JPH0774684A - Radio communication system and equipment - Google Patents

Radio communication system and equipment

Info

Publication number
JPH0774684A
JPH0774684A JP21825693A JP21825693A JPH0774684A JP H0774684 A JPH0774684 A JP H0774684A JP 21825693 A JP21825693 A JP 21825693A JP 21825693 A JP21825693 A JP 21825693A JP H0774684 A JPH0774684 A JP H0774684A
Authority
JP
Japan
Prior art keywords
signal
circuit
compensation
transmitter
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21825693A
Other languages
Japanese (ja)
Inventor
Makoto Onishi
誠 大西
Kumiko Takigawa
久美子 滝川
Mikio Kuwabara
幹夫 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Hitachi Ltd
Original Assignee
Hitachi Denshi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK, Hitachi Ltd filed Critical Hitachi Denshi KK
Priority to JP21825693A priority Critical patent/JPH0774684A/en
Publication of JPH0774684A publication Critical patent/JPH0774684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)

Abstract

PURPOSE:To make the size of the equipment small through a common use antenna by compensating and eliminating automatically an own station bypass signal fluctuated in the operating state of a mobile radio equipment and to improve the frequency utilizing efficiency by approaching a transmission and a reception frequency band with each other. CONSTITUTION:A compensation residual signal resulting from subtractively synthesizing a compensation signal from an own station bypass signal is orthogonally detected at detectors (31, 32, 33) based on an own station transmission wave signal, controlled in 2-dimension by using controllers (312, 313) based on two independent error signals to attain highly accurate and high speed compensation control. Since compensation is eliminated by following automatically to timewise fluctuation of the bypass signal component, the bypass compensation device optimum to the mobile radio equipment is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は無線通信方式及び装置、
更に詳しくいえば、送信機と受信機とがアンテナ共用回
路を介して送受共用アンテナと接続された無線通信装置
において、送信機からの送信信号がアンテナ共用回路を
介して受信機に回り込む信号を除去する方法及び装置に
関する。
The present invention relates to a wireless communication system and device,
More specifically, in a wireless communication device in which a transmitter and a receiver are connected to a transmission / reception shared antenna via an antenna shared circuit, a signal transmitted from the transmitter is removed from the signal sneaking into the receiver via the antenna shared circuit. Method and device.

【0002】[0002]

【従来の技術】無線通信では双方向の通信を行うため、
無線通信装置として送信機と受信機を両方備えているの
が普通である。図1に示すように、移動局無線機10
は、通信装置を小型化する目的で、送信機11、受信機
12はアンテナ共用回路13を介してアンテナ14に接
続されている。そのため、アンテナ共用回路13を用い
て送受を切り換える事が行われる。アンテナ共用回路1
3は3端子以上の信号入出力端子を有する、ハイブリッ
ド回路やサーキュレータ等で構成された回路素子で、送
信端から入力した電力は、全てアンテナ14へ出力さ
れ、アンテナで受信された電力はすべて受信端に出力さ
れて、送信端から受信端へは電力が伝わらないという一
方向性を持つ。
2. Description of the Related Art In wireless communication, two-way communication is performed.
A wireless communication device usually has both a transmitter and a receiver. As shown in FIG. 1, the mobile station radio 10
For the purpose of downsizing the communication device, the transmitter 11 and the receiver 12 are connected to the antenna 14 via the antenna common circuit 13. Therefore, transmission / reception is switched using the shared antenna circuit 13. Antenna shared circuit 1
Reference numeral 3 is a circuit element composed of a hybrid circuit, a circulator, or the like having three or more signal input / output terminals. All the power input from the transmission end is output to the antenna 14, and all the power received by the antenna is received. It has a one-way property that it is output to the end and power is not transmitted from the transmitting end to the receiving end.

【0003】しかし、実際にはアンテナ14のインピー
ダンスは、アンテナの置かれた電波環境で変動するた
め、送信機11から受信機端12へ自局の送信信号が回
り込む現象が起こる。このとき、アンテナ14で受信さ
れた基地局16の基地局アンテナ15からの到来電波の
レベルは、自局送信波回り込み信号レベルに較べて非常
に低いので、何等かの方法で送受電波を分離する必要が
ある。通常行われているのは、スイッチで送受を切り換
える方法、あるいは送受の周波数を分離し、フィルタを
用いて自局回り込み電波を抑圧する方法等がある。
However, in reality, the impedance of the antenna 14 fluctuates depending on the radio wave environment in which the antenna is placed, so that a phenomenon occurs in which the transmission signal of the own station wraps around from the transmitter 11 to the receiver end 12. At this time, the level of the incoming radio wave from the base station antenna 15 of the base station 16 received by the antenna 14 is much lower than the level of the own station transmitted wave wraparound signal, so the transmitted and received radio waves are separated by some method. There is a need. Usually, there are a method of switching transmission / reception with a switch, a method of separating transmission / reception frequencies, and a method of suppressing a radio wave sneaking around itself by a filter.

【0004】一方、回り込み妨害を補償信号を用いて、
除去する方法も検討されている。図2に従来の自局送信
波回り込み信号の補償方法を示す。送信機11から受信
機12へのアンテナ共用回路を経た自局回り込み信号
は、送信信号の振幅と位相を変化させたものであるか
ら、送信信号を可変減衰器と可変移相器からなる補償用
の等化器21に通すことにより、自局回り込み信号と全
く同じ信号(補償信号)を作成し、これを受信機12側
で信号合成器22により減算合成すればよい。この様な
信号の補償による妨害除去の制御方式としては、高周波
帯で用いられる摂動法や、基底帯域の信号処理によるエ
コーキャンセラ等に用いられる、トランスバーサルフィ
ルタを用いる方法がある。前者の摂動法を用いた高周波
帯での歪補償技術の公知例としては、特開平4−834
06号、特開平4−83407号公報等に述べられた
「フィードフォワード増幅器」等がある。また、後者の
エコーキャンセラの例としては、特開昭62−2034
32号公報「エコーキャンセラ」等がある。
On the other hand, by using a compensation signal for the wraparound interference,
The method of removal is also being considered. FIG. 2 shows a conventional method of compensating for a transmission wave wraparound signal of a local station. Since the local loop signal from the transmitter 11 to the receiver 12 that passes through the shared antenna circuit is a signal in which the amplitude and phase of the transmission signal are changed, the transmission signal is used for compensating the variable attenuator and variable phase shifter. The same signal (compensation signal) as the own-station wraparound signal may be created by passing the signal through the equalizer 21 of 1. and this signal may be subtractively combined by the signal combiner 22 on the receiver 12 side. As a control method of the interference removal by such signal compensation, there are a perturbation method used in a high frequency band and a method using a transversal filter used in an echo canceller by signal processing in the base band. A known example of the distortion compensation technique in the high frequency band using the former perturbation method is disclosed in Japanese Patent Laid-Open No. 4-834.
No. 06, Japanese Patent Laid-Open No. 4-83407, etc., there are "feedforward amplifiers" and the like. Further, as an example of the latter echo canceller, Japanese Patent Laid-Open No. 62-2034 is disclosed.
No. 32 publication “Echo Canceller” is available.

【0005】[0005]

【発明が解決しようとする課題】一つの連続した周波数
帯域の中で送受両方向の通信を行おうとすると、FDM
A(周波数分割多重接続)方式、または、CDMA(符
号分割多重接続)方式の通信システムでは、送受アンテ
ナ共用が難しくなる。強いてアンテナ共用を行うと、送
受の電波をフィルタで分離する必要があるが、現実のフ
ィルタは通過帯と阻止帯域の間に遷移周波数帯が必要と
なり、送受の通信周波数帯の間に通信に使えない周波数
帯を確保するため、周波数利用効率が悪くなる。そこ
で、送受アンテナ共用と周波数利用効率改善のため、自
局送信波回り込み妨害の補償を行う。
When attempting to perform bidirectional transmission / reception in one continuous frequency band, the FDM
In a communication system of A (frequency division multiple access) system or CDMA (code division multiple access) system, it becomes difficult to share the transmitting and receiving antennas. If the antenna is forcibly shared, it is necessary to separate the transmitted and received radio waves with a filter, but the actual filter requires a transition frequency band between the pass band and the stop band, which can be used for communication between the transmitted and received communication frequency bands. Since the unused frequency band is secured, the frequency utilization efficiency becomes poor. Therefore, in order to share the transmitting and receiving antennas and improve the frequency utilization efficiency, compensation for the interference of the transmitted waves of the local station is performed.

【0006】しかし、自局送信波回り込みは、アンテナ
インピーダンスとアンテナ共用回路のインピーダンス不
整合により、不平衡減衰量が有限となることに起因して
いる。移動無線機の使用状態は刻々変動し、それに伴っ
て自局送信波回り込み量も時々変化する。この様に変動
する回り込み信号を補償により除去するには、自動等化
器の様に、補償動作を自動的に行う必要がある。ところ
が、高周波帯で従来用いられていた補償制御法は、誤差
信号を包絡線検波して得られる誤差検出信号が最も小さ
い値となるように、振幅と位相の2要素を制御する信号
の値を、ある範囲で振動させながら変更していく摂動法
である。いわば二つの要素を一つの誤差検出信号で制御
する一次元的な制御であるため、制御信号を振動させな
いと制御の収束が判定できず、制御が複雑で、収束速度
が遅く、時間的に変動する信号の補償には適していな
い。他方、エコーキャンセラに用いられているトランス
バーサルフィルタの等化器を用いる方法では、自動等化
は可能であるが、高周波帯で構成するには、ハードウェ
ア規模が大きく、実現が難しいという問題点がある。
However, the transmission wave wraparound of the local station is caused by the unbalanced attenuation being finite due to the impedance mismatch between the antenna impedance and the antenna shared circuit. The usage state of the mobile wireless device changes from moment to moment, and accordingly, the amount of transmission wave wraparound of the local station also changes from time to time. In order to remove the wraparound signal that fluctuates in this way by compensation, it is necessary to automatically perform the compensation operation like an automatic equalizer. However, in the compensation control method conventionally used in the high frequency band, the value of the signal for controlling the two elements of amplitude and phase is set so that the error detection signal obtained by envelope detection of the error signal has the smallest value. , Is a perturbation method that changes while vibrating in a certain range. In other words, it is a one-dimensional control that controls two elements with one error detection signal, so the control convergence cannot be determined unless the control signal is oscillated, the control is complicated, the convergence speed is slow, and it fluctuates with time. It is not suitable for compensating signals that On the other hand, in the method using the equalizer of the transversal filter used in the echo canceller, automatic equalization is possible, but the hardware scale is large and it is difficult to implement it in the high frequency band. There is.

【0007】本発明の目的は、双方向通信を行う無線通
信装置において、アンテナ共用回路を通して、受信機側
に漏れ込んだ自己送信波を簡易な装置で補償除去し、か
つ周波数帯域幅の有効利用率を向上できる無線通信方式
及び無線通信装置を提供することである。
An object of the present invention is, in a wireless communication device for two-way communication, compensating and removing a self-transmitted wave leaking to a receiver side through a shared antenna circuit with a simple device, and effectively utilizing a frequency bandwidth. A wireless communication system and a wireless communication device capable of improving the rate are provided.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、送信機からの送信信号の振幅及び位相
を調整して補償信号を生成し、上記送信機からの送信信
号が上記アンテナ共用回路を透過して受信機側に漏れ込
んだ回り込み信号と上記補償信号とを減算合成すること
により上記回り込み信号を除去し、上記減算合成すると
きに生じる補償誤差信号を上記送信信号及び上記送信信
号に直交する成分で直交検波し、検波された同相、直交
成分の誤差検出信号で上記補償信号の振幅及び位相を調
整を行うものである。即ち、補償信号の振幅、位相の2
要素を制御する2次元的な補償動作を行う。
In order to achieve the above object, the present invention adjusts the amplitude and phase of a transmission signal from a transmitter to generate a compensation signal, and the transmission signal from the transmitter is The wraparound signal that has passed through the antenna shared circuit and leaked to the receiver side is subtractively combined with the compensation signal to remove the wraparound signal, and the compensation error signal generated when the subtraction synthesis is performed is used as the transmission signal and the compensation signal. Quadrature detection is performed with a component orthogonal to the transmission signal, and the amplitude and phase of the compensation signal are adjusted with the detected in-phase and quadrature component error detection signals. That is, the amplitude and phase of the compensation signal is 2
Performs a two-dimensional compensation operation that controls elements.

【0009】上記の方法を実施するため、上記送信機か
らの送信信号が上記アンテナ共用回路を経て上記受信機
側に回り込む自局回り込み信号を除去する補償回路を、
上記送信機の出力の振幅及び位相をそれぞれ調整する可
変減衰器及び可変移相器と、上記可変減衰器及び可変移
相器によって得られた補償信号と上記自局回り込み信号
とを減算合成する合成器と、上記合成器で減算合成して
得られた残差誤差信号を上記受信機の入力信号とすると
共に、上記残差誤差信号を上記送信信号及び上記送信信
号に直交する成分で直交検波する直交検波器と、検波さ
れた同相誤差信号及び直交誤差信号成分でそれぞれ上記
可変減衰器及び可変移相器の制御を行う制御手段とを設
けて構成した。
In order to carry out the above method, a compensating circuit for eliminating a local signal which the transmission signal from the transmitter circulates to the receiver side through the antenna shared circuit,
A variable attenuator and a variable phase shifter that adjust the amplitude and phase of the output of the transmitter, respectively, and a synthesis that performs subtractive synthesis of the compensation signal obtained by the variable attenuator and the variable phase shifter and the local loop signal. And the residual error signal obtained by subtractive synthesis by the synthesizer is used as the input signal of the receiver, and the residual error signal is orthogonally detected by the transmission signal and the component orthogonal to the transmission signal. A quadrature detector and control means for controlling the variable attenuator and the variable phase shifter by the detected in-phase error signal and quadrature error signal component, respectively, are provided.

【0010】[0010]

【作用】本発明の原理を説明する。図3は本発明の無線
通信装置の原理的構成を示す。図において、図2と同じ
構成素子部分は同一の番号で示す。ブロック31ないし
313は、補償信号生成回路で送信機11の出力信号T
から補償信号Cnを作り、信号合成器314に加える。
信号合成器314は、回り込み成分Lnを補償信号Cn
減算合成することによって相殺する。図3の動作原理を
図4の動作ベクトル図を用いて説明する。
The principle of the present invention will be described. FIG. 3 shows the basic configuration of the wireless communication device of the present invention. In the figure, the same component parts as in FIG. 2 are indicated by the same numbers. Blocks 31 to 313 are compensation signal generation circuits, which are output signals T of the transmitter 11.
A compensation signal C n is created from the signal and added to the signal synthesizer 314.
The signal combiner 314 cancels the wraparound component L n by subtracting and combining it with the compensation signal C n . The operation principle of FIG. 3 will be described with reference to the operation vector diagram of FIG.

【0011】送信機11の出力信号Tはアンテナ共用回
路13を経て、アンテナ14に供給され、電波となって
送出される。このとき、アンテナインピーダンスの不整
合があると、自局回り込み成分Ln がアンテナ共用回路
13を透過して受信機12側に漏れて来る。無線通信装
置の使用環境が変化して、自局回り込み成分がLn-1
ら、Lnに変化したとする。補償信号生成回路の補償信
号は、この瞬間Cn-1である。即ち、図4のベクトルL
n-1 の逆ベクトルとなっている。従って、回り込み成分
がLnに変わった瞬間、信号合成器314で得られる誤
差信号EはベクトルLn−Cn-1となる。
The output signal T of the transmitter 11 is supplied to the antenna 14 through the antenna common circuit 13 and is transmitted as a radio wave. At this time, if there is an antenna impedance mismatch, the local wraparound component L n passes through the antenna shared circuit 13 and leaks to the receiver 12 side. It is assumed that the use environment of the wireless communication device has changed and the local wraparound component has changed from L n-1 to L n . The compensation signal of the compensation signal generation circuit is the instant C n-1 . That is, the vector L in FIG.
It is the inverse vector of n-1 . Therefore, at the moment when the wraparound component changes to L n , the error signal E obtained by the signal combiner 314 becomes the vector L n −C n−1 .

【0012】誤差信号Eに送信波Tと、Tをπ/2移相
器33で位相シフトした直交送信波成分Texp(jπ/
2)を、混合器31、32によって掛け合わせ、誤差信
号の同相成分EI、直交成分EQを得る。これらを各々積
分回路34、35で積分する。積分回路34、35には
初期値として、Cn-1の同相成分、直交成分が保持され
ている。誤差信号Eが積分器に印加されると、積分回路
34、35の時定数に従って誤差信号が積分され、積分
器出力はベクトルCn-1−Eに収束して行く。これはベ
クトルCn、即ち、誤差信号Lnに対する補償信号であ
る。積分回路34、35の出力は直交座標(I、Q)で
表した補償信号である。他方、可変減衰器312、可変
移相器313を制御するには、極座標で表した補償信号
(振幅成分r、位相成分φ)が必要である。直交成分を
極座標成分に変換するには、
A transmission wave T is added to the error signal E, and a quadrature transmission wave component Texp (jπ /
2) is multiplied by mixers 31 and 32 to obtain an in-phase component E I and a quadrature component E Q of the error signal. These are integrated by the integrating circuits 34 and 35, respectively. The in - phase component and the quadrature component of C n-1 are held in the integrating circuits 34 and 35 as initial values. When the error signal E is applied to the integrator, the error signal is integrated according to the time constants of the integrating circuits 34 and 35, and the integrator output converges on the vector C n-1 -E. This is a compensation signal for the vector C n , that is, the error signal L n . The outputs of the integrating circuits 34 and 35 are compensation signals represented by Cartesian coordinates (I, Q). On the other hand, in order to control the variable attenuator 312 and the variable phase shifter 313, a compensation signal (amplitude component r, phase component φ) represented by polar coordinates is required. To convert orthogonal components to polar components,

【0013】[0013]

【数1】 [Equation 1]

【0014】で計算すればよい。従って、積分回路3
4、35の出力を各々、掛算器36、37で自乗し、加
算器38で加算し、平方根演算回路39で補償信号の振
幅成分rを求め、可変減衰器312を制御する。一方、
直交成分の積分回路35の出力Qを割算器310によっ
て、振幅成分rで割り、逆正弦関数演算回路311で補
償信号の位相成分φを求め、可変移相器313を制御す
れば、送信波信号Tから補償信号Cnを求めることがで
きる。
It may be calculated by Therefore, the integration circuit 3
The outputs of 4 and 35 are squared by the multipliers 36 and 37, respectively added by the adder 38, the amplitude component r of the compensation signal is obtained by the square root calculation circuit 39, and the variable attenuator 312 is controlled. on the other hand,
If the output Q of the quadrature component integration circuit 35 is divided by the amplitude component r by the divider 310, the phase component φ of the compensation signal is obtained by the inverse sine function operation circuit 311, and the variable phase shifter 313 is controlled, the transmission wave The compensation signal C n can be obtained from the signal T.

【0015】以上説明した様に、本発明によれば、送信
機出力が自局の受信機に回り込んでくる信号を、自身の
送信出力を用いて作成した補償信号で補償除去できる。
本発明では、誤差信号を自己送信波により直交検波し、
これを極座標表示の信号成分に変換し、可変減衰器、可
変位相器を制御して、補償信号を得るので回り込み信号
が変動しても、自動的な補償が可能である。
As described above, according to the present invention, a signal whose transmitter output wraps around to the receiver of its own station can be compensated and removed by a compensation signal created using its own transmission output.
In the present invention, quadrature detection of the error signal by the self-transmitted wave,
This is converted into a signal component of polar coordinate display and the variable attenuator and variable phase shifter are controlled to obtain a compensation signal, so that automatic compensation is possible even if the sneak-in signal changes.

【0016】また、従来の基底帯域のエコーキャンセラ
に用いられているトランスバーサル型等化器のような複
雑な構成を用いていないので、装置規模が大きくなるこ
ともない。送受アンテナを共用し、無線通信装置の小型
化が可能になる。更に、送受の分離をフィルタにより行
っていないので、遷移周波数帯(フィルタの通過域と阻
止域の間の周波数帯域)を確保する必要がなく、送受周
波数帯域を近づけることができ、周波数帯域の有効利用
が図れる。
Further, since a complicated structure such as the transversal type equalizer used in the conventional baseband echo canceller is not used, the device scale does not increase. By sharing the transmitting and receiving antennas, the wireless communication device can be downsized. Furthermore, since transmission and reception are not separated by the filter, it is not necessary to secure a transition frequency band (frequency band between the pass band and stop band of the filter), and the transmission and reception frequency bands can be made closer to each other. It can be used.

【0017】[0017]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。図5は、本発明による無線通信装置の第1の実施例
の構成を示すブロック図である。図において、図3と同
じ構成要素には同一番号を付して、その詳細な説明を省
く。信号合成器314の出力の誤差信号を直交検波して
得られた同相誤差信号、直交誤差信号は、各々低域通過
フィルタ51及び52で高調波除去された後、AD変換
器53及び54でディジタル信号に変換され、ディジタ
ル加算器55、56と遅延素子57、58で構成された
ディジタル積分回路で積分される。積分した結果(直交
座標で表した補償信号)はROM59に入力され、極座
標表示に変換される。ROM59には予め、(1)式の
変換が書き込まれている。即ち、ROM53は図3にお
ける構成要素36〜311の機能を果たす。ROM59
の出力は、DA変換器510、511でアナログ信号に
変換され後、低域通過フィルタ512、513で標本化
による折り返し成分を除去され、可変減衰器312、可
変移相器313の制御信号として用いられる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 5 is a block diagram showing the configuration of the first embodiment of the wireless communication device according to the present invention. In the figure, the same components as those in FIG. 3 are designated by the same reference numerals, and detailed description thereof will be omitted. The in-phase error signal and the quadrature error signal obtained by quadrature detection of the error signal output from the signal synthesizer 314 are subjected to harmonic removal by the low-pass filters 51 and 52, respectively, and then digitally converted by the AD converters 53 and 54. The signal is converted into a signal and integrated by a digital integrating circuit composed of digital adders 55 and 56 and delay elements 57 and 58. The integrated result (compensation signal expressed in rectangular coordinates) is input to the ROM 59 and converted into polar coordinate display. The conversion of the equation (1) is written in the ROM 59 in advance. That is, the ROM 53 fulfills the functions of the components 36 to 311 in FIG. ROM 59
The output of is converted into an analog signal by DA converters 510 and 511, a folding component due to sampling is removed by low pass filters 512 and 513, and is used as a control signal of the variable attenuator 312 and the variable phase shifter 313. To be

【0018】以上の回路のうち、点線で囲むディジタル
処理部514はIC化により極、小規模な回路で構成で
きる。また、アナログ回路で構成する場合に問題とな
る、平方根、逆正弦関数演算等の、回路誤差等を避け高
精度な回路が実現できる。さらにアナログ回路で実現さ
れる可変減衰器312、可変移相器313は、制御電圧
と減衰量、移相量との関係が非線形となるが、これをR
OM59によって補正して置くこともできる。
Of the circuits described above, the digital processing unit 514 surrounded by a dotted line can be constructed as an extremely small circuit by being integrated into an IC. In addition, it is possible to realize a highly accurate circuit that avoids circuit errors such as square root and inverse sine function calculation, which are problems when configured with an analog circuit. Further, in the variable attenuator 312 and the variable phase shifter 313 realized by the analog circuit, the relationship between the control voltage and the attenuation amount and the phase shift amount becomes non-linear.
It can also be corrected and placed by the OM59.

【0019】アンテナ共用回路13による回り込みの補
償だけを問題とするのであれば、補償量は20〜30d
Bも取れれば十分である。しかし、送受周波数帯を近づ
けて周波数利用効率を向上するには、基地局からの受信
信号レベルが問題となり、自局送信波の漏れ込み量を下
げるため、数十dB以上の減衰量を必要とする。この様
な場合には、高周波帯のみの回り込み補償では不十分
で、中間周波数帯、基底周波数帯でも回り込みを補償す
る事が必要となる。
If only the wraparound compensation by the shared antenna circuit 13 is a problem, the compensation amount is 20 to 30 d.
It is enough to get B as well. However, in order to bring the transmitting and receiving frequency bands closer to each other and improve the frequency utilization efficiency, the level of the received signal from the base station becomes a problem, and in order to reduce the amount of leakage of the transmitted wave of its own station, an attenuation amount of several tens of dB or more is required. To do. In such a case, the wraparound compensation of only the high frequency band is not sufficient, and it is necessary to compensate the wraparound also in the intermediate frequency band and the base frequency band.

【0020】図6は、本発明による無線通信装置の第2
の実施例の構成を示すブロック図である。本実施例は、
高周波帯、中間周波数帯及び基底周波数帯で回り込みを
補償するものである。送信機における変調器61の出力
信号は、中間周波搬送波信号用(fIF)局部発振器66
からの中間周波搬送波信号と混合器65で掛け合わさ
れ、帯域通過フィルタ68で中間周波帯の信号に周波数
変換される。同様に局部発振器613からの搬送周波信
号(fRF)により、混合器612と帯域通過フィルタ
615で搬送波周波数帯の信号に周波数変換され、アン
テナ共用回路13を経て、アンテナ14から送出され
る。逆に、アンテナ14に誘起された受信信号は、アン
テナ共用回路13を経て受信機側高周波回路に導かれ
る。同時に自局回り込み信号もアンテナ共用回路13を
透過して、受信機側に漏れ込む。受信側高周波回路で
は、送信側搬送波周波数帯の送信信号を補償信号生成回
路617に通して生成した自局回り込み補償信号を信号
合成器618で減算合成し、搬送波帯での回り込み補償
を行う。信号合成器618の出力である誤差信号は補償
信号生成回路617に帰還されるとともに、混合器61
4と、帯域通過フィルタ611で中間周波帯の信号に周
波数変換される。
FIG. 6 shows a second wireless communication device according to the present invention.
3 is a block diagram showing the configuration of the embodiment of FIG. In this example,
The wraparound is compensated in the high frequency band, the intermediate frequency band and the base frequency band. The output signal of the modulator 61 in the transmitter is an intermediate frequency carrier signal (f IF ) local oscillator 66.
Is mixed with the intermediate frequency carrier signal from the mixer in the mixer 65, and frequency-converted into a signal in the intermediate frequency band by the band pass filter 68. Similarly, the carrier frequency signal (fRF) from the local oscillator 613 is frequency-converted into a signal in the carrier frequency band by the mixer 612 and the bandpass filter 615, and the signal is transmitted from the antenna 14 via the antenna common circuit 13. On the contrary, the reception signal induced in the antenna 14 is guided to the receiver-side high frequency circuit through the antenna shared circuit 13. At the same time, the signal that wraps around the station also passes through the shared antenna circuit 13 and leaks to the receiver side. In the high-frequency circuit on the receiving side, the local wrap-around compensation signal generated by passing the transmission signal in the carrier-side frequency band on the transmitting side through the compensation signal generation circuit 617 is subtractively combined by the signal combiner 618 to perform wrap-around compensation in the carrier band. The error signal output from the signal synthesizer 618 is fed back to the compensation signal generation circuit 617, and the mixer 61
4 and the band pass filter 611 frequency-converts the signal into an intermediate frequency band signal.

【0021】ここで、送信側中間周波数帯の送信信号を
補償信号生成回路69に通して得た回り込み補償信号を
信号合成器610で減算合成し、中間周波数帯での回り
込み補償を行う。信号合成器618の出力である誤差信
号は補償信号生成回路69に帰還されると共に、中間周
波信号用(fIF)局部発振器66からの中間周波搬送波
信号と混合器67で掛け合わされ、低域通過フィルタ6
16で基底帯域の信号に周波数変換される。基底帯域で
も、変調器61出力を補償信号生成回路63で生成した
自局回り込み補償信号を信号合成器64で減算合成し、
基底帯域での回り込み補償を行い、復調器62に入力す
る。
Here, the wraparound compensation signal obtained by passing the transmission signal in the transmission side intermediate frequency band through the compensation signal generating circuit 69 is subjected to subtraction synthesis in the signal synthesizer 610 to perform wraparound compensation in the intermediate frequency band. The error signal output from the signal synthesizer 618 is fed back to the compensation signal generation circuit 69, and is also multiplied by the intermediate frequency carrier signal from the local oscillator 66 for the intermediate frequency signal (f IF ) in the mixer 67 to pass the low-pass signal. Filter 6
At 16, the frequency is converted into a baseband signal. Even in the base band, the output of the modulator 61 is subjected to the subtraction synthesis of the own-station wraparound compensation signal generated by the compensation signal generation circuit 63 by the signal synthesizer 64,
The wraparound compensation is performed in the base band, and the result is input to the demodulator 62.

【0022】図6の補償信号生成回路617は、図5の
補償信号生成回路を適用する事ができる。また補償信号
生成回路69、63も図5と同様な回路を用いることが
できる。補償信号生成回路63は基底帯域での処理であ
るから、全ディジタル処理で構成することも可能であ
る。
As the compensation signal generation circuit 617 shown in FIG. 6, the compensation signal generation circuit shown in FIG. 5 can be applied. Further, the compensation signal generation circuits 69 and 63 can use the same circuits as those in FIG. Since the compensation signal generation circuit 63 performs processing in the base band, it can be configured by all digital processing.

【0023】中間周波数帯での補償信号生成回路69が
適用可能となるには、中間周波数が送受で一致している
事が必要である。送受の中間周波数が異なる場合には、
周波数変換を施し、送信側中間周波信号の周波数を受信
側と一致させてから補償器に入力する必要がある。
In order for the compensation signal generation circuit 69 in the intermediate frequency band to be applicable, it is necessary that the intermediate frequencies are the same in transmission and reception. If the intermediate frequency of transmission and reception is different,
It is necessary to perform frequency conversion so that the frequency of the intermediate frequency signal on the transmitting side matches the frequency on the receiving side before inputting to the compensator.

【0024】図7は、本発明による無線通信装置の第3
の実施例の構成を示すブロック図である。本実施例は、
図5の実施例とほぼ同様であるが、補償信号を得る回路
部分が異なっている。構成要素31〜33、312、3
14、51〜514は図5の同一番号の構成要素と同じ
ものである。図において、送信側中間周波数帯の信号は
可変減衰器312、固定時間遅延素子71、可変無限移
相器72を経て補償信号となる。ここで固定時間遅延素
子71の遅延時間は、図6の構成に於て、混合器61
2、帯域通過フィルタ615、アンテナ共用回路13、
信号合成器618、混合器614及び帯域通過フィルタ
611の経路を信号が通過する事により生ずる遅延時間
に等しくする。こうする事により、受信側中間周波帯回
路に漏れ込んだ自局回り込み信号と、図7の補償信号発
生回路によって得られる補償信号の伝搬時間差を除去
し、補償誤差を小さくしている。
FIG. 7 shows a third embodiment of the wireless communication device according to the present invention.
3 is a block diagram showing the configuration of the embodiment of FIG. In this example,
Although it is almost the same as the embodiment of FIG. 5, the circuit portion for obtaining the compensation signal is different. Components 31-33, 312, 3
14, 51 to 514 are the same as the components with the same numbers in FIG. In the figure, the signal in the transmission-side intermediate frequency band passes through the variable attenuator 312, the fixed time delay element 71, and the variable infinite phase shifter 72 to become a compensation signal. Here, the delay time of the fixed time delay element 71 is the mixer 61 in the configuration of FIG.
2, band pass filter 615, antenna shared circuit 13,
The paths of the signal combiner 618, the mixer 614 and the band pass filter 611 are made equal to the delay time caused by the passage of signals. By doing so, the propagation time difference between the local loop signal leaked into the receiving side intermediate frequency band circuit and the compensation signal obtained by the compensation signal generation circuit of FIG. 7 is removed, and the compensation error is reduced.

【0025】また、図7の実施例では補償信号を得る可
変移相器として可変の無限移相器(360゜以上にわた
って移相できる移相器)を用いている。これは、実施例
3の補償器では高周波帯での回り込み補償器での補償誤
差を補償するためであり、その誤差信号の位相量は36
0゜の値を取り得るからである。さらに、中間周波帯で
の補償器は、高周波帯の補償器である程度補償されてい
るため、自局回り込み信号と受信信号のレベル差が高周
波帯での補償器の場合より小さくなる。そこで、補償信
号を得るとき、受信信号の影響を除くため、低域通過フ
ィルタにより受信信号の変調成分を除去する必要があ
る。この処理は補償器内の積分回路の積分時定数を大き
くすることでもできる。
In the embodiment shown in FIG. 7, a variable infinite phase shifter (a phase shifter capable of shifting the phase over 360 ° or more) is used as the variable phase shifter for obtaining the compensation signal. This is because the compensator of the third embodiment compensates the compensation error in the wraparound compensator in the high frequency band, and the phase amount of the error signal is 36.
This is because it can take a value of 0 °. Further, since the compensator in the intermediate frequency band is compensated to some extent by the compensator in the high frequency band, the level difference between the local wraparound signal and the received signal is smaller than that in the compensator in the high frequency band. Therefore, when obtaining the compensation signal, it is necessary to remove the modulation component of the received signal by a low-pass filter in order to remove the influence of the received signal. This processing can also be performed by increasing the integration time constant of the integrating circuit in the compensator.

【0026】図8は、図7の可変無限移相器72の構成
を示すブロック図である。図で81はROM、82、8
3はDA変換器、84、85は低域通過フィルタ、8
6、89は掛算器、88はπ/2移相器、87、810
は信号合成器である。
FIG. 8 is a block diagram showing the configuration of the variable infinite phase shifter 72 shown in FIG. In the figure, 81 is a ROM, 82, 8
3 is a DA converter, 84 and 85 are low-pass filters, 8
6, 89 are multipliers, 88 is a π / 2 phase shifter, 87, 810
Is a signal synthesizer.

【0027】信号cosXの位相をφ進めるには、To advance the phase of the signal cosX by φ,

【0028】[0028]

【数2】 cos(X−φ)=cosX・cosφ+sinX・si
nφ (2) を計算すれば良い。またcosφ、sinφは(1)式から
[Equation 2] cos (X−φ) = cosX · cosφ + sinX · si
It suffices to calculate nφ (2). Also, cosφ and sinφ are calculated from equation (1).

【0029】[0029]

【数3】 cosφ= I/r sinφ= Q/r
(3) の様に求める事ができる。従って、直交座標表示の補償
信号I、QをROM81に入力し、上記式によって位相
推移量φの正弦、余弦を求め、これをDA変換器82、
83によってアナログ信号に変換して、低域通過フィル
タ84、85により折り返し成分除去を行った後、掛算
器86、89に入力する。他方、信号cosXはπ/2移
相器88に入力して、直交信号成分sinXを求め、各
々、掛算器89、86に入力して、cosφ、sinφと掛け
合わせ、(2)式を計算する。これを信号合成器87、
810で補償すべき信号xと減算合成することで、36
0゜の移相が行える。
## EQU00003 ## cosφ = I / r sinφ = Q / r
You can ask like (3). Therefore, the compensation signals I and Q displayed in rectangular coordinates are input to the ROM 81, the sine and cosine of the phase shift amount φ are obtained by the above equation, and the sine and cosine of the phase shift amount φ are obtained.
The signal is converted into an analog signal by 83, and aliasing components are removed by low-pass filters 84, 85, and then input to multipliers 86, 89. On the other hand, the signal cosX is input to the π / 2 phase shifter 88 to obtain the quadrature signal component sinX, which are input to the multipliers 89 and 86, respectively, and multiplied by cosφ and sinφ to calculate the equation (2). . The signal synthesizer 87,
By subtracting and combining with the signal x to be compensated in 810, 36
A 0 ° phase shift is possible.

【0030】図8の可変無限移相器を図7の実施例に適
用する時、ROM81はROM59と共用でき、構成ハ
ードウェアを少なくすることができる。また前述したよ
うにアナログ回路で構成する場合の回路誤差を回避する
ことが可能である。
When the variable infinite phase shifter of FIG. 8 is applied to the embodiment of FIG. 7, the ROM 81 can be shared with the ROM 59, and the constituent hardware can be reduced. Further, as described above, it is possible to avoid a circuit error in the case of being configured by an analog circuit.

【0031】以上、本発明を無線機の高周波帯回路部だ
けでなく、中間周波数帯、基底帯域回路部にも適用した
実施例に付いて説明した。このように自局回り込み補償
を多段に行う場合には、全ての補償器を自動補償型にす
る必要はない。例えば高周波帯の補償器は固定移相器を
用い減衰器だけ可変にしたり、状況によって減衰器、移
相器とも固定とし、構成を簡略化してもよい。
The embodiment of the present invention applied not only to the high frequency band circuit section of the radio but also to the intermediate frequency band and base band circuit section has been described above. In this way, when performing multi-stage wraparound compensation for the local station, it is not necessary to make all compensators of the automatic compensation type. For example, as the compensator for the high frequency band, a fixed phase shifter may be used and only the attenuator may be made variable, or both the attenuator and the phase shifter may be fixed depending on the situation to simplify the configuration.

【0032】[0032]

【発明の効果】本発明によれば、移動無線機の使用状況
の変化により時々刻々変動する自局回り込み信号成分
を、自動的に補償除去できるので、送受アンテナの共用
が容易になり、装置の小型化が図れる。また送受信電波
の分離がフィルタを用いずに可能となるので、従来、送
受周波数帯域の間に必要であった、送受分離周波数帯域
を狭めて、近づける事が出来、周波数帯域の有効利用が
図れる。
According to the present invention, it is possible to automatically compensate and remove the signal component of the local station wraparound that fluctuates from moment to moment due to changes in the usage condition of the mobile radio device. Can be miniaturized. Further, since transmission / reception radio waves can be separated without using a filter, the transmission / reception separation frequency band, which was conventionally required between the transmission / reception frequency bands, can be narrowed and brought close to each other, and the frequency band can be effectively used.

【0033】また、本発明では、回り込み補償器を自動
制御するアルゴリズムとして、直交検波方式を用いて、
二次元的に制御しているので、従来の高周波帯域で用い
られていた、一次元的な摂動法による制御と異なり、制
御が簡単で、高速変動に追従する事が出来る。さらにデ
ィジタル処理が容易に適用できるので、アナログ回路素
子の持つ素子値変動や、非線形性を容易に補正すること
が可能で、高精度な回り込み補償が実現できる。
In the present invention, the quadrature detection method is used as an algorithm for automatically controlling the wraparound compensator.
Since it is controlled two-dimensionally, unlike the control by the one-dimensional perturbation method used in the conventional high frequency band, the control is simple and can follow high-speed fluctuations. Furthermore, since digital processing can be easily applied, it is possible to easily correct element value fluctuations and non-linearities of analog circuit elements, and realize highly accurate wraparound compensation.

【図面の簡単な説明】[Brief description of drawings]

【図1】無線通信装置の自局回り込み現象の説明図であ
る。
FIG. 1 is an explanatory diagram of a wraparound phenomenon of a wireless communication device.

【図2】従来の無線通信装置における回り込み補償法の
説明図である。
FIG. 2 is an explanatory diagram of a wraparound compensation method in a conventional wireless communication device.

【図3】本発明による無線通信装置の原理的構成を示す
ブロック図である。
FIG. 3 is a block diagram showing a basic configuration of a wireless communication device according to the present invention.

【図4】図3の動作を説明する信号ベクトル図である。FIG. 4 is a signal vector diagram for explaining the operation of FIG.

【図5】本発明による無線通信装置の第1の実施例の構
成を示すブロック図である。
FIG. 5 is a block diagram showing a configuration of a first embodiment of a wireless communication device according to the present invention.

【図6】本発明による無線通信装置の第2の実施例の構
成を示すブロック図である。
FIG. 6 is a block diagram showing a configuration of a second exemplary embodiment of a wireless communication device according to the present invention.

【図7】本発明による無線通信装置の第3の実施例の要
部の構成を示すブロック図である。
FIG. 7 is a block diagram showing a configuration of a main part of a third embodiment of a wireless communication device according to the present invention.

【図8】図7の無限移相器72の構成を示すブロック図
である。
8 is a block diagram showing a configuration of an infinite phase shifter 72 shown in FIG.

【符号の説明】[Explanation of symbols]

10…移動局無線装置、 11…送信機、 12…受信機、 13…アンテナ共用回路、 14…アンテナ、 15…基地局アンテナ、 16…基地局無線装置、 21…等化器、 22、314、64、610、618、87、810…
信号合成器、 31、32、65、67、612、614…混合器、 33、88…π/2移相器、 34、35…積分回路、 36、37、86、89…掛算器、 38…加算器、 39…平方根演算回路、 310…割算器、 311…逆正弦関数演算回路、 312…可変減衰器、 313…可変移相器、 51、52、512、513、616、84、85…低
域通過フィルタ、 53、54…AD変換器、 55、56…ディジタル加算器、 57、58…遅延素子、 59、81…ROM、 510、511、82、83…DA変換器、 514…ディジタル処理部、 61…変調器、 62…復調器、 63、69、617…補償信号生成回路、 66、613…局部発振器、 68、611、615…帯域通過フィルタ、 71…固定時間遅延素子、 72…可変無限移相器。
10 ... Mobile station wireless device, 11 ... Transmitter, 12 ... Receiver, 13 ... Antenna shared circuit, 14 ... Antenna, 15 ... Base station antenna, 16 ... Base station wireless device, 21 ... Equalizer, 22, 314, 64, 610, 618, 87, 810 ...
Signal combiner, 31, 32, 65, 67, 612, 614 ... Mixer, 33, 88 ... π / 2 phase shifter, 34, 35 ... Integrator circuit, 36, 37, 86, 89 ... Multiplier, 38 ... Adder, 39 ... Square root operation circuit, 310 ... Divider, 311 ... Inverse sine function operation circuit, 312 ... Variable attenuator, 313 ... Variable phase shifter, 51, 52, 512, 513, 616, 84, 85 ... Low pass filter, 53, 54 ... AD converter, 55, 56 ... Digital adder, 57, 58 ... Delay element, 59, 81 ... ROM, 510, 511, 82, 83 ... DA converter, 514 ... Digital processing Part, 61 ... Modulator, 62 ... Demodulator, 63, 69, 617 ... Compensation signal generation circuit, 66, 613 ... Local oscillator, 68, 611, 615 ... Band pass filter, 71 ... Fixed time delay element, 72 ... Strange infinite phase shifter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桑原 幹夫 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mikio Kuwahara 1-280, Higashi Koigokubo, Kokubunji, Tokyo Metropolitan Research Center, Hitachi, Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】送信機と受信機とがアンテナ共用回路を介
して送受共用アンテナと接続された無線通信装置におい
て、上記送信機からの送信信号の振幅及び位相を調整し
て補償信号を生成し、上記送信機からの送信信号が上記
アンテナ共用回路を透過して受信機側に漏れ込んだ回り
込み信号と上記補償信号とを減算合成することにより上
記回り込み信号を除去し、上記減算合成するときに生じ
る補償誤差信号を上記送信信号及び上記送信信号に直交
する成分で直交検波し、検波された同相及び直交成分の
誤差検出信号で上記補償信号の振幅及び位相を調整を行
うことを特徴とする無線通信方式。
1. A wireless communication device in which a transmitter and a receiver are connected to a transmission / reception shared antenna via an antenna shared circuit, and the compensation signal is generated by adjusting the amplitude and phase of the transmission signal from the transmitter. , The transmission signal from the transmitter is transmitted through the antenna shared circuit and leaked to the receiver side, and the compensation signal is subtracted and combined to remove the leakage signal, and when the subtraction synthesis is performed. A radio communication characterized by performing quadrature detection on the generated compensation error signal with the transmission signal and a component orthogonal to the transmission signal, and adjusting the amplitude and phase of the compensation signal with the detected error detection signal of the in-phase and quadrature components. Communication method.
【請求項2】送信機と受信機とがアンテナ共用回路を介
して接続された送受共用アンテナと、上記送信機の出力
側と上記受信機の入力側との間に設けられ、上記送信機
からの送信信号が上記アンテナ共用回路を経て上記受信
機側に回り込む自局回り込み信号を除去する補償回路と
を持つ無線通信装置において、上記補償回路が上記送信
機の出力の振幅及び位相をそれぞれ調整する可変減衰器
及び可変移相器と、上記可変減衰器及び可変移相器によ
って得られた補償信号と上記自局回り込み信号とを減算
合成する合成器と、上記合成器で減算合成して得られた
残差誤差信号を上記受信機の入力信号とするとともに、
上記残差誤差信号を上記送信信号及び上記送信信号に直
交する成分で直交検波する直交検波器と、検波された同
相誤差信号及び直交誤差信号成分でそれぞれ上記可変減
衰器及び可変移相器の制御を行う制御手段とをもつこと
を特徴とする無線通信装置。
2. A transmitter / receiver shared antenna, in which a transmitter and a receiver are connected via an antenna shared circuit, is provided between an output side of the transmitter and an input side of the receiver. In the wireless communication device having a compensating circuit for eliminating a local signal that sneak into the receiver side via the antenna shared circuit, the compensating circuit adjusts the amplitude and phase of the output of the transmitter, respectively. A variable attenuator and a variable phase shifter, a combiner for subtracting and combining the compensation signal obtained by the variable attenuator and the variable phase shifter with the local loop-in signal, and a subtractive combination by the combiner. With the residual error signal as the input signal of the receiver,
A quadrature detector that quadrature-detects the residual error signal with the transmission signal and a component orthogonal to the transmission signal, and controls the variable attenuator and the variable phase shifter with the detected in-phase error signal and quadrature error signal component, respectively. And a control means for performing the above.
【請求項3】請求項2記載の無線通信装置において、上
記制御手段が上記同相及び直交誤差信号をそれぞれ積分
する積分回路と、上記積分回路の出力を極座標表示の信
号に変換る変換手段と、上記極座標表示の信号の振幅信
号と位相信号とをそれぞれ上記可変減衰器及び上記可変
移相器の制御信号とする手段とを持つことを特徴とする
無線通信装置。
3. The wireless communication device according to claim 2, wherein said control means integrates said in-phase and quadrature error signals respectively, and conversion means for converting the output of said integration circuit into a polar coordinate display signal. A radio communication device comprising means for using an amplitude signal and a phase signal of the polar coordinate display signal as control signals for the variable attenuator and the variable phase shifter, respectively.
【請求項4】請求項2又は3記載の無線通信装置におい
て、上記可変移相器が無限移相器であることを特徴とす
る無線通信装置。
4. The wireless communication device according to claim 2, wherein the variable phase shifter is an infinite phase shifter.
【請求項5】送信機と受信機とがアンテナ共用回路を介
して送受共用アンテナと接続された無線通信装置におい
て、上記送信機、受信機の各々の高周波帯回路、中間周
波数帯回路、基底帯域回路の各段に、送信機側の各段の
送信信号から各々補償信号を生成し、上記補償信号を各
々を対応する受信機の各段の回路の信号に減算合成する
することにより、上記送信機からの送信信号がアンテナ
共用回路を介して受信機側に漏れ込む自局回り込み信号
の補償除去を上記各段回路で行うことを特徴とする無線
通信方式。
5. A radio communication device in which a transmitter and a receiver are connected to a common antenna for transmission and reception through a shared antenna circuit, wherein a high frequency band circuit, an intermediate frequency band circuit and a base band of each of the transmitter and the receiver. At each stage of the circuit, a compensation signal is generated from the transmission signal at each stage on the transmitter side, and the compensation signal is subtracted and combined with the signal of the circuit at each stage of the corresponding receiver to perform the above-mentioned transmission. A wireless communication system characterized in that each stage circuit compensates and removes a signal sneaking into a local station, in which a transmission signal from a device leaks to a receiver side via a shared antenna circuit.
【請求項6】送信機と受信機とがアンテナ共用回路を介
して送受共用アンテナと接続された無線通信装置におい
て、上記送信機、受信機の各々の高周波帯回路、中間周
波数帯回路、基底帯域回路の各段において、送信機側の
各段の送信信号から各々補償信号を生成する補償信号生
成回路と、上記補償信号を各々対応する受信機の各段の
回路の信号に減算合成する合成回路とを設け、上記送信
機からの送信信号がアンテナ共用回路を介して受信機側
に漏れ込む自局回り込み信号の補償除去を上記各段回路
で行うことを特徴とする無線通信装置。
6. A radio communication device in which a transmitter and a receiver are connected to a transmitting / receiving shared antenna via an antenna shared circuit, wherein a high frequency band circuit, an intermediate frequency band circuit, and a base band of each of the transmitter and the receiver. At each stage of the circuit, a compensation signal generating circuit for generating a compensation signal from the transmission signal at each stage on the transmitter side, and a synthesizing circuit for subtracting and synthesizing the compensation signal with the signal of the circuit at each stage of the corresponding receiver. And a compensating / removing signal for a local station that leaks a transmission signal from the transmitter to the receiver side via the antenna shared circuit in each of the stage circuits.
【請求項7】請求項6記載の無線通信装置において、上
記各段の補償信号生成回路が上記送信機の各段の出力の
振幅及び位相をそれぞれ調整する可変減衰器及び可変移
相器と、上記合成器で減算合成して得られた残差誤差信
号を上記受信機の各段の入力信号とするとともに、上記
残差誤差信号を上記各段の送信信号及び上記送信信号に
直交する成分で直交検波する直交検波器と、検波された
同相誤差信号及び直交誤差信号成分でそれぞれ上記可変
減衰器及び可変移相器の制御を行う制御手段とをもつこ
とを特徴とする無線通信装置。
7. The wireless communication device according to claim 6, wherein a compensation signal generation circuit in each stage adjusts an amplitude and a phase of an output in each stage of the transmitter, and a variable phase shifter. The residual error signal obtained by subtractive synthesis by the synthesizer is used as an input signal of each stage of the receiver, and the residual error signal is transmitted by each stage and a component orthogonal to the transmitted signal. A radio communication device comprising: a quadrature detector for quadrature detection; and a control means for controlling the variable attenuator and the variable phase shifter with the detected in-phase error signal and quadrature error signal component, respectively.
【請求項8】請求項7記載の無線通信装置において、上
記制御手段が上記同相及び直交誤差信号をそれぞれ積分
する積分回路と、上記積分回路の出力を極座標表示の信
号に変換る変換手段と、上記極座標表示の信号の振幅信
号と位相信号とをそれぞれ上記可変減衰器及び上記可変
移相器の制御信号とする手段とを持つことを特徴とする
無線通信装置。
8. A wireless communication apparatus according to claim 7, wherein said control means integrates said in-phase and quadrature error signals respectively, and conversion means for converting the output of said integration circuit into a polar coordinate display signal. A radio communication device comprising means for using an amplitude signal and a phase signal of the polar coordinate display signal as control signals for the variable attenuator and the variable phase shifter, respectively.
【請求項9】請求項7記載の無線通信装置において、上
記可変移相器が無限移相器であることを特徴とする無線
通信装置。
9. The wireless communication device according to claim 7, wherein the variable phase shifter is an infinite phase shifter.
【請求項10】請求項7記載の無線通信装置において、
上記中間周波数帯回路及び上記基底帯域回路の各段の補
償信号生成回路に上記自局回り込み信号と上記補償信号
との伝搬遅延時間差を補正する遅延時間調整回路を設け
たことを特徴とする無線通信装置。
10. The wireless communication device according to claim 7,
A radio communication characterized in that a compensation time generation circuit for compensating for a propagation delay time difference between the local loop signal and the compensation signal is provided in the compensation signal generation circuit at each stage of the intermediate frequency band circuit and the base band circuit. apparatus.
【請求項11】請求項3、4、8、9又は10記載の無
線通信装置において、上記積分回路及び上記変換る変換
手段がディジタル回路で構成されたことを特徴とする無
線通信装置。
11. The wireless communication device according to claim 3, 4, 8, 9 or 10, wherein the integrating circuit and the converting means for converting are constituted by a digital circuit.
JP21825693A 1993-09-02 1993-09-02 Radio communication system and equipment Pending JPH0774684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21825693A JPH0774684A (en) 1993-09-02 1993-09-02 Radio communication system and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21825693A JPH0774684A (en) 1993-09-02 1993-09-02 Radio communication system and equipment

Publications (1)

Publication Number Publication Date
JPH0774684A true JPH0774684A (en) 1995-03-17

Family

ID=16717035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21825693A Pending JPH0774684A (en) 1993-09-02 1993-09-02 Radio communication system and equipment

Country Status (1)

Country Link
JP (1) JPH0774684A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084829A (en) * 2007-09-28 2009-04-23 Denso Corp Smart key system
JP2009182595A (en) * 2008-01-30 2009-08-13 Hitachi Kokusai Electric Inc Interference wave canceler
US7702047B2 (en) 2005-11-22 2010-04-20 Samsung Electronics Co., Ltd. RF receiving apparatus and method for removing leakage component of received signal
CN102164011A (en) * 2010-02-18 2011-08-24 Ls产电株式会社 Method for detecting offset signal corresponding to transmission leakage signal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7702047B2 (en) 2005-11-22 2010-04-20 Samsung Electronics Co., Ltd. RF receiving apparatus and method for removing leakage component of received signal
JP2009084829A (en) * 2007-09-28 2009-04-23 Denso Corp Smart key system
JP2009182595A (en) * 2008-01-30 2009-08-13 Hitachi Kokusai Electric Inc Interference wave canceler
CN102164011A (en) * 2010-02-18 2011-08-24 Ls产电株式会社 Method for detecting offset signal corresponding to transmission leakage signal
JP2011172227A (en) * 2010-02-18 2011-09-01 Ls Industrial Systems Co Ltd Method for retrieving offset signal for transmission leakage signal
US8462836B2 (en) 2010-02-18 2013-06-11 Nethom Co., Ltd. Method for detecting offset signal corresponding to transmission leakage signal

Similar Documents

Publication Publication Date Title
US8306480B2 (en) System and method for transmission interference cancellation in full duplex transceiver
US7349505B2 (en) Relayed communication with versatile self-interference cancellation
EP0792542B1 (en) Full-duplex radio transmitter/receiver
US6647073B2 (en) Linearisation and modulation device
CN100421485C (en) Direct change-over receiver for directly clearing deviation (DC)
EP0187672A2 (en) One frequency repeater for a digital microwave radio system with cancellation of transmitter-to-receiver interference
EP0111931A2 (en) Cross-polarization distortion canceller for use in digital radio communication receiver
AU7853398A (en) Radio transceiver system
KR20010062641A (en) Dual digital low IF complex receiver
US20020150169A1 (en) Apparatus and method for measuring propagation delay in an NB-TDD CDMA mobile communication system
CN101267218A (en) Radio communication apparatus
KR101723233B1 (en) Wireless communication apparatus improved tx/rx isolation
KR20040014208A (en) Radio equipment
CN102594379A (en) Phase-shifting filter device and application thereof
US6618096B1 (en) System and method for adaptively balancing quadrature modulators for vestigial-sideband generation
JP2004072336A (en) Radio equipment with function of compensating transmission signal
JPH0774684A (en) Radio communication system and equipment
JPH10224138A (en) Directivity control circuit for adaptive array antenna
JP3239926B2 (en) Distortion compensation circuit
EP1476950A1 (en) 3g radio
RU2178952C1 (en) System for transmitting and receiving modulated signals over power supply mains
KR100331596B1 (en) Radio device
JPH0774790A (en) Transmission reception circuit with nonlinear distortion compensation
GB2329554A (en) Isolation of transmitted signal from received signal
JPH05268188A (en) Multiplex radio modulator-demodulator