JPH0776395B2 - Apparatus and method for producing high melting point and high toughness metal - Google Patents

Apparatus and method for producing high melting point and high toughness metal

Info

Publication number
JPH0776395B2
JPH0776395B2 JP18330289A JP18330289A JPH0776395B2 JP H0776395 B2 JPH0776395 B2 JP H0776395B2 JP 18330289 A JP18330289 A JP 18330289A JP 18330289 A JP18330289 A JP 18330289A JP H0776395 B2 JPH0776395 B2 JP H0776395B2
Authority
JP
Japan
Prior art keywords
container
conduit
metal
melting point
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18330289A
Other languages
Japanese (ja)
Other versions
JPH0347929A (en
Inventor
久幸 和田
辰雄 成富
義信 利田
年幸 太田
昌司 勝丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Nippon Steel Corp
Original Assignee
Chugai Ro Co Ltd
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd, Sumitomo Sitix Corp filed Critical Chugai Ro Co Ltd
Priority to JP18330289A priority Critical patent/JPH0776395B2/en
Publication of JPH0347929A publication Critical patent/JPH0347929A/en
Publication of JPH0776395B2 publication Critical patent/JPH0776395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Ti、Zr等の高融点高靭性金属を還元分離によ
り製造する装置およびその装置を使用した高融点高靭性
金属の製造方法に関する。
TECHNICAL FIELD The present invention relates to an apparatus for producing high melting point and high toughness metals such as Ti and Zr by reduction separation and a method for producing high melting point and high toughness metals using the apparatus. .

〔従来の技術〕[Conventional technology]

Ti、Zr等の高融点高靭性金属は、工業的にはその塩化物
を利用した還元法で製造されている。還元法による高融
点高靭性金属の製造には、従来より還元容器と凝縮容器
とが用いられており、最近は両者を並置し、水平な導管
で相互に連結した装置構成が多く採用されている。
High melting point and high toughness metals such as Ti and Zr are industrially produced by a reduction method using a chloride thereof. Conventionally, a reduction container and a condensation container have been used for the production of a high melting point and high toughness metal by the reduction method, and recently, a device configuration in which both of them are juxtaposed and connected to each other by a horizontal conduit is widely adopted. .

このような製造装置では、還元容器内に生成した高融点
高靭性のスポンジ状金属に残留する未反応活性金属およ
びその塩化物が真空分離され、その物質が導管を通じて
凝縮容器に回収される。真空分離物質を凝縮容器に回収
する場合、真空分離物質を導管内で凝縮させないため
に、導管が加熱されるが、その加熱に伴って導管が熱膨
張するのを避けることができない。この熱膨張による導
管の伸びは、大型装置では数cm以上に及び、還元容器と
凝縮容器とを水平な導管で接続した装置での大きな問題
になっている。従って、この種の装置では導管の熱膨張
を吸収することが重要課題になっており、そのための具
体的対策としては、導管を途中で分断し、その間に間隙
を設けた接続構造が特開昭59−80593号公報に開示され
ている。
In such a production apparatus, the unreacted active metal and its chloride remaining in the high melting point and high toughness sponge-like metal produced in the reduction container are vacuum-separated, and the substance is recovered in the condensation container through the conduit. When the vacuum separation material is collected in the condensing vessel, the conduit is heated in order not to condense the vacuum separation material in the conduit, but the conduit is unavoidably subject to thermal expansion. The expansion of the conduit due to this thermal expansion reaches several cm or more in a large-scale device, which is a serious problem in a device in which the reduction container and the condensation container are connected by a horizontal conduit. Therefore, in this type of device, it is an important issue to absorb the thermal expansion of the conduit, and as a concrete measure for this, a connecting structure in which the conduit is divided in the middle and a gap is provided between them is disclosed. It is disclosed in Japanese Patent Publication No. 59-80593.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところが、上記接続構造では、小型装置での導管の熱膨
張は上記間隙により吸収できるが、大型装置での数cm以
上に達する導管の伸びは殆ど吸収されない。従って、導
管の相互接続部分や導管と容器との接続部分に応力が集
中し、これらの接続部分に亀裂を発生させるおそれがあ
る。しかも、上記間隙をシールするためのパッキンには
冷却手段を必要とする。この冷却は導管の加熱と並行し
て行われるので、技術的に難しく、接続構造の複雑化を
招き、実用的とは言い難い。
However, in the above connection structure, the thermal expansion of the conduit in the small device can be absorbed by the gap, but the expansion of the conduit reaching several cm or more in the large device is hardly absorbed. Therefore, stress may be concentrated on the interconnecting portions of the conduits or the connecting portions between the conduits and the container, and cracks may occur at these connecting portions. Moreover, the packing for sealing the gap requires cooling means. Since this cooling is performed in parallel with the heating of the conduit, it is technically difficult, the connection structure is complicated, and it cannot be said to be practical.

本発明は斯かる状況に鑑みなされたもので、簡単な構造
で導管の熱膨張を完全に吸収できる高融点高靭性金属の
製造装置およびその製造装置を使用した高融点高靭性金
属の製造方法を提供することにある。
The present invention has been made in view of such circumstances, and an apparatus for producing a high melting point and high toughness metal capable of completely absorbing thermal expansion of a conduit with a simple structure, and a method for producing a high melting point and high toughness metal using the production apparatus are provided. To provide.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の製造装置は、製造すべき高融点高靭性金属の塩
化物を活性金属で還元して高融点高靭性のスポンジ状金
属を生成する還元容器と、該還元容器内に生成したスポ
ンジ状金属に残留する未反応活性金属およびその塩化物
を真空分離により回収する凝縮容器とを備えており、該
凝縮容器が前記還元容器の側方に並設され、両者が導管
にて一体的に連結されると共に、還元容器もしくは凝縮
容器の少なくとも一方が、前記導管の熱膨張に伴って従
動し得るように支持されていることを特徴としてなる。
The production apparatus of the present invention comprises a reduction container for reducing a chloride of a high melting point and high toughness metal to be produced with an active metal to produce a high melting point and high toughness sponge-like metal, and a sponge-like metal produced in the reduction container. A condensing container for recovering the unreacted active metal and its chloride remaining by vacuum separation by vacuum separation, the condensing container being juxtaposed to the side of the reducing container, and both are integrally connected by a conduit. In addition, at least one of the reduction container and the condensation container is supported so as to be able to follow the thermal expansion of the conduit.

本発明の製造方法は、前記還元容器内に生成したスポン
ジ状金属に残留する未反応活性金属およびその塩化物を
真空分離により前記凝縮容器内に回収する際に、真空分
離物質を前記導管内に凝固させないように前記導管を加
熱し、その加熱による前記導管の熱膨張を、熱膨張に伴
って従動し得るように支持された還元容器もしくは凝縮
容器の少なくとも一方の移動により吸収することを特徴
としてなる。
In the production method of the present invention, when the unreacted active metal and its chloride remaining in the sponge-like metal generated in the reduction container are recovered in the condensation container by vacuum separation, a vacuum separation substance is introduced into the conduit. Characterized in that the conduit is heated so as not to be solidified, and the thermal expansion of the conduit due to the heating is absorbed by the movement of at least one of a reduction container and a condensation container supported so as to be able to follow the thermal expansion. Become.

〔作用〕[Action]

本発明の製造装置および製造方法では、導管の熱膨張に
伴って還元容器もしくは凝縮容器の少なくとも一方が全
体的に従動するので、両方の容器が導管で一体的に連結
されているにもかかわらず導管の熱膨張が吸収される。
従って、導管接続部の破損が防止され、しかも、導管の
一体化により、その加熱が容易になると共に、パッキン
およびその冷却機構が不用になり、導管およびその付帯
機構が著しく簡素化される。また、導管の熱膨張は、導
管を通じて回収する物質の量や温度による影響を受け、
複雑な伸びを示すが、容器の従動で熱膨張を吸収する場
合には、導管の複雑な伸びにも容器が正確に追従し、そ
の伸びを確実に吸収することができる。
In the manufacturing apparatus and manufacturing method of the present invention, since at least one of the reduction container and the condensation container is wholly driven by the thermal expansion of the conduit, both containers are integrally connected by the conduit. The thermal expansion of the conduit is absorbed.
Therefore, damage to the conduit connection is prevented, and the integration of the conduit facilitates its heating and eliminates the need for packing and its cooling mechanism, greatly simplifying the conduit and its associated features. In addition, the thermal expansion of the conduit is affected by the amount and temperature of the substance recovered through the conduit,
Although it exhibits a complicated elongation, when the container is driven to absorb the thermal expansion, the container can accurately follow the complicated elongation of the conduit and reliably absorb the elongation.

本発明の製造装置および製造方法では、還元容器もしく
は凝縮容器の少なくとも一方が可動とされるが、実操業
上は凝縮容器のみを可動とするのが望ましい。これは分
離回収工程では内容物の重量が凝縮容器の方で軽く、容
器移動が容易なこと、還元容器が移動するとその加熱状
態が変化するおそれがあることなどが理由である。
In the manufacturing apparatus and the manufacturing method of the present invention, at least one of the reducing container and the condensing container is movable, but in actual operation, it is desirable to move only the condensing container. This is because in the separation and recovery step, the weight of the content is lighter in the condensation container, the container can be easily moved, and the heating state may change when the reduction container moves, and the like.

容器を可動とするための具体的手段としては容器を流体
スプリングで直接的又は間接的に支持するのが望まし
い。流体スプリングで容器を支持した場合には容器が僅
かの外力で移動し、導管に加わる応力が一層緩和される
と共に、回収処理が進行して容器の重量が変化しても、
流体圧を調整することにより容器を一定の高さに簡単に
保つことができる。更に、流体圧の調整により容器を一
定の高さに保った状態で流体圧を測定すれば、容器内の
物質量が定量的に検出され、分離回収処理の進行度が正
確に推定される。
As a concrete means for making the container movable, it is desirable to directly or indirectly support the container with a fluid spring. When the container is supported by the fluid spring, the container moves with a slight external force, the stress applied to the conduit is further alleviated, and even if the weight of the container changes due to the progress of the recovery process,
By adjusting the fluid pressure, the container can easily be kept at a constant height. Furthermore, if the fluid pressure is measured while the container is kept at a constant height by adjusting the fluid pressure, the amount of the substance in the container is quantitatively detected, and the progress of the separation and recovery process is accurately estimated.

〔実施例〕〔Example〕

以下に本発明の実施例をTiの製造について詳細に説明す
る。
Hereinafter, examples of the present invention will be described in detail regarding the production of Ti.

第1図は本発明を実施した製造装置の一例を示す断面図
である。
FIG. 1 is a sectional view showing an example of a manufacturing apparatus embodying the present invention.

還元容器10は加熱炉20に収容されている。還元容器10の
上方口部にはTiCl4の導入管11が接続されており、底部
には副産物の排出管12が接続されている。
The reduction container 10 is housed in a heating furnace 20. A TiCl 4 introduction pipe 11 is connected to the upper opening of the reduction container 10, and a by-product discharge pipe 12 is connected to the bottom.

凝縮容器30は冷却炉40に収容され、還元容器10とは同一
の構造で互換的に使用される。冷却炉40は、加熱炉20に
並設された円筒状の架台50上にエアースプリング60を介
してフローティング状態に支持されており、更にレベル
計を備えている。エアースプリング60は環状のエアバッ
クで、図示されないエアー供給装置に接続されている。
エアー供給装置はレベル計の出力に基づいてエアースプ
リング60に加えるエアー圧を調整して、冷却炉40の高さ
を一定に保つようになっている。
The condensing container 30 is housed in the cooling furnace 40 and has the same structure as the reducing container 10 and is used interchangeably. The cooling furnace 40 is supported in a floating state on a cylindrical pedestal 50 arranged in parallel with the heating furnace 20 via an air spring 60, and further includes a level meter. The air spring 60 is an annular air bag and is connected to an air supply device (not shown).
The air supply device adjusts the air pressure applied to the air spring 60 based on the output of the level meter to keep the height of the cooling furnace 40 constant.

還元容器10の上方口部と凝縮容器30の上方口部とは、水
平な導管70で接続されている。導管70は上記両口部に着
脱可能に結合され、外周面をヒータ71で被覆されてい
る。導管70と上記両開口部との間はバルブ72,73にて開
閉される。
The upper opening of the reduction container 10 and the upper opening of the condensation container 30 are connected by a horizontal conduit 70. The conduit 70 is detachably coupled to the both mouths, and the outer peripheral surface is covered with the heater 71. Valves 72 and 73 open and close between the conduit 70 and the both openings.

このような製造装置でTiを製造するには、還元容器10の
加熱炉20にセットすると共に、凝縮容器30を冷却炉40に
セットして冷却炉40ごと架台50上にエアースプリング60
により支持する。この時、凝縮容器30および冷却炉40は
導管70が熱膨張した状態でエアースプリング60の中立点
に位置するようにセットされる。そして、凝縮容器30お
よび冷却炉40を導管70の膨張に見合う量だけ還元容器10
の側に引き寄せて、還元容器10と凝縮容器30とを導管70
で接続する。
In order to manufacture Ti with such a manufacturing apparatus, the condensation container 30 is set in the heating furnace 20 of the reduction container 10, the cooling container 40 is set, and the cooling spring 40 and the air spring 60 are mounted on the pedestal 50.
Supported by. At this time, the condensing container 30 and the cooling furnace 40 are set so that the conduit 70 is located at the neutral point of the air spring 60 in a state where the conduit 70 is thermally expanded. Then, the condensation container 30 and the cooling furnace 40 are provided in an amount corresponding to the expansion of the conduit 70 in the reduction container 10.
Of the reducing container 10 and the condensing container 30 to the conduit 70.
Connect with.

次いで、バルブ72,73を閉じた状態で加熱炉20を作動さ
せて還元容器10内に溶融Mgを保持し、導入管11よりTiCl
4を導入する。これにより、還元容器10内にTiおよびMgC
l2が生成される。生成したMgCl2は適宜排出管12より外
部に排出される。そして、最終的には未反応MgおよびMg
Cl2を含むスポンジ状Tiが得られる。
Then, the heating furnace 20 is operated with the valves 72 and 73 closed to hold the molten Mg in the reduction vessel 10, and the TiCl from the introduction pipe 11 is supplied.
Introduce 4 . As a result, Ti and MgC are stored in the reduction container 10.
l 2 is generated. The generated MgCl 2 is appropriately discharged to the outside through the discharge pipe 12. And finally unreacted Mg and Mg
Sponge-like Ti containing Cl 2 is obtained.

還元工程が終了すると、バルブ72,73を開放した後、加
熱炉20を1000℃以上に昇温し、導管70をMgおよびMgCl2
が凝縮しない温度までヒータ71にて加熱する。また、凝
縮容器30を冷却炉40内で冷却しつつ排出管32を利用して
凝縮容器30内を真空引きする。これにより、還元容器10
内のスポンジ状Tiに含まれる未反応MgおよびMgCl2は蒸
発し、導管70を経由して凝縮容器30内に補集される。
When the reduction step is completed, the valves 72 and 73 are opened, the heating furnace 20 is heated to 1000 ° C. or higher, and the conduit 70 is set to Mg and MgCl 2
Is heated by the heater 71 to a temperature at which is not condensed. Further, while the condensing container 30 is being cooled in the cooling furnace 40, the inside of the condensing container 30 is evacuated using the discharge pipe 32. This enables the reduction container 10
The unreacted Mg and MgCl 2 contained in the sponge-like Ti inside are evaporated and collected in the condensation container 30 via the conduit 70.

この分離回収工程においては、導管70がヒータ71による
加熱で膨張して軸方向に伸びる。しかし、その伸びに伴
って凝縮容器30が冷却炉40と共に還元容器10から離反
し、その移動量が予め加熱炉20の側へ引き寄せた量と相
殺されることにより、凝縮容器30および冷却炉40はエア
ースプリング60の中立点に復帰する。従って、導管70や
導管70と容器との接続部に問題となる応力は生じない。
In this separation and recovery step, the conduit 70 expands by the heating by the heater 71 and expands in the axial direction. However, the condensation container 30 moves away from the reduction container 10 together with the cooling furnace 40 along with the expansion, and the amount of movement is offset by the amount previously drawn to the heating furnace 20 side, so that the condensation container 30 and the cooling furnace 40 Returns to the neutral point of the air spring 60. Therefore, no problematic stress is generated in the conduit 70 or the connecting portion between the conduit 70 and the container.

また、凝縮容器30内にMgおよびMgCl2が補集されるに従
って凝縮容器30の重量が増加し、エアースプリング60に
加わる荷重が増大するが、凝縮容器30の高さが一定に保
たれるようにエアースプリング60のエアー圧が増加する
ので、還元容器10と凝縮容器30とは常に同じレベルに保
たれる。従って、導管70の傾斜に起因する応力発生も防
止される。
Further, as Mg and MgCl 2 are collected in the condensing container 30, the weight of the condensing container 30 increases and the load applied to the air spring 60 increases, but the height of the condensing container 30 is kept constant. Since the air pressure of the air spring 60 increases, the reducing container 10 and the condensing container 30 are always kept at the same level. Therefore, stress generation due to the inclination of the conduit 70 is also prevented.

このようなTi製造の分離回収工程において、エアースプ
リング60のエアー圧を検出すれば、分離回収処理の進行
度が正確に推定される。
When the air pressure of the air spring 60 is detected in such a separation / collection process for manufacturing Ti, the progress of the separation / collection process can be accurately estimated.

すなわち、このエアー圧は、上述したように、凝縮容器
30の重量増加に伴って増大するので、エアー圧の検出に
より凝縮容器30の重量が定量的に検出され、凝縮容器30
内に補集されるMg量およびMgCl2量が正確に把握され
る。つまり、エアースプリング60に加えるエアー圧の測
定より、MgおよびMgCl2の蒸発回収量が定量的に検出さ
れる。そして、この蒸発回収量の変化と従来からの使用
電力量の変化等とから、還元容器10内のスポンジ状Tiに
含まれる未反応Mg量およびMgCl2量の推移が明らかにな
り、最適な分離回収処理時間を求めることができる。そ
の結果、スポンジTi中に残留するMg量およびMgCl2量が
十分に減少し、なおかつ無駄な処理時間が減少して電力
使用量の節減が図られる。
That is, this air pressure is, as described above,
As the weight of the condensing container 30 increases, the weight of the condensing container 30 is quantitatively detected by detecting the air pressure.
The amount of Mg and the amount of MgCl 2 collected inside are accurately grasped. That is, the amount of evaporated and collected Mg and MgCl 2 is quantitatively detected by measuring the air pressure applied to the air spring 60. Then, from the change in the amount of evaporation and recovery and the change in the amount of electric power used from the past, the transition of the amount of unreacted Mg and the amount of MgCl 2 contained in the sponge Ti in the reduction container 10 becomes clear, and the optimum separation The recovery processing time can be obtained. As a result, the amount of Mg and the amount of MgCl 2 remaining in the sponge Ti are sufficiently reduced, and the wasteful processing time is reduced to save the power consumption.

第1表は電力使用量およびスポンジTi中の残留物質量を
従来法と本発明法とについて示している。従来の電力使
用量を100とした場合、本発明法では電力使用量が90に
減少し、スポンジTiの塩素含有量のばらつきも大巾に減
少する。
Table 1 shows the amount of electric power used and the amount of residual substances in sponge Ti for the conventional method and the method of the present invention. When the conventional power consumption is set to 100, the power consumption is reduced to 90 in the method of the present invention, and the variation in the chlorine content of sponge Ti is greatly reduced.

〔発明の効果〕 本発明の高融点高靭性金属の製造装置および製造方法
は、還元容器と凝縮容器とを並置一体化した場合に問題
となる導管の熱膨張を確実に吸収し、導管およびその接
続部分の亀裂損傷を防止して装置寿命の延長を図る。ま
た、導管全体を一体化でき、導管途中にパッキン類を介
在させる必要がないので、導管の構造が簡素化され、そ
の加熱が容易になると共に、接続部を起点とする導管の
詰まりが防止される。
[Effects of the Invention] The manufacturing apparatus and manufacturing method for a high melting point and high toughness metal of the present invention reliably absorbs thermal expansion of a conduit, which is a problem when a reducing container and a condensation container are integrated side by side, and the conduit and its Prevent crack damage at the connection part and extend the life of the device. In addition, since the entire conduit can be integrated and there is no need to interpose packings in the middle of the conduit, the structure of the conduit is simplified, its heating is facilitated, and clogging of the conduit starting from the connection part is prevented. It

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す製造装置の断面図であ
る。 図中、10:還元容器、20:加熱炉、30:凝縮容器、40:冷却
炉、50:架台、60:エアースプリング、70:導管。
FIG. 1 is a sectional view of a manufacturing apparatus showing an embodiment of the present invention. In the figure, 10: reduction container, 20: heating furnace, 30: condensing container, 40: cooling furnace, 50: stand, 60: air spring, 70: conduit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 利田 義信 兵庫県尼崎市東浜町1番地 大阪チタニウ ム製造株式会社内 (72)発明者 太田 年幸 兵庫県尼崎市東浜町1番地 大阪チタニウ ム製造株式会社内 (72)発明者 勝丸 昌司 兵庫県尼崎市東浜町1番地 大阪チタニウ ム製造株式会社内 審査官 影山 秀一 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshinobu Toda 1 Higashihama-cho, Amagasaki City, Hyogo Prefecture, within Titanium Manufacturing Co., Ltd. (72) Inventor Shoji Katsumaru 1st Higashihama-cho, Amagasaki City, Hyogo Prefecture Shuichi Kageyama Examiner, Osaka Titanium Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】製造すべき高融点高靭性金属の塩化物を活
性金属で還元して高融点高靭性のスポンジ状金属を生成
する還元容器と、該還元容器内に生成したスポンジ状金
属に残留する未反応活性金属およびその塩化物を真空分
離により回収する凝縮容器とを備えており、該凝縮容器
が前記還元容器の側方に並設され、両者が導管にて一体
的に連結されると共に、還元容器もしくは凝縮容器の少
なくとも一方が、前記導管の熱膨張に伴って従動し得る
ように支持されていることを特徴とする高融点高靭性金
属の製造装置。
1. A reducing container for reducing chloride of a high melting point and high toughness metal to be produced with an active metal to produce a high melting point and high toughness sponge-like metal, and a residue on the sponge-like metal produced in the reducing container. And a condensing container for collecting the unreacted active metal and its chloride by vacuum separation, the condensing container being juxtaposed to the side of the reducing container, and both are integrally connected by a conduit. At least one of the reduction container and the condensation container is supported so as to be able to follow the thermal expansion of the conduit, and a device for producing a high melting point and high toughness metal.
【請求項2】特許請求の範囲第1項に記載された高融点
高靭性金属の製造装置を使用する高融点高靭性金属の製
造方法であって、前記還元容器内に生成したスポンジ状
金属に残留する未反応活性金属およびその塩化物を真空
分離により前記凝縮容器内に回収する際に、真空分離物
質を前記導管内に凝固させないように前記導管を加熱
し、その加熱による前記導管の熱膨張を、熱膨張に伴っ
て従動し得るように支持された還元容器もしくは凝縮容
器の少なくとも一方の移動により吸収することを特徴と
する高融点高靭性金属の製造方法。
2. A method for producing a high melting point and high toughness metal using the apparatus for producing a high melting point and high toughness metal according to claim 1, wherein the spongy metal produced in the reduction vessel is When the residual unreacted active metal and its chloride are recovered in the condensation vessel by vacuum separation, the conduit is heated so as not to solidify the vacuum separation substance in the conduit, and the heating causes thermal expansion of the conduit. Is absorbed by the movement of at least one of a reduction container and a condensation container supported so as to be able to follow the thermal expansion, and a method for producing a high melting point and high toughness metal.
JP18330289A 1989-07-14 1989-07-14 Apparatus and method for producing high melting point and high toughness metal Expired - Lifetime JPH0776395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18330289A JPH0776395B2 (en) 1989-07-14 1989-07-14 Apparatus and method for producing high melting point and high toughness metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18330289A JPH0776395B2 (en) 1989-07-14 1989-07-14 Apparatus and method for producing high melting point and high toughness metal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27777093A Division JP2766802B2 (en) 1993-10-08 1993-10-08 High melting point high toughness metal production equipment

Publications (2)

Publication Number Publication Date
JPH0347929A JPH0347929A (en) 1991-02-28
JPH0776395B2 true JPH0776395B2 (en) 1995-08-16

Family

ID=16133298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18330289A Expired - Lifetime JPH0776395B2 (en) 1989-07-14 1989-07-14 Apparatus and method for producing high melting point and high toughness metal

Country Status (1)

Country Link
JP (1) JPH0776395B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8846776B2 (en) 2009-08-14 2014-09-30 Boral Ip Holdings Llc Filled polyurethane composites and methods of making same
US9139708B2 (en) 2006-03-24 2015-09-22 Boral Ip Holdings Llc Extrusion of polyurethane composite materials
US9481759B2 (en) 2009-08-14 2016-11-01 Boral Ip Holdings Llc Polyurethanes derived from highly reactive reactants and coal ash

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9139708B2 (en) 2006-03-24 2015-09-22 Boral Ip Holdings Llc Extrusion of polyurethane composite materials
US9512288B2 (en) 2006-03-24 2016-12-06 Boral Ip Holdings Llc Polyurethane composite materials
US8846776B2 (en) 2009-08-14 2014-09-30 Boral Ip Holdings Llc Filled polyurethane composites and methods of making same
US9481759B2 (en) 2009-08-14 2016-11-01 Boral Ip Holdings Llc Polyurethanes derived from highly reactive reactants and coal ash

Also Published As

Publication number Publication date
JPH0347929A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
US2564337A (en) Production of refractory metals
AU2002335251B2 (en) Method and apparatus for smelting titanium metal
US4556420A (en) Process for combination metal reduction and distillation
WO1995025824A1 (en) Aerosol reduction process for metal halides
CN102658703A (en) Preparation method of carbon fiber reinforced magnesium-based composite board
JPH0776395B2 (en) Apparatus and method for producing high melting point and high toughness metal
CN109182756A (en) For condensing unit and condensation method in titanium sponge distillation production
US3684264A (en) Apparatus for reduction of titanium halides and subsequent vacuum separation of reduction products
US2818339A (en) Method for producing malleable and ductile beryllium bodies
JP2766802B2 (en) High melting point high toughness metal production equipment
CN208649416U (en) For condensing unit in titanium sponge distillation production
US2880156A (en) Production of metals
JP2761485B2 (en) Apparatus and method for producing high melting point high toughness metal
CN115094248A (en) Titanium sponge production facility
CN112176206B (en) Rectification purification device and method for preparing beryllium by using rectification purification device through beryllium fluoride
US2758831A (en) Lined metal reduction apparatus
JP2001062416A (en) Clogging removing device for sponge titanium production
US2810635A (en) Process for making alkali metals and apparatus therefor
JPH11106841A (en) Recovering apparatus for sintered hard metal component and recovering method
JPS6160839A (en) Refining method refractory metal
JP3515541B2 (en) Titanium sponge manufacturing equipment
JP2004052037A (en) Method and apparatus for refining metallic titanium
US2735668A (en) Recovery of sodium and calcium metals
CN207877837U (en) A kind of equipment of energy continuous processing high-arsenic antimony alloy material
JP4243655B2 (en) Rare metal chloride production method and apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20090816

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20090816

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term