JPH0776680B2 - Control method for twin-steering vehicle - Google Patents

Control method for twin-steering vehicle

Info

Publication number
JPH0776680B2
JPH0776680B2 JP3110717A JP11071791A JPH0776680B2 JP H0776680 B2 JPH0776680 B2 JP H0776680B2 JP 3110717 A JP3110717 A JP 3110717A JP 11071791 A JP11071791 A JP 11071791A JP H0776680 B2 JPH0776680 B2 JP H0776680B2
Authority
JP
Japan
Prior art keywords
acceleration
angular velocity
wing
controller
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3110717A
Other languages
Japanese (ja)
Other versions
JPH04316994A (en
Inventor
宣良 内山
昌史 守田
孝光 堀之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOEICHO GIJUTSU KENKYU HONBUCHO
Original Assignee
BOEICHO GIJUTSU KENKYU HONBUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOEICHO GIJUTSU KENKYU HONBUCHO filed Critical BOEICHO GIJUTSU KENKYU HONBUCHO
Priority to JP3110717A priority Critical patent/JPH0776680B2/en
Publication of JPH04316994A publication Critical patent/JPH04316994A/en
Publication of JPH0776680B2 publication Critical patent/JPH0776680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、双操舵飛しょう体の制
御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a twin-steering vehicle.

【0002】[0002]

【従来の技術】従来の前翼及び後翼を操舵しピッチ及び
ヨー運動を制御する双操舵飛しょう体の制御プロック図
を図4に示す。
2. Description of the Related Art FIG. 4 is a control block diagram of a conventional twin-steering vehicle that steers front and rear wings to control pitch and yaw motions.

【0003】第1の減算器10は加速度指令10sを加
算入力し加速度センサ17の出力を減算入力して、その
出力を第1の制御器1と第3の制御器3へ送る。また第
2の減算器11は加速度指令11sを加算入力し角速度
センサ16の出力を減算入力して、その出力を第2の制
御器2と第4の制御器4へ送る。第1の加算器12は第
1の制御器1と第2の制御器2の出力を受け、その出力
を前翼を操舵する前部操舵装置14へ送る。また第2の
加算器13は第3の制御器3と第4の制御器4の出力を
受け、その出力を後翼を操舵する後部操舵装置15へ送
る。
The first subtractor 10 inputs the acceleration command 10s in addition and subtracts the output of the acceleration sensor 17, and sends the output to the first controller 1 and the third controller 3. Further, the second subtractor 11 inputs the acceleration command 11s in addition, subtracts the output of the angular velocity sensor 16 in input, and sends the output to the second controller 4 and the fourth controller 4. The first adder 12 receives the outputs of the first controller 1 and the second controller 2, and sends the output to the front steering device 14 that steers the front wing. Further, the second adder 13 receives the outputs of the third controller 3 and the fourth controller 4, and sends the output to the rear steering device 15 for steering the rear wing.

【0004】以上の構成において、加速度指令10sを
受け、第1の制御器1,前部操舵装置14の系統で、前
翼が加速度のフィードバック制御操作されるとともに、
第3の制御器3,後部操舵装置15の系統で、後翼が加
速度のフィードバック制御操作される。また角速度指令
11sを受け、第2の制御器2,前部操舵装置14の系
統で前翼が角速度のフィードバック制御操作されるとと
もに、第4の制御器4,後部操舵装置15の系統で後翼
が角速度のフィードバック制御操作される。
In the above configuration, the acceleration command 10s is received, and the system of the first controller 1 and the front steering device 14 performs feedback control operation of the acceleration of the front wing, and
In the system of the third controller 3 and the rear steering device 15, the rear wing is operated by feedback control of acceleration. Further, in response to the angular velocity command 11s, the front wing is feedback-controlled for the angular velocity by the system of the second controller 2 and the front steering device 14, and the rear wing is operated by the system of the fourth controller 4 and the rear steering device 15. Is operated by feedback control of angular velocity.

【0005】以上のようにして飛しょう体の運動が制御
されていた。
The movement of the flying object has been controlled as described above.

【0006】[0006]

【発明が解決しようとする課題】上記従来のフィードバ
ック制御方法は図4に示すような多入力・多出力の回路
となり、設計すべき制御器は4つ以上となって、前翼又
は後翼単独の制御回路に比べて複雑になり、設計が難し
かった。
The above-mentioned conventional feedback control method is a multi-input / multi-output circuit as shown in FIG. 4, and the number of controllers to be designed is four or more. It was more complicated than the control circuit of and its design was difficult.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
The present invention takes the following means in order to solve the above problems.

【0008】すなわち、双操舵飛しょう体の制御方法と
して、前翼および後翼を独立に可動させることのできる
飛しょう体のピッチ及びヨー方向の制御方法において、
角速度指令により角速度のフィードバック制御操作を上
記後翼に行うとともに、加速度指令により加速度のフィ
ードバック制御操作を上記前翼および後翼に行うように
した。
That is, as a method for controlling a twin-steering flying body, in a method for controlling the pitch and yaw direction of the flying body in which the front and rear wings can be independently moved,
The feedback control operation of the angular velocity is performed on the rear wing by the angular velocity command, and the feedback control operation of the acceleration is performed on the front wing and the rear wing by the acceleration command.

【0009】[0009]

【作用】上記手段にて、角速度指令により後翼が角速度
のフィードバック制御操作され、後翼の舵角に応じて飛
しょう体は所定の角速度で旋回(回転)する。また加速
度指令により、前翼および後翼が加速度のフィードバッ
ク制御操作され、前翼および後翼の舵角に応じて飛しょ
う体は所定の加速度で飛しょう(並進加速)する。
With the above means, the rear wing is subjected to the feedback control operation of the angular velocity by the angular velocity command, and the flying body turns (rotates) at a predetermined angular velocity according to the steering angle of the rear wing. The front and rear wings are subjected to feedback control of acceleration by the acceleration command, and the flying body flies at a predetermined acceleration (translational acceleration) according to the steering angles of the front and rear wings.

【0010】以上のようにして簡単な制御系で容易に飛
しょう体の運動が制御されるようになる。
As described above, the motion of the flying body can be easily controlled by the simple control system.

【0011】[0011]

【実施例】本発明の一実施例を図1から図3により説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS.

【0012】図3に示すように双操舵飛しょう体01は
前翼02と後翼03を持っている。また飛しょう体01
には図1に示すような誘導制御装置が搭載されている。
As shown in FIG. 3, the twin-steering vehicle 01 has a front wing 02 and a rear wing 03. Flying body 01
1 is equipped with a guidance control device as shown in FIG.

【0013】ホーミング装置1の出力は誘導演算器2を
経てコマンド発生器3へ送られる。またコマンド発生器
3にはモード制御器4の出力が入力されている。コマン
ド発生器3の出力は順次第1の減算器10,第1の制御
器1を経て第1の動圧ゲイン補償器6aから前部操舵装
置14へ送られる。またコマンド発生器3の出力は順次
第2の減算器11,第2の制御器2,第2の動圧ゲイン
補償器6b,加算器8を経て後部操舵装置15へ送られ
る。
The output of the homing device 1 is sent to the command generator 3 via the guidance calculator 2. Further, the output of the mode controller 4 is input to the command generator 3. The output of the command generator 3 is sequentially sent from the first dynamic pressure gain compensator 6a to the front steering device 14 via the first subtractor 10 and the first controller 1. The output of the command generator 3 is sequentially sent to the rear steering device 15 through the second subtractor 11, the second controller 2, the second dynamic pressure gain compensator 6b, and the adder 8.

【0014】加速度センサ17,角度センサ16の出力
はそれぞれ第1の減算器10,第2の減算器11へ入力
される。また第1の動圧ゲイン補償器6aの出力は配分
係数器7を経て加算器8へ送られる。
The outputs of the acceleration sensor 17 and the angle sensor 16 are input to the first subtractor 10 and the second subtractor 11, respectively. The output of the first dynamic pressure gain compensator 6 a is sent to the adder 8 via the distribution coefficient unit 7.

【0015】以上の構成において、飛しょう体01の飛
しょう中、ホーミング装置は誘導信号1sを発生し誘導
演算器2へ送る。誘導演算器2は入力から、目標への誘
導演算を行いその信号をコマンド発生器3へ送る。コマ
ンド発生器3は入力から加速度指令10sと角速度指令
11sを出力する。
In the above structure, the homing device generates the guidance signal 1s and sends it to the guidance calculator 2 while the flying object 01 is flying. The guidance calculator 2 performs guidance calculation to the target from the input and sends the signal to the command generator 3. The command generator 3 outputs an acceleration command 10s and an angular velocity command 11s from the input.

【0016】これら加速度指令10sと角速度指令11
sにより行われる加速度制御と、角速度制御の作用,原
理を図2と図3により説明する。 (a)加速度制御 加速度指令10sが入力されると、加速度センサ出力と
減算器10で比較され、制御器5a,を通って前翼02
と後翼03の操舵に配分される。
These acceleration command 10s and angular velocity command 11
The operation and principle of the acceleration control performed by s and the angular velocity control will be described with reference to FIGS. 2 and 3. (A) Acceleration control When the acceleration command 10s is input, the output of the acceleration sensor is compared with the subtractor 10, and the front wing 02 is passed through the controller 5a.
And the rear wing 03 steering.

【0017】ここに図中K1 とK2 がその配分比を決め
る係数で、前翼02の発生するモーメントと、後翼03
の発生するモーメントが(1)式に従って釣り合い、回
転力を発生しないような値に調節される。
In the figure, K 1 and K 2 are coefficients that determine the distribution ratio, and the moment generated by the front blade 02 and the rear blade 03.
The moment generated by is balanced according to the equation (1), and is adjusted to a value such that no rotational force is generated.

【0018】 F1 1 =F2 2 ───────────(1) ただし,F1 :前翼による揚力,l1 :アーム長 F2 : 後翼による揚力,l2 :アーム長 このようにして、前翼02及び後翼03が操舵され、飛
しょう体01は(2)式に示す並進加速度を発生する。
F 1 l 1 = F 2 l 2 ───────────── (1) where F 1 is the lift force of the front wing, l 1 is the arm length F 2 is the lift force of the rear wing, l 2 : Arm length In this way, the front wing 02 and the rear wing 03 are steered, and the flying object 01 generates the translational acceleration shown in the equation (2).

【0019】 a=(F1 +F2 )/m ────────(2) ただし,m:飛しょう体の質量 (b)角速度制御 角速度指令11sが入力されると、角速度センサ16出
力と減算器11で比較され、制御器5bを通って後翼0
3の操舵が行われる。これにより飛しょう体01に
(3)式に示す回転モーメントが発生し、所定の角速度
で回転する。
A = (F 1 + F 2 ) / m ────────── (2) where m is the mass of the flying object (b) Angular velocity control When the angular velocity command 11s is input, the angular velocity sensor 16 The output is compared with the subtracter 11, and the rear wing 0 passes through the controller 5b.
Steering of 3 is performed. As a result, the rotational moment shown by the equation (3) is generated in the flying object 01, and the flying object 01 rotates at a predetermined angular velocity.

【0020】 dω/dt=F2 2 /I ───────(3) ただし,I:飛しょう体の慣性モーメント 図1の実施例では、(1)式のモーメントの釣り合は配
分係数器7と加算器8で行われている。
Dω / dt = F 2 l 2 / I ──────── (3) However, I: Moment of inertia of the flying body In the embodiment of FIG. It is performed by the distribution coefficient unit 7 and the adder 8.

【0021】以上のようにして2個の制御器による二系
統の制御系で容易に飛しょう体01の運動が制御され
る。
As described above, the motion of the flying object 01 is easily controlled by the two-system control system including the two controllers.

【0022】[0022]

【発明の効果】以上に説明したように、本発明により制
御回路を簡単にすることができ、設計時間の短縮,ミサ
イル制御装置計算量の軽減が可能となる。
As described above, according to the present invention, the control circuit can be simplified, the design time can be shortened, and the missile control device calculation amount can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成系統図である。FIG. 1 is a configuration system diagram of an embodiment of the present invention.

【図2】同実施例の作用説明図である。FIG. 2 is an explanatory view of the operation of the same embodiment.

【図3】(a)および(b)は同実施例の作用説明図で
ある。
3 (a) and 3 (b) are explanatory views of the operation of the embodiment.

【図4】従来例の双操舵翼方式ミサイルの制御方法の構
成系統図である。
FIG. 4 is a structural system diagram of a control method of a conventional twin steering wing type missile.

【符号の説明】[Explanation of symbols]

1 ホーミング装置 2 誘導演算器 3 コマンド発生器 4 モード制御器 5a,5b 制御器 6b,6b 動圧ゲイン補償器 7 配分係数器 8 加算器 9a,9b 係数器 10,11 減算器 14 前部操舵装置 15 後部操舵装置 16 角度センサ 17 加速度センサ 1 Homing device 2 Induction calculator 3 Command generator 4 Mode controller 5a, 5b Controller 6b, 6b Dynamic pressure gain compensator 7 Distribution coefficient unit 8 Adder 9a, 9b Coefficient unit 10, 11 Subtractor 14 Front steering device 15 Rear steering device 16 Angle sensor 17 Acceleration sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 前翼及び後翼を独立に可動させることの
できる飛しょう体のピッチ及びヨー方向の制御方法にお
いて、角速度指令により角速度のフィードバック制御操
作を上記後翼に行うとともに、加速度指令により加速度
のフィードバック制御操作を上記前翼および後翼に行う
ことを特徴とする双操舵飛しょう体の制御方法。
1. A method for controlling a pitch and a yaw direction of a flying vehicle, wherein the front wing and the rear wing can be independently moved, and a feedback control operation of the angular velocity is performed on the rear wing by an angular velocity command, and an acceleration command is performed by the acceleration command. A method of controlling a twin-steering vehicle, characterized in that feedback control operation of acceleration is performed on the front wing and the rear wing.
JP3110717A 1991-04-17 1991-04-17 Control method for twin-steering vehicle Expired - Lifetime JPH0776680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3110717A JPH0776680B2 (en) 1991-04-17 1991-04-17 Control method for twin-steering vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3110717A JPH0776680B2 (en) 1991-04-17 1991-04-17 Control method for twin-steering vehicle

Publications (2)

Publication Number Publication Date
JPH04316994A JPH04316994A (en) 1992-11-09
JPH0776680B2 true JPH0776680B2 (en) 1995-08-16

Family

ID=14542701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3110717A Expired - Lifetime JPH0776680B2 (en) 1991-04-17 1991-04-17 Control method for twin-steering vehicle

Country Status (1)

Country Link
JP (1) JPH0776680B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576693A (en) * 2013-11-11 2014-02-12 哈尔滨工程大学 Underwater robot three-dimensional path tracking control method based on second-order filter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2739698B2 (en) * 1994-09-26 1998-04-15 防衛庁技術研究本部長 How to control flying objects
US5590850A (en) 1995-06-05 1997-01-07 Hughes Missile Systems Company Blended missile autopilot
JP5995734B2 (en) * 2013-01-28 2016-09-21 三菱重工業株式会社 Flying body control device, flying body and flying body control method
CN103941741B (en) * 2014-04-28 2016-06-01 北京控制工程研究所 Based on the control moment gyro frame corners speed control method for determination of amount of zero motion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576693A (en) * 2013-11-11 2014-02-12 哈尔滨工程大学 Underwater robot three-dimensional path tracking control method based on second-order filter

Also Published As

Publication number Publication date
JPH04316994A (en) 1992-11-09

Similar Documents

Publication Publication Date Title
JP3645038B2 (en) Aircraft flight control equipment
JPH07196048A (en) Electric power steering device
KR100351378B1 (en) Mobile body controlling gear
JP2001191937A (en) Vehicle steering device
JP3267516B2 (en) Directional linear movement control equipment for ships
JPH0776680B2 (en) Control method for twin-steering vehicle
CN114637203A (en) Flight control system for medium-high speed and large-sized maneuvering unmanned aerial vehicle
JP3064204B2 (en) Attitude control system for submersible
JPH0357771A (en) Motor-driven type independent system rear wheel steering device
JP2739698B2 (en) How to control flying objects
JPH11139392A (en) Method for controlling rudder of underwater sailing body
JP5085244B2 (en) Vehicle steering device
JP2518245B2 (en) Rear wheel steering system for vehicles
JP2636189B2 (en) Flying object control device
CN116719332B (en) Unmanned aerial vehicle position and posture regulation and control system and method based on tilting rotor
JPH01260299A (en) Missile equipped with fore wing and rear wing
JPS63290400A (en) Twin steering type missile
JP3292512B2 (en) Flying object attitude control method
JP2523187B2 (en) Vehicle steering angle control device
JP2001201300A (en) Guidance missile
JP2566235B2 (en) Flight control
JPH07325622A (en) Automatic steering device
JP2503525B2 (en) Flight control device
JPS59100903A (en) Servocontrol device of industrial robot
JPH11201700A (en) Airframe

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term