set pressure higher than the first set pressure. In the hydraulic operating mechanism for circuit breaker, a liquid leakage device is provided, in which a variable throttle valve and a fixed throttle are connected in series between the high pressure system and the low pressure system of each phase, and the high pressure is controlled by the variable throttle valve. A hydraulic operating mechanism for a circuit breaker, characterized in that the amount of oil leakage from the system to the low pressure system is controlled.
【請求項2】前記漏液装置の固定絞りに設けられる油の
流路が、螺旋状に形成されていることを特徴とする請求
項1記載の遮断器用液圧操作機構。
2. A hydraulic operating mechanism for a circuit breaker according to claim 1, wherein the oil passage provided in the fixed throttle of the liquid leakage device is formed in a spiral shape.
JP31329689A 1989-12-04 1989-12-04 Hydraulic operating mechanism for circuit breaker Expired - Lifetime JPH0777094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31329689A JPH0777094B2 (en) 1989-12-04 1989-12-04 Hydraulic operating mechanism for circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31329689A JPH0777094B2 (en) 1989-12-04 1989-12-04 Hydraulic operating mechanism for circuit breaker

Publications (2)

Publication Number Publication Date
JPH03176917A JPH03176917A (en) 1991-07-31
JPH0777094B2 true JPH0777094B2 (en) 1995-08-16

Family

ID=18039514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31329689A Expired - Lifetime JPH0777094B2 (en) 1989-12-04 1989-12-04 Hydraulic operating mechanism for circuit breaker

Country Status (1)

Country Link
JP (1) JPH0777094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220165606A (en) * 2021-06-08 2022-12-15 한국전력공사 Hydraulic Oil filtering device for hydraulic operated circuit breaker

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9111861U1 (en) * 1991-09-23 1991-11-14 ABB Patent GmbH, 6800 Mannheim Hydraulic drive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220165606A (en) * 2021-06-08 2022-12-15 한국전력공사 Hydraulic Oil filtering device for hydraulic operated circuit breaker

Also Published As

Publication number Publication date
JPH03176917A (en) 1991-07-31

Similar Documents

Publication Publication Date Title
CN101080592B (en) Hydraulic control valve with integrated dual actuators
US8505581B2 (en) Pressure compensated electromagnetic proportional directional flow control valve
JPS61132787A (en) Control valve device for variable delivery pump
KR950704617A (en) Pressurized fluid supply system
EP0434092B1 (en) Flow control valve
JPH0777094B2 (en) Hydraulic operating mechanism for circuit breaker
US5857662A (en) Electrohydraulic stop device
US5181534A (en) Flow control valve
JPS5952314B2 (en) Automatic shutoff device in case of rupture of natural gas, etc. transportation pipes
US20040244845A1 (en) Three-way valve
JPH04188522A (en) Breaker operating mechanism with hydraulic pressure
JPS5983808A (en) Servo valve and its driving method
JPH07139307A (en) Actuator for control valve
RU2234020C2 (en) Plate valve
US4858651A (en) Control valve for construction equipment
KR100346091B1 (en) Apparatus for driving fluid pressure in breaker
JPH0743565Y2 (en) Pilot valve device
JP2839767B2 (en) Operating device for resistance cut-off circuit breaker
KR910008294A (en) Load pressure compensation pump discharge flow rate control circuit
JPH0298023A (en) Pilot valve device
RU2097639C1 (en) Shutoff valve
JPS6027841B2 (en) fluid control device
RU2064608C1 (en) Servo-actuated valve
JP3346088B2 (en) Hydraulic operation circuit for power switchgear
SU1474601A1 (en) Flow rate controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees