JPH0776402B2 - Super heat resistant alloy - Google Patents

Super heat resistant alloy

Info

Publication number
JPH0776402B2
JPH0776402B2 JP62154273A JP15427387A JPH0776402B2 JP H0776402 B2 JPH0776402 B2 JP H0776402B2 JP 62154273 A JP62154273 A JP 62154273A JP 15427387 A JP15427387 A JP 15427387A JP H0776402 B2 JPH0776402 B2 JP H0776402B2
Authority
JP
Japan
Prior art keywords
high temperature
alloy
less
ductility
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62154273A
Other languages
Japanese (ja)
Other versions
JPS64241A (en
JPH01241A (en
Inventor
一郎 辻
久孝 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62154273A priority Critical patent/JPH0776402B2/en
Publication of JPS64241A publication Critical patent/JPS64241A/en
Publication of JPH01241A publication Critical patent/JPH01241A/en
Publication of JPH0776402B2 publication Critical patent/JPH0776402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービンのタービン動翼用及び回転円盤用
材料、高温ブロワーの動翼用及び回転円盤用材料、デイ
ーゼルエンジンの燃焼噴射・ノズル用材料、デイーゼル
エンジンのバルブ用材料として有利に適用される粉末冶
金用として好適な析出硬化型Ni基超耐熱合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a material for a turbine blade of a gas turbine and a rotating disk, a material for a blade of a high temperature blower and a rotating disk, and a combustion injection / nozzle of a diesel engine. The present invention relates to a precipitation-hardening Ni-base superalloy suitable for powder metallurgy, which is advantageously applied as a material for a diesel engine valve.

〔従来の技術〕[Conventional technology]

現在、鍛造できる超耐熱合金で高温強度が世界最強のも
のは下記の通りで、米国スペシヤルメタル社(Special
Metals社)(米国特許第4,083,734号参照)の開発した
析出強型Ni基超耐熱合金である。
Currently, the super heat resistant alloys that can be forged with the highest high temperature strength in the world are as follows.
It is a precipitation-strength Ni-based superheat-resistant alloy developed by Metals, Inc. (see US Pat. No. 4,083,734).

重量%でCr:12.0〜20.0%、Co:13.0〜19.0%、Ti:4.75
〜7.0%、Al:1.3〜3.0%、Mo:2.0〜3.5%、W:0.5〜2.5
%、C:0.005〜0.045%、B:0.005〜0.03%、Zr:0.08%以
下、Mn:0.75%以下、稀土類元素:0.2%以下、不可避的
不純物元素例えばMg,Ca,Sr,Ba:0.2%以下、残り:Ni。
Cr: 12.0 to 20.0%, Co: 13.0 to 19.0%, Ti: 4.75 by weight%
~ 7.0%, Al: 1.3 ~ 3.0%, Mo: 2.0 ~ 3.5%, W: 0.5 ~ 2.5
%, C: 0.005-0.045%, B: 0.005-0.03%, Zr: 0.08% or less, Mn: 0.75% or less, rare earth element: 0.2% or less, unavoidable impurity elements such as Mg, Ca, Sr, Ba: 0.2 % Or less, rest: Ni.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前述のNi基超耐熱合金は高温強度がすぐれ、高温延性や
靱性もすぐれている。しかし、該合金は鍛造性が良好で
なく、大きな鍛造品(概ね、製品の重量10kg以上)を製
作することが困難であり、又、結晶粒度が大きくなりや
すく〔JIS G0551の結晶粒度番号(N):2.0〜−1.0〕、
延性(伸び)や高温の疲れ強さが低下する場合が多い。
The above-mentioned Ni-base superalloys have excellent high temperature strength, high temperature ductility and toughness. However, the alloy does not have good forgeability, and it is difficult to manufacture a large forged product (generally, the product weight is 10 kg or more), and the crystal grain size tends to be large [JIS G0551 grain size number (N ): 2.0 to −1.0],
Ductility (elongation) and high temperature fatigue strength often decrease.

Ti、Alの含有量の多い(概ね、Ti+Al量≧7%)析出硬
化型Ni基超耐熱合金は鍛造が一般に非常に困難である。
そこで、予めこれらの合金を粉末にして、粉末を製品に
近い形状に焼結することにより製作する方法(粉末冶金
法)がある。
It is generally very difficult to forge a precipitation hardening type Ni-base superalloy having a large content of Ti and Al (generally, Ti + Al content ≧ 7%).
Therefore, there is a method (powder metallurgy) in which these alloys are powdered in advance and the powder is sintered into a shape close to a product.

粉末冶金法で析出硬化型Ni基超耐熱合金の製品(例えば
ガスタービンの動翼など)を製作する場合、合金の粉末
粒子の表面に、酸化物やチタン炭化物などによるPPB(P
rior Parti−cle Boundaryの略称)が生成し、粉末を固
化したとき、材料欠陥の原因となり、延性(伸び)や高
温強度が阻害される。
When manufacturing precipitation hardenable Ni-based super heat-resistant alloy products by powder metallurgy (such as gas turbine blades), PPB (PB
rior Parti-cle Boundary) is generated, and when the powder is solidified, it causes material defects, and ductility (elongation) and high temperature strength are impaired.

PPBの生成は合金粉末の製造方法(例えば、ガス噴霧
法、真空噴霧法、或いは遠心噴霧法など各種の方法があ
る。)にも依存するが、合金組成に大きく依存する。
The formation of PPB depends on the alloy powder production method (for example, various methods such as gas atomization method, vacuum atomization method, and centrifugal atomization method), but largely depends on the alloy composition.

本発明は良好な合金粉末が製造でき、固化した後でもPP
Bの発生がなく、延性(伸び)が非常に大きな粉末冶金
用析出硬化型Ni基超耐熱合金を提供しようとするもので
ある。
The present invention can produce good alloy powder, and even after solidification, PP
An object of the present invention is to provide a precipitation hardenable Ni-based superheat-resistant alloy for powder metallurgy, which does not generate B and has extremely large ductility (elongation).

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、Ti、Alなどの金属間化合物γ′相{Ni3(A
l、Ti)}の析出による析出硬化の作用ある合金元素、M
o、Wなどの固溶体強化と炭化物の析出による弱析出硬
化の作用ある合金元素を含む粉末冶金用析出硬化型Ni基
超耐熱合金のPPBの生成を押さえるため、Taを0.25〜1.5
%添加し、炭素量0.01〜0.08%に低目に押えたことを特
徴とするものである。
The present invention is based on the intermetallic compound γ ′ phase {Ni 3 (A 3
l, Ti)} alloying element that has the effect of precipitation hardening due to the precipitation of M
In order to suppress the formation of PPB of precipitation hardenable Ni-base superalloys for powder metallurgy containing alloying elements that have an action of weak precipitation hardening due to solid solution strengthening such as o and W and precipitation of carbides, Ta is 0.25 to 1.5.
%, The carbon content is kept low at 0.01 to 0.08%.

すなわち本発明は重量%でCr:12〜20%、Co:12〜18%、
Ti:4〜6%、Al:1〜4%、Mo:2〜5%、W:0.5〜2.5%、
Ta:0.25〜1.5%、C:0.01〜0.08%、B:0.08%以下及び残
部Niと不可避的不純物元素を含有してなることを特徴と
する粉末冶金用析出硬化型Ni基超耐熱合金である。
That is, the present invention is, by weight% Cr: 12-20%, Co: 12-18%,
Ti: 4-6%, Al: 1-4%, Mo: 2-5%, W: 0.5-2.5%,
Precipitation hardening type Ni-base superalloy for powder metallurgy, characterized by Ta: 0.25 to 1.5%, C: 0.01 to 0.08%, B: 0.08% or less and the balance Ni and inevitable impurity elements. .

〔作用〕[Action]

以下、本発明の合金元素の範囲を設定した理由を下記に
示す。
Hereinafter, the reason why the range of the alloy element of the present invention is set is shown below.

Cr:12〜20%(重量%、以下同じ) 産業用ガスタービンでは、高温における耐腐食性が必要
であり、Cr量を多く添加するほど、その硬化は顕著にな
る。Cr量が12%未満では、その効果は少なく、十分でな
いので12%以上必要である。一方、Ni基超耐熱合金にお
いては、Cr量をあまり多く添加すると、σ相(シグマ
相)などの金属間化合物が高温(750〜950℃)で長時間
(概ね、1000時間以上)使用すると析出し、金属組織的
に不安定となり、高温強度や延性(伸び)が低下するの
で、20%以下とした。
Cr: 12 to 20% (wt%, the same applies hereinafter) Industrial gas turbines require corrosion resistance at high temperatures, and the more Cr added, the more pronounced the hardening becomes. If the Cr content is less than 12%, the effect is small and it is not sufficient, so 12% or more is necessary. On the other hand, in Ni-based super heat-resistant alloys, if Cr content is added too much, intermetallic compounds such as σ phase (sigma phase) will precipitate if used at high temperature (750 to 950 ° C) for a long time (generally 1000 hours or more). However, the metallographic structure becomes unstable and the high temperature strength and ductility (elongation) decrease, so it was made 20% or less.

Co:12〜18% TiやAlなどの析出硬化型Ni基超耐熱合金においては、溶
体化処理において、TiとAlを十分に基質中に固溶させ、
時効処理において、γ′相{Ni3(Al,Ti)}の金属間化
合物として、微細均一に析出させることにより、良好な
高温強度が得られるのであるが、CoはこのTiやAlなど
を、高温で固溶させる限度(固溶限)を大きくする作用
がある。本発明合金に必要なTiとAl量では、Co量は12%
以上必要である。一方、Coは資源的にも少なく、コスト
的にも高いので、不必要に多量添加する必要がないの
で、18%以下とした。
Co: 12-18% In precipitation hardenable Ni-base superalloys such as Ti and Al, in solution treatment, Ti and Al are sufficiently dissolved in the substrate,
In the aging treatment, good high temperature strength can be obtained by finely and uniformly precipitating the γ'phase {Ni 3 (Al, Ti)} intermetallic compound. It has the effect of increasing the limit of solid solution at high temperature (solid solution limit). Of the Ti and Al amounts required for the alloy of the present invention, the Co amount is 12%.
The above is necessary. On the other hand, Co is limited in terms of resources and cost, so it is not necessary to add an unnecessarily large amount.

Ti:4〜6% Tiは析出硬化型Ni基超耐熱合金の高温強度を上げるため
の析出相(γ′相)の析出に絶対必要である。Tiが4%
未満では、設計要求の強度を満足することができない。
又、あまり多くすると、延性(伸び)を阻害し、又、強
度上昇も飽和してくるので、6%以下とした。
Ti: 4 to 6% Ti is absolutely necessary for precipitation of the precipitation phase (γ 'phase) for increasing the high temperature strength of the precipitation hardening Ni-base superalloy. Ti is 4%
If it is less than the above, the strength required for the design cannot be satisfied.
On the other hand, if it is too much, ductility (elongation) will be hindered and the increase in strength will also be saturated, so it was made 6% or less.

Al:1〜4% Alは、Tiと同じような効果があり、γ′相{Ni3(Al、T
i)}を生成して、高温強度を上げると同時に、高温に
おける耐腐食性(特に、耐酸化性)を改良する。その量
は1%以上必要であり、あまり多く添加すると、延性
(伸び)を阻害し、その効果が飽和するので、4%以下
とした。
Al: 1 to 4% Al has the same effect as Ti, and the γ'phase {Ni 3 (Al, T
i)} is generated to increase the high temperature strength and at the same time improve the corrosion resistance (particularly the oxidation resistance) at high temperature. The amount is required to be 1% or more, and if added too much, the ductility (elongation) is hindered and the effect is saturated, so the amount was made 4% or less.

Mo:2〜5% Moは、基質中に固溶して、高温強度を上昇させる効果
(固溶体強化)があると同時に、時効処理中に炭化物
〔Cr21MoWC6や(Mo、W)6Cなど〕となつて、析出する効果
(弱析出強化)があり、高温強度を上昇させる。その効
果は2%未満では少なく、又、あまり多く添加すると、
延性(伸び)を阻害するので5%以下とした。
Mo: 2 to 5% Mo has the effect of forming a solid solution in the matrix and increasing the high temperature strength (solid solution strengthening), and at the same time, it is a carbide [Cr 21 MoWC 6 or (Mo, W) 6 C during aging treatment. Etc.], there is an effect of precipitation (weak precipitation strengthening), and high temperature strength is increased. The effect is less than 2%, and if too much is added,
Since it impairs ductility (elongation), it was set to 5% or less.

W:0.5〜2.5% WはMoと同様に固溶体強化と弱析出強化の作用があり高
温強度を上昇させる。その効果は0.5%未満では少な
い。又、Wは比重の大きな元素であるため、あまり多く
添加すると、Ni基超耐熱合金の比重を大きくし、遠心力
の働く、タービン動翼では不利になり、コスト的にも高
くなるので、2.5%以下とした。
W: 0.5 to 2.5% W has the effects of solid solution strengthening and weak precipitation strengthening similarly to Mo and increases high temperature strength. The effect is less than 0.5%. Also, since W is an element with a large specific gravity, if added too much, the specific gravity of the Ni-base superheat-resistant alloy increases, which is disadvantageous in the turbine rotor blade where centrifugal force works, and also increases in cost. % Or less.

Ta:0.25〜1.5% Taは、本発明における特徴的な元素であり、これを添加
すると、前述のPPBの生成を押え、延性(伸び)を大き
くし、高温における塑性加工(鍛造性)を容易にする。
Ta: 0.25 to 1.5% Ta is a characteristic element in the present invention, and when added, it suppresses the formation of PPB described above, increases ductility (elongation), and facilitates plastic working (forgeability) at high temperatures. To

その効果は0.25%以上のTaが必要であるが多く添加して
も、その効果は飽和し、あまり有効でない。Taは高温強
度の上昇にも有効であるが、TaはWと同様に比重の大き
な元素であり、あまり多く添加すると、Ni基超耐熱合金
の比重を大きくし、遠心力の働く、タービン動翼では不
利となり、コスト的にも高価な元素であるので、1.5%
以下とした。
The effect requires Ta of 0.25% or more, but even if a large amount is added, the effect saturates and is not very effective. Although Ta is also effective in increasing the high temperature strength, Ta is an element with a large specific gravity similar to W. If added too much, the specific gravity of the Ni-base superalloy will be increased, and centrifugal force will work. Is disadvantageous, and it is an expensive element, so 1.5%
Below.

C:0.01〜0.08% Cは炭化物を形成し、特に結晶粒界に析出して、粒界を
強化し、高温強度を上昇させるので、0.01%以上必要で
ある。しかし、あまり多く添加すると、前述のPPBを生
成させる傾向を強くするので、あまり多く添加すること
は望ましくなく0.08%以下とした。
C: 0.01 to 0.08% C forms a carbide, and particularly precipitates at crystal grain boundaries to strengthen the grain boundaries and increase high temperature strength, so 0.01% or more is necessary. However, if too much is added, the tendency to form the above-mentioned PPB becomes strong, so it is not desirable to add too much, and the content was made 0.08% or less.

B:0.08%以下 Bは、基質を強化して、高温強度を上昇させるものであ
るが、あまり多く添加しても、その効果は飽和し、又、
延性(伸び)を阻害する恐れがあるので0.08以下に制限
したが、好ましくは0.003%以上含ませることが好まし
い。
B: 0.08% or less B strengthens the substrate and increases the high temperature strength, but even if added in too much, its effect saturates.
Since the ductility (elongation) may be impaired, the content is limited to 0.08 or less, but preferably 0.003% or more is contained.

以上が本発明の粉末冶金用析出硬化型Ni基超耐熱合金の
必要元素である。
The above are the necessary elements of the precipitation hardening Ni-base superalloy for powder metallurgy of the present invention.

しかし、上記以外に、Zrは靱性(衝撃値)や延性(伸
び)の向上に有効であるので0.1%以下添加することは
好ましい態様であると云える。余り多く添加すると返つ
て高温強度を低下させるので、0.1%以上の添加は避け
るべきである。
However, in addition to the above, Zr is effective for improving toughness (impact value) and ductility (elongation), so it can be said that addition of 0.1% or less is a preferred embodiment. If added too much, the high temperature strength will be adversely affected, so addition of 0.1% or more should be avoided.

その他、通常のNi基超耐熱合金には、不純物元素として
原材料より、Si,Mn,Fe,P,S,CUが混入することが避けら
れないが、不可避的にこれらの元素が含まれることは許
容される。
Besides, it is unavoidable that Si, Mn, Fe, P, S, and CU are mixed as impurities elements from the raw materials in ordinary Ni-base superalloys, but it is unavoidable that these elements are included. Permissible.

又、Mg,Ca,Srなどは酸素との結合力が大で、溶解製錬上
脱酸剤として添加されることがある。したがつてこれら
の元素は最大0.2%までは存在することが許容される。
Further, Mg, Ca, Sr and the like have a large bonding force with oxygen and may be added as a deoxidizing agent in the melting and smelting. Therefore, these elements are allowed to be present up to 0.2%.

〔実施例〕〔Example〕

表1に示す化学組成の析出硬化型Ni基耐熱合金になるよ
うに、各種成分を真空高周波溶解炉で溶解し、Arガスに
よるガス噴霧法により粉末を製造し、粉末のふるい分け
により粘度−80メッシュ(すなわち粒径175μm以下)
の粉末を収集し、これを脱ガスして真空中で容器内に充
填、密封(真空度;10-5Torr以下)し、高温等圧プレス
(通常、HIP処理)で1150℃で1,000kg/cm2,2時間保持し
て焼結した。焼結後、容器を除去し、76mmφの棒状のも
のとし、これを約1,100℃の高温下で鍛伸化2Sで鍛伸し
た。
Various components were melted in a vacuum high frequency melting furnace so that a precipitation hardenable Ni-based heat-resistant alloy with the chemical composition shown in Table 1 was prepared, powder was manufactured by a gas atomization method using Ar gas, and viscosity was -80 mesh by sieving the powder. (That is, particle size of 175 μm or less)
Powder is collected, degassed, filled in a container in a vacuum, sealed (vacuum degree: 10 -5 Torr or less), and 1,000 kg / at 1150 ° C with a high temperature isostatic press (usually HIP processing). cm 2 was held for 2 hours for sintering. After sintering, the container was removed to form a rod having a diameter of 76 mm, and the rod was forged at a high temperature of about 1,100 ° C by forging 2S.

この鍛伸した棒材より、第1図に示す試験片(第1図
(a)は本発明合金,第1図(b)は比較合金用)を採
取し、1050℃で高温引張試験機を用いて引張り試験を実
施し、更に、試験片を1170℃溶体化処理×4時間後N2
ス冷却条件の溶体化処理,1080℃×4時間後N2ガス冷却
条件の安定化処理,845℃×24時間後空気中放冷条件の1
段時効処理,最後に760℃×16時間後空気中放冷条件の
2段時効処理を行つた後、クリープ破断試験(温度;843
℃,応力;35.2kg/mm2)を実施した。
From this forged rod, the test piece shown in FIG. 1 (FIG. 1 (a) is the alloy of the present invention, FIG. 1 (b) is for the comparative alloy) was sampled and subjected to a high temperature tensile tester at 1050 ° C. A tensile test was conducted using the solution, and the test piece was solution-treated at 1170 ° C for 4 hours and then solution-treated under N 2 gas cooling conditions, 1080 ° C for 4 hours after stabilization treatment under N 2 gas-cooled conditions, and 845 ° C. × 24 hours after cooling in air 1
Stage aging treatment, and finally after 760 ° C x 16 hours Two-stage aging treatment under air-cooling conditions, followed by creep rupture test (temperature; 843
C, stress; 35.2 kg / mm 2 ) was performed.

高温引張試験結果、クリープ破断試験結果を夫々、表2,
表3に示す。
The high temperature tensile test results and creep rupture test results are shown in Table 2,
It shows in Table 3.

なお第1図における数値の単位はmmで、記号Rは曲率半
径,φは直径,Mはネジ径を示す。
The unit of the numerical value in FIG. 1 is mm, the symbol R is the radius of curvature, φ is the diameter, and M is the screw diameter.

表2から明らかなように、本発明合金の引張破断時の伸
びは663.6%もあり、非常に延性が大きく、従来合金の
約7倍もあることが判明した。このことは、翼の鍛造
(恒温鍛造)など高温における塑性加工が非常に容易で
あることを示している。
As is clear from Table 2, the elongation of the alloy of the present invention at the time of tensile rupture was 663.6%, which was extremely high in ductility, and was found to be about 7 times that of the conventional alloy. This indicates that plastic working at high temperatures such as blade forging (constant temperature forging) is very easy.

また表3から明らかなように、本発明合金は破断時間も
従来合金の約2倍であり、クリープ破断伸び及び絞りも
大きく、本発明合金は高温強度がすぐれていることが判
明した。
Further, as is clear from Table 3, the alloy of the present invention has a rupture time about twice as long as that of the conventional alloy, the creep rupture elongation and the drawing are large, and it has been found that the alloy of the present invention has excellent high temperature strength.

また、JIS G 0551に従つて、熱処理後、両合金の結晶粒
度を測定したところ、 本発明合金 : 粒度番号 4.5 従来合金 : 粒度番号 3.5 であり、本発明合金の方が細粒(粒度番号の大きい方が
細粒)であつた。
Further, according to JIS G 0551, after heat treatment, the grain size of both alloys was measured, and it was found that the alloy of the present invention was: grain size number 4.5, the conventional alloy was: grain size number 3.5, and the alloy of the present invention had finer grain size (grain size number). The larger one was finer).

一般に、金属材料においては、結晶粒の細かい方が高サ
イクル疲れ強さは大きくなる傾向があり、本発明合金の
方が従来合金より、結晶粒が細かいことから、本発明合
金の方が高サイクル疲れ強さも、従来合金のそれより、
大きいと推測される。
Generally, in metal materials, finer crystal grains tend to have higher high cycle fatigue strength, and the alloy of the present invention has finer crystal grains than the conventional alloy. Fatigue strength is also better than that of conventional alloys,
Presumed to be large.

以上のように、C量を低目とし、Taを添加することによ
り、延性(伸び)が非常に大きくなることが判明した。
この両供試材について、顕微鏡組織を観察したところ、
従来合金ではPPBは若干観察されたが、本発明合金ではP
PBは全く検出されず、良好な顕微鏡組織であつた。これ
は、主に、Taの添加による効果であることが判明した。
一般に、PPBが生成すると、粒子の結合力を弱くし、き
裂発生の起点となりやすく、特に延性(伸び)を阻害す
る。
As described above, it was found that the ductility (elongation) becomes extremely large by making the C content low and adding Ta.
When observing the microscopic structure of both of these test materials,
Although PPB was slightly observed in the conventional alloy, PB was observed in the alloy of the present invention.
PB was not detected at all, and the microscopic structure was good. It was found that this was mainly due to the addition of Ta.
In general, when PPB is generated, the binding force of particles is weakened, and it tends to be a starting point of crack initiation, and particularly ductility (elongation) is hindered.

〔発明の効果〕〔The invention's effect〕

炭素量(C)を0.01〜0.08%の低い範囲に押え、Taを0.
25〜1.5%添加することにより、PPBの生成を阻止し、延
性(伸び)の大きいものとなつた。このように延性が大
きくなると、タービン動翼など高温鍛造加工性が著しく
大きくなり、製品の近似成形法(Near Net Shape、略し
てNNS技術と称す)が可能になる。
Keep the carbon content (C) in the low range of 0.01 to 0.08%, and set Ta to 0.
By adding 25 to 1.5%, the formation of PPB was prevented and the ductility (elongation) was increased. When ductility is increased in this way, high-temperature forgeability of turbine blades and the like is significantly increased, and an approximate forming method of products (Near Net Shape, abbreviated as NNS technology) becomes possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は高温引張試験,クリープ破断試験に使用する試
験片の形状を示す図で、(a)は本発明合金用試験片、
(b)は比較合金用試験片を示す図である。
FIG. 1 is a diagram showing the shape of a test piece used for a high temperature tensile test and a creep rupture test, and (a) is a test piece for an alloy of the present invention,
(B) is a figure which shows the test piece for comparative alloys.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%でCr:12〜20%、Co:12〜18%、Ti:4
〜6%、Al:1〜4%、Mo:2〜5%、W:0.5〜2.5%、Ta:
0.25〜1.5%、C:0.01〜0.08%、B:0.08%以下及び残部N
iと不可避的不純物元素を含有してなることを特徴とす
る超耐熱合金。
1. By weight%, Cr: 12 to 20%, Co: 12 to 18%, Ti: 4
~ 6%, Al: 1-4%, Mo: 2-5%, W: 0.5-2.5%, Ta:
0.25 to 1.5%, C: 0.01 to 0.08%, B: 0.08% or less and balance N
A super heat-resistant alloy containing i and unavoidable impurity elements.
JP62154273A 1987-06-23 1987-06-23 Super heat resistant alloy Expired - Lifetime JPH0776402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154273A JPH0776402B2 (en) 1987-06-23 1987-06-23 Super heat resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154273A JPH0776402B2 (en) 1987-06-23 1987-06-23 Super heat resistant alloy

Publications (3)

Publication Number Publication Date
JPS64241A JPS64241A (en) 1989-01-05
JPH01241A JPH01241A (en) 1989-01-05
JPH0776402B2 true JPH0776402B2 (en) 1995-08-16

Family

ID=15580555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154273A Expired - Lifetime JPH0776402B2 (en) 1987-06-23 1987-06-23 Super heat resistant alloy

Country Status (1)

Country Link
JP (1) JPH0776402B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711824B1 (en) * 2005-05-27 2007-04-30 노키아 코포레이션 Active current mode sampling circuit
CN110643857A (en) * 2019-09-29 2020-01-03 西安欧中材料科技有限公司 Nickel-based alloy powder without original grain boundary and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143802A (en) * 1974-10-11 1976-04-14 Esu Tee Kenkyusho Kk DOCHUHENIKEI
US4093476A (en) * 1976-12-22 1978-06-06 Special Metals Corporation Nickel base alloy

Also Published As

Publication number Publication date
JPS64241A (en) 1989-01-05

Similar Documents

Publication Publication Date Title
US9945019B2 (en) Nickel-based heat-resistant superalloy
EP1710322B1 (en) Nickel based superalloy compositions, articles, and methods of manufacture
US8734716B2 (en) Heat-resistant superalloy
EP2610360A1 (en) Co-based alloy
WO2020203460A1 (en) Ni-BASED SUPER-HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING Ni-BASED SUPER-HEAT-RESISTANT ALLOY
EP2899297A1 (en) Coating structure material
JP2009084684A (en) Nickel-based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine
JP2013502511A (en) Nickel superalloys and parts made from nickel superalloys
KR20200002965A (en) Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP2009149976A (en) Ternary nickel eutectic alloy
JP5395516B2 (en) Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
EP2942411A1 (en) High strength single crystal nickel based superalloy
JPH0116292B2 (en)
Guédou et al. Development of a new fatigue and creep resistant PM nickel-base superalloy for disk applications
JP6938765B2 (en) Manufacturing method of cobalt-based alloy powder, cobalt-based alloy sintered body and cobalt-based alloy sintered body
JP4635065B2 (en) Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JP4288821B2 (en) Low thermal expansion Fe-based heat-resistant alloy with excellent high-temperature strength
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance
JP3067416B2 (en) Ni-based alloy powder for manufacturing high temperature heat resistant parts
JPH0657359A (en) Ni-base heat resistant alloy
JPH0776402B2 (en) Super heat resistant alloy
JPH10317080A (en) Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts
JPH01241A (en) super heat resistant alloy
JPH01188645A (en) Oxide dispersion strengthened undirectional solidified ni-based alloy and its manufacture