JPH0776084B2 - Method for producing high density glassy carbon film - Google Patents

Method for producing high density glassy carbon film

Info

Publication number
JPH0776084B2
JPH0776084B2 JP1303542A JP30354289A JPH0776084B2 JP H0776084 B2 JPH0776084 B2 JP H0776084B2 JP 1303542 A JP1303542 A JP 1303542A JP 30354289 A JP30354289 A JP 30354289A JP H0776084 B2 JPH0776084 B2 JP H0776084B2
Authority
JP
Japan
Prior art keywords
film
glassy carbon
carbon film
polyimide resin
high density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1303542A
Other languages
Japanese (ja)
Other versions
JPH03164413A (en
Inventor
敏治 上井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP1303542A priority Critical patent/JPH0776084B2/en
Publication of JPH03164413A publication Critical patent/JPH03164413A/en
Publication of JPH0776084B2 publication Critical patent/JPH0776084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気二重層キャパシタ、燃料電池用セパレー
ター等の部材に供して有用な高密度で薄膜状のガラス状
カーボンフィルムの製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a high-density thin-film glassy carbon film which is useful as a member such as an electric double layer capacitor and a separator for a fuel cell.

〔従来の技術〕[Conventional technology]

ガラス状カーボン材は、ガラス状の外観および破断面を
呈し通常のカーボン材料と比べて高度の気体不透過性、
化学的安定性などの特性を有するため、特異なカーボン
製品として電子、化学をはじめ多様の分野で汎用されて
いる。
The glassy carbon material has a glassy appearance and fracture surface, and has a higher gas impermeability than ordinary carbon materials,
Because of its properties such as chemical stability, it is widely used as a unique carbon product in various fields including electronics and chemistry.

従来、ガラス状カーボン材はフラン系樹脂またはフェノ
ール系樹脂のような炭化残留率の高い熱硬化性樹脂を原
料とし、これを所望の形状に成形したのち非酸化性雰囲
気下で焼成炭化する方法によって製造されている。しか
し、この種の樹脂原料系を用いて薄膜フィルム状に成形
することは能率的、収率的および品質的に極めて困難で
ある。
Conventionally, a glassy carbon material is produced by a method in which a thermosetting resin having a high carbonization residual ratio such as a furan-based resin or a phenol-based resin is used as a raw material, and this is molded into a desired shape and then fired and carbonized in a non-oxidizing atmosphere. Being manufactured. However, it is very difficult in terms of efficiency, yield and quality to form a thin film using this type of resin raw material system.

また、フィルム状のカーボン材を製造するための手段と
しては、各種の有機質フィルムを炭化してシート状カー
ボンを得る方法(特開昭54−26292号公報)、あるいは
上記した樹脂類をセルロース樹脂に含浸してからシート
に成形し、これを炭素化する方法(特開昭60−42213号
公報)などが知られている。ところが、これら方法によ
る場合には、フィルムあるいはシートを焼成炭化する過
程で起生する材料の収縮現象によって得られるカーボン
薄膜に皺、うねり、反り等が発生し、特に面積の大きな
ものについて高精度の平滑面を形成することが難しい問
題点がある。一般に硬質のカーボン材は極めて脆弱であ
るため、このような形状不良があると使用時に材料破損
を多発する結果を招く。
Further, as a means for producing a film-like carbon material, a method of carbonizing various organic films to obtain sheet-like carbon (Japanese Patent Laid-Open No. 54-26292), or the above resins to cellulose resin A method is known in which the sheet is impregnated and then formed into a sheet, and the sheet is carbonized (JP-A-60-42213). However, in the case of these methods, wrinkles, waviness, warpage, etc. occur in the carbon thin film obtained by the shrinkage phenomenon of the material that occurs during the process of firing and carbonizing the film or sheet, and particularly with a large area, high precision There is a problem that it is difficult to form a smooth surface. In general, a hard carbon material is extremely fragile, and if such a shape defect occurs, the material will frequently be damaged during use.

本発明者は上記の問題点を解消したガラス状カーボンシ
ートの製造方法として、芳香族ポリイミドのフィルムを
表面粗さ65μm RMAX以下の炭素質押え板で挟み付け、押
え圧力を掛けた状態で非酸化性雰囲気中800〜2100℃の
温度で焼成する方法を提案した(特開平3−16907
号)。
The present inventor, as a method for producing a glassy carbon sheet that solves the above problems, a film of aromatic polyimide is sandwiched between carbonaceous pressing plates having a surface roughness of 65 μm RMAX or less, and non-oxidized under a pressing pressure applied. A method of firing at a temperature of 800 to 2100 ° C. in a neutral atmosphere was proposed (JP-A-3-16907).
issue).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

前記した方法によれば、良精度の表面平滑性と均質緻密
組織を備える厚さ0.02〜2mmの薄膜ガラス状カーボンシ
ートを工業的に製造することが可能となるが、引続く発
明者の研究過程で原料となるポリイミド樹脂の性状相違
によって得られるガラス状カーボン材の品質に良否が生
じることが認められた。
According to the method described above, it is possible to industrially produce a thin glass vitreous carbon sheet having a thickness of 0.02 to 2 mm, which is provided with good-precision surface smoothness and a homogeneous and dense structure, but the subsequent inventor's research process It was confirmed that the quality of the glassy carbon material obtained depends on the difference in properties of the polyimide resin used as the raw material.

一般に、ポリイミドは基本的に下記の分子構造式を有し
ているが、Ar′(ジアミン成分)とAr(酸成分)を組み
合わせることにより構造が多様に変化し、耐熱性にも差
が生じる。
Generally, polyimide basically has the following molecular structural formula, but the structure changes variously by combining Ar '(diamine component) and Ar (acid component), and a difference in heat resistance also occurs.

例えば、代表的な芳香族ポリイミドの分子構造とガラス
転移温度(Tg)を示すと表1のようになる。
For example, Table 1 shows the molecular structure and glass transition temperature (Tg) of a typical aromatic polyimide.

通常、ガラス転移温度(Tg)は剛直な分子構造のものほ
ど高くなり、また融点(Tm)はガラス転移温度(Tg)に
対して概ね下式の関係にあることが経験的に知られてい
る。
It is empirically known that the glass transition temperature (Tg) usually becomes higher as the molecular structure becomes stiffer, and the melting point (Tm) generally has the following relationship with the glass transition temperature (Tg). .

Tm(゜K)=1.33Tg(゜K) 特開平3−16907号公報記載の方法において、ある種の
ポリイミド樹脂フィルムを原料にすると焼成過程で樹脂
フィルムと押え板が融着して良好なガラス状カーボンフ
ィルムに転化しないことがある。特に焼成後の厚さが0.
2mm以下の薄膜ガラス状カーボンを形成しようとする場
合にこのような融着現象が生じると、フィルムの円滑な
炭化収縮が妨げられて組織が破損する事態を招き、炭化
収率は著しく低下する。
Tm (° K) = 1.33 Tg (° K) In the method described in Japanese Patent Laid-Open No. 3-16907, when a polyimide resin film of a certain kind is used as a raw material, the resin film and the pressing plate are fused during the firing process to obtain a good glass. It may not be converted into a carbon film. Especially the thickness after firing is 0.
When such a fusing phenomenon occurs when trying to form a thin film glassy carbon of 2 mm or less, smooth carbonization shrinkage of the film is hindered and the structure is damaged, and the carbonization yield is significantly reduced.

発明者は上記の現象と原料となる芳香族ポリイミド樹脂
の性状との関係を多数の実験を介して詳細に検討した結
果、用いる芳香族ポリイミド樹脂のガラス転移温度(T
g)が300℃未満の場合に融着現象が発生する事実を解明
した。
As a result of a detailed study of the relationship between the above phenomenon and the properties of the aromatic polyimide resin as a raw material through a number of experiments, the inventor has found that the glass transition temperature (T
We have clarified the fact that fusion phenomenon occurs when g) is less than 300 ℃.

また、この融着現象はポリイミド樹脂の熱分解温度(Tt
d)と融点(Tm)にも関係することが見出された。すな
わち、ポリイミド樹脂フィルムを非酸化性雰囲気下で加
熱していくと、500℃付近から熱分解が始まり徐々に炭
化が進行する。この際の熱分解開始温度(Ttd)はポリ
イミドの性状によって若干相違するものの、その変化の
度合は概してガラス転移温度(Tg)や融点(Tm)よりも
小さく、熱分解する以前に軟化するものとしないものに
分類することができる。すなわち、熱分解温度が融点よ
り高いポリイミド樹脂と融解過程を経ずに熱分解する
(融点なし)ポリイミド樹脂が存在する。
In addition, this fusion phenomenon is caused by the thermal decomposition temperature (Tt
It was also found to be related to d) and melting point (Tm). That is, when the polyimide resin film is heated in a non-oxidizing atmosphere, thermal decomposition starts at around 500 ° C. and carbonization proceeds gradually. Although the thermal decomposition initiation temperature (Ttd) at this time is slightly different depending on the properties of the polyimide, the degree of change is generally smaller than the glass transition temperature (Tg) and melting point (Tm), and it is said that it softens before thermal decomposition. It can be classified as something that does not. That is, there are polyimide resins having a thermal decomposition temperature higher than the melting point and polyimide resins that thermally decompose without a melting process (no melting point).

発明者の研究によると、このうち後者の物件を満たすポ
リイミド樹脂はガラス転移温度300℃以上の性状に合致
し、上記した融着現象を有効に防止することが可能とな
る。
According to the research conducted by the inventor, the polyimide resin satisfying the latter property among them meets the property of having a glass transition temperature of 300 ° C. or higher, and can effectively prevent the above-mentioned fusion phenomenon.

本発明は、このような知見に基づいてなされたもので、
焼成段階においてポリイミド樹脂フィルムと押え板との
融着現象がなく、組織破損を起こさずに薄膜の高密度ガ
ラス状カーボンを得る方法の提供を目的としている。
The present invention was made based on such findings,
It is an object of the present invention to provide a method for obtaining a thin film of high density glassy carbon without causing tissue damage without causing a fusion bonding phenomenon between a polyimide resin film and a pressing plate in a firing step.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の目的を達成するための本発明による高密度ガラス
状カーボンフィルムの製造方法は、ガラス転移温度(T
g)が300℃以上の芳香族ポリイミド樹脂のフィルムを炭
素質押え板で挟み付け、押え圧力を掛けた状態で非酸化
雰囲気中800〜2100℃の温度で焼成することを構成上の
特徴とするものである。
The method for producing a high-density glassy carbon film according to the present invention for achieving the above object has a glass transition temperature (T
g) A film of aromatic polyimide resin with a temperature of 300 ℃ or more is sandwiched between carbonaceous pressing plates, and the composition is characterized by firing at a temperature of 800-2100 ° C in a non-oxidizing atmosphere with a pressing pressure applied. It is a thing.

原料として使用される芳香族ポリイミド樹脂は従来から
原料とされてきたフラン系もしくはフェノール系の熱硬
化性樹脂に比べてシート成形性に優れており、均質な薄
膜フィルムとして容易に成形することができる有利性が
ある。
Aromatic polyimide resin used as a raw material has superior sheet moldability compared to the conventional furan-based or phenol-based thermosetting resin, and can be easily molded as a homogeneous thin film. There is an advantage.

本発明では各種の芳香族ポリイミド樹脂のうち、ガラス
転移温度(Tg)が300℃以上の性状を有するものが選択
使用される。
In the present invention, among various aromatic polyimide resins, those having a glass transition temperature (Tg) of 300 ° C. or higher are selected and used.

これらの性状を備える芳香族ポリイミド樹脂の例として
は、表1の(1),(2)および(3)に示した分子構
造式のものを挙げることができる。
Examples of the aromatic polyimide resin having these properties include those having the molecular structural formulas shown in (1), (2) and (3) of Table 1.

本発明の目的には、上記の性状要件の満たす芳香族ポリ
イミド樹脂により構成された厚さ25μmから2.5mmのフ
ィルムか好適に用いられる。
For the purpose of the present invention, a film having a thickness of 25 μm to 2.5 mm and made of an aromatic polyimide resin satisfying the above property requirements is preferably used.

芳香族ポリイミド樹脂フィルムを挟み付けるための炭素
質押え板は可及的に表面平滑度の高い材料を選定するこ
とが好ましく、例えば最大粒子径が100μm以下の原料
フィラーを用いて製造した嵩密度1.75g/cm3以上の均質
緻密組織をもつ黒鉛材の使用が最適である。使用にあた
っては、樹脂フィルムとの間に良好な滑りをもたせるた
めに予めその表面を表面粗さ65μm RMAX以下の平滑度に
研磨処理することが望ましい。
It is preferable to select a material having a surface smoothness as high as possible for the carbonaceous pressing plate for sandwiching the aromatic polyimide resin film. For example, a bulk density of 1.75 produced by using a raw material filler having a maximum particle size of 100 μm or less. It is best to use a graphite material with a homogeneous dense structure of g / cm 3 or more. In use, it is desirable to polish the surface to a smoothness with a surface roughness of 65 μm RMAX or less in advance in order to have a good sliding property with the resin film.

芳香族ポリイミド樹脂のフィルムは炭素質押え板を介し
押え圧力を掛けた状態で焼成されるが、付加される押え
圧力は少なくとも20gf/cm2の設定することが望ましく、
これを下廻る圧力では得られるガラス状カーボンフィル
ムの表面に凹凸を生じる場合がある。
The film of aromatic polyimide resin is fired under a pressing pressure applied through a carbonaceous pressing plate, and the pressing pressure applied is preferably set to at least 20 gf / cm 2 .
If the pressure is less than this, unevenness may occur on the surface of the glassy carbon film obtained.

焼成処理は、窒素、アルゴンなどの非酸化性雰囲気に保
持された炉を用い、800〜2100℃の温度域で加熱するこ
とによっておこなわれる。
The firing treatment is performed by heating in a temperature range of 800 to 2100 ° C. using a furnace maintained in a non-oxidizing atmosphere such as nitrogen and argon.

上記の工程で製造されるガラス状カーボンフィルムは、
厚さ0.02〜0.2mmの極めて高密度組織を有する無定形結
晶構造を呈している。
The glassy carbon film produced in the above process,
It has an amorphous crystal structure with an extremely high density of 0.02 to 0.2 mm.

〔作 用〕[Work]

本発明で原料として選択使用されるガラス転移温度(T
g)が300℃以上の性状を有する芳香族ポリイミド樹脂の
フィルムは、焼成段階において押え板に融着する現象を
生じることがなく、軟化も起こさない。
The glass transition temperature (T
A film of an aromatic polyimide resin having a property of g) of 300 ° C. or higher does not cause the phenomenon of fusing to the holding plate during the firing step and does not soften.

このような作用により、常に焼成前の形状を保った状態
で炭化されるから、組織損傷のない良精度の表面平滑性
を備える薄膜のガラス状カーボンフィルムの製造が可能
となる。
By such an action, carbonization is always performed while maintaining the shape before firing, so that it is possible to manufacture a thin glassy carbon film having good surface smoothness with no tissue damage.

また、焼成時に発生する樹脂原料からの分解ガラスは、
炭素質押え板の有する微小な気孔を介して巧みに排出も
しくは吸蔵される。このため、得られるガラス状カーボ
ン組織には気泡の存在は認められず、完全なガス不透過
性の均質かつ高密度組織が付与される。
Further, the decomposed glass from the resin raw material generated during firing,
It is skillfully discharged or occluded through the minute pores of the carbonaceous pressing plate. Therefore, no bubbles are observed in the obtained glassy carbon structure, and a completely gas-impermeable homogeneous and high-density structure is provided.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と対比して説明する。 Hereinafter, examples of the present invention will be described in comparison with comparative examples.

実施例1〜3、比較例1〜2 表1に示した分子構造式(1)〜(5)の芳香族ポリイ
ミド樹脂フィルムを原料とし、各フィルムを表面粗さ20
μm RMAXに研磨処理した最大粒子径100μm、嵩密度1.8
3g/cm3の黒鉛板〔東海カーボン(株)製“G347"、厚さ1
0mm〕からなる押え板に挟み付けた。これを60gf/cm2
押え圧力を掛けた状態で窒素ガス雰囲気炉に入れ、1500
℃の温度で焼成してガラス状カーボンフィルムを製造し
た。
Examples 1 to 3 and Comparative Examples 1 to 2 Using the aromatic polyimide resin films of the molecular structural formulas (1) to (5) shown in Table 1 as raw materials, each film has a surface roughness 20
Maximum particle size 100μm, bulk density 1.8, polished to μm RMAX
Graphite plate of 3 g / cm 3 ["G347" manufactured by Tokai Carbon Co., Ltd., thickness 1
It was clamped by a holding plate made of 0 mm]. Put this in a nitrogen gas atmosphere furnace with a pressing pressure of 60 gf / cm 2 applied,
A glassy carbon film was manufactured by firing at a temperature of ° C.

得られた各ガラス状カーボンフィルムの各種特性、性状
等を測定し、その結果を用いた芳香族ポリイミド樹脂フ
ィルムの性状と対比させて表2に示した。
Various characteristics and properties of each of the obtained glassy carbon films were measured, and the results are shown in Table 2 in comparison with the properties of the aromatic polyimide resin film used.

表2の結果から、本発明の原料性状要件を満たす実施例
1〜3のガラス状カーボンフィルムは前記要件を外れる
比較例1〜2によるものに比べて収率、特性、性状とも
に優れていることが認められた。
From the results in Table 2, the glassy carbon films of Examples 1 to 3 satisfying the requirements for raw material properties of the present invention are superior in yield, characteristics, and properties as compared with those of Comparative Examples 1 and 2 which deviate from the above requirements. Was recognized.

〔発明の効果〕〔The invention's effect〕

本発明によれば、特定された芳香族ポリイミド樹脂フィ
ルムを原料とすることにより良精度の表面平滑性と均質
高密度組織を具備する厚さ0.02〜0.2mmの薄膜ガラス状
カーボンフィルムを収率よく製造することができる。
According to the present invention, by using the specified aromatic polyimide resin film as a raw material, a thin glassy carbon film with a thickness of 0.02 to 0.2 mm having good precision surface smoothness and a homogeneous high density structure can be obtained in good yield. It can be manufactured.

本発明で製造されたガラス状カーボンフィルムは、例え
ば電気二重層キャパシタ、燃料電池用セパレーターなど
の部材をはじめ薄くて大面積の高密度炭素材が要求され
る用途分野に有用性が期待される。
The glassy carbon film produced by the present invention is expected to be useful in fields of application where thin and large-area high-density carbon materials are required, including members such as electric double layer capacitors and fuel cell separators.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ガラス転移温度(Tg)が300℃以上の芳香
族ポリイミド樹脂のフィルムを炭素質押え板で挟み付
け、押え圧力を掛けた状態で非酸化性雰囲気中800〜210
0℃の温度で焼成することを特徴とする高密度ガラス状
カーボンフィルムの製造方法。
1. A film of aromatic polyimide resin having a glass transition temperature (Tg) of 300 ° C. or higher is sandwiched between carbonaceous pressing plates, and a pressing pressure is applied in a non-oxidizing atmosphere in the range of 800 to 210.
A method for producing a high-density glassy carbon film, which comprises firing at a temperature of 0 ° C.
JP1303542A 1989-11-21 1989-11-21 Method for producing high density glassy carbon film Expired - Fee Related JPH0776084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1303542A JPH0776084B2 (en) 1989-11-21 1989-11-21 Method for producing high density glassy carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1303542A JPH0776084B2 (en) 1989-11-21 1989-11-21 Method for producing high density glassy carbon film

Publications (2)

Publication Number Publication Date
JPH03164413A JPH03164413A (en) 1991-07-16
JPH0776084B2 true JPH0776084B2 (en) 1995-08-16

Family

ID=17922253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303542A Expired - Fee Related JPH0776084B2 (en) 1989-11-21 1989-11-21 Method for producing high density glassy carbon film

Country Status (1)

Country Link
JP (1) JPH0776084B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3855487B2 (en) * 1998-09-14 2006-12-13 宇部興産株式会社 Polyimide sheet, carbon sheet and process for producing the same
US6072692A (en) * 1998-10-08 2000-06-06 Asahi Glass Company, Ltd. Electric double layer capacitor having an electrode bonded to a current collector via a carbon type conductive adhesive layer
JP4656683B2 (en) * 1999-09-02 2011-03-23 パナソニック株式会社 Polymer electrolyte fuel cell
JP5405085B2 (en) * 2008-01-28 2014-02-05 株式会社カネカ Method for producing carbonaceous film

Also Published As

Publication number Publication date
JPH03164413A (en) 1991-07-16

Similar Documents

Publication Publication Date Title
US4777083A (en) Carbon article comprising pieces of carbonaceous material bonded with one another and process for producing the same
US4226900A (en) Manufacture of high density, high strength isotropic graphite
US4080413A (en) Porous carbon fuel cell substrates and method of manufacture
EP0364297A2 (en) Porous carbon electrode substrates for fuel cells
JPH0543213A (en) Production of thin-film carbon material
JPH0776084B2 (en) Method for producing high density glassy carbon film
RU2001100720A (en) METHOD FOR PRODUCING THIN-WALLED ARTICLES FROM SILICTED CARBON COMPOSITE MATERIAL
JPH0435434B2 (en)
US5783255A (en) Method for producing shaped article of silicon carbide
JPH08119613A (en) Production of highly oriented graphite body
JPH0566247B2 (en)
JPH0316907A (en) Production of glass like carbon sheet
JPS60239358A (en) Carbonaceous thin plate and manufacture
JPS62138361A (en) Manufacture of high density formed body from carbon material
JPS6052640B2 (en) carbon diaphragm
JP2593108B2 (en) Carbon jig for glass molding
JP3749286B2 (en) Method for producing carbonized aromatic polyimide film laminate
JPH0776083B2 (en) Method for producing high density glassy carbon material
JP2969490B2 (en) Carbon jig for EPROM package manufacturing
JPH03183612A (en) Silicon carbide sheet and production thereof
JPH01230471A (en) Carbon material and production thereof
JPH10158064A (en) Solid activated carbon and its production
JPH0644978A (en) Manufacture of fuel cell electrode plate
JPS60171206A (en) Molded article of vitrified carbonaceous material
JPS61256909A (en) Preparation of covering material for pyrolytic carbon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees