JPH0774066A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH0774066A
JPH0774066A JP21953093A JP21953093A JPH0774066A JP H0774066 A JPH0774066 A JP H0774066A JP 21953093 A JP21953093 A JP 21953093A JP 21953093 A JP21953093 A JP 21953093A JP H0774066 A JPH0774066 A JP H0774066A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor substrate
substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21953093A
Other languages
Japanese (ja)
Inventor
Yae Okuno
八重 奥野
Kazuhisa Uomi
和久 魚見
Toshihiro Kono
敏弘 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21953093A priority Critical patent/JPH0774066A/en
Publication of JPH0774066A publication Critical patent/JPH0774066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reject the propagation of dislocation within device structure formed by direct adhesion onto different kinds of substrates and suppress the dislocation on direct adhesion by placing a dislocation reduction region between a first semiconductor substrate and a second semiconductor substrate. CONSTITUTION:P-InGaAs etching stop layer 11, p<+>-InGaAsP layer 12, p-InP layer 13, undope InGaAsP activation layer 14, and n-InP layer 15 are allowed to grow successively on p-InP substrate 1. Then, InGaP single distortion layer 5 and n-InP layer 9 are allowed to grow successively. After that, the surfaces of n-GaAs substrate 2a and the n-InP layer 9 are washed, are subjected to HF treatment, rinsing, and drying and then washed surfaces face each other and a weight is placed on it before annealing. A miss-fit dislocation occurs at the adhesion interface between the n-GaAs substrate 2a and the n-InP layer 9 and laser is operation for a long time at a high temperature, thus achieving propagation into the n-InP layer 9. However, their propagation is rejected by the InGaP single distortion layer 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、格子定数の異なる異種
半導体基体を接着して構成される半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device formed by bonding different kinds of semiconductor substrates having different lattice constants.

【0002】[0002]

【従来の技術】格子定数の異なる異種半導体を材料とす
る異種デバイスをモノリシックに集積できれば光電子集
積化素子等の新しい機能を持ったデバイスを生み出すこ
とが出来る。しかし、第一の半導体基板上に格子定数の
異なる第二の半導体層を結晶成長によって積層する場
合、基板と成長層の格子定数差及び熱膨張係数差によっ
て成長層内に転位等の欠陥が発生し、デバイスとしての
実用化が不可能となる。しかし近年、アプライド フィ
ジックス レターズ(Applied Physics Letters)、58
1961(1991))に記載のように、InPとGa
Asのような格子定数差の大きい半導体を高温・加圧下
で直接接着することにより、集積化素子の実用化を可能
とすると思われる半導体装置が得られることが示され
た。この場合にも、接着界面ではInPとGaAsの格
子定数差及び熱膨張係数差を緩和するために転位が発生
するが、その量は少なく、またそれらの転位は成長層中
には貫通しにくい性質を持ち、デバイス特性に与える影
響が小さいとみられる。
2. Description of the Related Art If heterogeneous devices made of different semiconductors having different lattice constants can be monolithically integrated, a device having a new function such as an optoelectronic integrated device can be produced. However, when a second semiconductor layer having a different lattice constant is stacked on the first semiconductor substrate by crystal growth, defects such as dislocations occur in the growth layer due to the difference in the lattice constant and the thermal expansion coefficient between the substrate and the growth layer. However, practical application as a device becomes impossible. However, in recent years, Applied Physics Letters, 58
1961 (1991)) as described in InP and Ga.
It has been shown that by directly bonding a semiconductor such as As having a large difference in lattice constant under high temperature and pressure, a semiconductor device that is considered to be able to be put into practical use as an integrated device can be obtained. Also in this case, dislocations are generated at the bonding interface to relax the difference in lattice constant and the difference in thermal expansion coefficient between InP and GaAs, but the amount thereof is small and the dislocations are unlikely to penetrate into the growth layer. It seems that the effect on device characteristics is small.

【0003】また、更にアプライド フィジックス レ
ターズ(Applied Physics Letters)、62 1038(1
993))に記載のように、接着を行う基板の間に中間
層を形成し、接着強度や界面の電気的特性を向上させよ
うとする試みも報告されている。
In addition, Applied Physics Letters, 62 1038 (1)
993)), an attempt has been made to form an intermediate layer between substrates to be bonded to improve the bonding strength and the electrical characteristics of the interface.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のような
性質の転位であっても、素子作製プロセス中の高温過程
を経た場合、及びデバイスを高温動作等の過酷な条件下
で動作した場合、構造中のそれらの転位が成長層中に伝
播しデバイス特性に悪影響を与える可能性が有る。また
中間層を形成する場合も、適切な材料を選ばなければ逆
に転位発生の増加につながる恐れがある。
However, even with the dislocations having the above-mentioned properties, when the device undergoes a high temperature process during the device manufacturing process and the device is operated under severe conditions such as high temperature operation, These dislocations in the structure can propagate into the growth layer and adversely affect device properties. Further, also in the case of forming the intermediate layer, if appropriate materials are not selected, there is a possibility that the generation of dislocations may increase.

【0005】本発明の目的は、異種基板上に直接接着に
よって形成されるデバイス構造中における転位の伝播を
阻止すること、および直接接着時の転位の発生を抑制す
ることにある。
An object of the present invention is to prevent the propagation of dislocations in a device structure formed by direct bonding on a foreign substrate and to suppress the generation of dislocations during direct bonding.

【0006】[0006]

【課題を解決するための手段】上記目的は、接着を行う
二種の半導体基板の間に、転位低減領域を形成する第一
の手段、あるいは基板間の物性差を緩和する緩和層を形
成する第二の手段によって達成される。
The above object is to provide a first means for forming a dislocation reduction region, or a relaxing layer for relaxing a difference in physical properties between substrates, between two kinds of semiconductor substrates to be bonded. It is achieved by the second means.

【0007】[0007]

【作用】本発明の第一の手段によれば、第一の半導体基
板上に、必要ならばデバイス構造を形成した後、転位低
減領域を形成する。その表面に第二の半導体基板を直接
接着する。この時、転位低減領域と第二の半導体基板と
の接着界面でミスフィット転位が発生する。この接着さ
れた構造を用いてデバイスを作製した場合、デバイスを
特に高温動作等の過酷な条件で動作すると、従来の接着
方法では界面のミスフィット転位がデバイス構造内に伝
播してしまう。しかし、本発明では転位低減領域が転位
の伝播を阻止し、デバイスの動作特性に影響しない。
According to the first means of the present invention, the dislocation reduction region is formed on the first semiconductor substrate after forming the device structure if necessary. The second semiconductor substrate is directly adhered to the surface. At this time, misfit dislocations occur at the bonding interface between the dislocation reduction region and the second semiconductor substrate. When a device is manufactured using this bonded structure, if the device is operated under severe conditions such as high temperature operation, misfit dislocations at the interface will propagate into the device structure by the conventional bonding method. However, in the present invention, the dislocation reduction region blocks the propagation of dislocations and does not affect the operating characteristics of the device.

【0008】また本発明の第二の手段によれば、第一の
半導体基板上に、必要ならばデバイス構造を形成した
後、第三の半導体層を形成する。その表面に第二の半導
体基板を直接接着する。この第三の半導体は第一の半導
体基板と第二の半導体基板の物性差を緩和するために形
成され、例えば、第一の半導体基板および第二の半導体
基板より熱膨張係数が大きい特徴を持つ。この第三の半
導体層によって、直接接着後第一の半導体基板と第二の
半導体基板の間に双方の物性差によって生じる応力が緩
和され、接着界面でのミスフィット転位の発生が抑えら
れる。
According to the second means of the present invention, a third semiconductor layer is formed on the first semiconductor substrate after forming a device structure if necessary. The second semiconductor substrate is directly adhered to the surface. The third semiconductor is formed to reduce the difference in physical properties between the first semiconductor substrate and the second semiconductor substrate, and has a characteristic that the coefficient of thermal expansion is larger than those of the first semiconductor substrate and the second semiconductor substrate, for example. . The third semiconductor layer alleviates the stress caused by the physical property difference between the first semiconductor substrate and the second semiconductor substrate after direct bonding, and suppresses the occurrence of misfit dislocations at the bonding interface.

【0009】[0009]

【実施例】(実施例1)以下、本発明の一実施例を図1
により説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to FIG.
Will be described.

【0010】有機金属気相成長(MOCVD)法によ
り、図1(a)に示すようにp−InP基板1上にp−I
nGaAsエッチングストップ層11(厚さ0.3μ
m),p+−InGaAsP層12(厚さ0.3μm),
p−InP層13(厚さ1.5μm),アンドープInG
aAsP活性層14(波長1.55μm),n−InP層
15(厚さ2.0μm)を順次成長する。InP層13お
よび15はクラッド層として機能し、p+−InGaA
sP 層12はオーミックコンタクトを得るための層
で、これらとInGaAsP活性層14は長波長帯レー
ザ構造を成すためのものである。引き続きInGaP単
一歪層5,n−InP層9(厚さ2.0μm)を順次成長
する。単一歪層5の組成はIn0.9Ga0.1Pとし、厚み
は臨界膜厚以下の10nmとした。
As shown in FIG. 1A, p-I is formed on the p-InP substrate 1 by the metal organic chemical vapor deposition (MOCVD) method.
nGaAs etching stop layer 11 (thickness 0.3 μm
m), p + -InGaAsP layer 12 (thickness 0.3 μm),
p-InP layer 13 (thickness: 1.5 μm), undoped InG
An aAsP active layer 14 (wavelength 1.55 μm) and an n-InP layer 15 (thickness 2.0 μm) are sequentially grown. The InP layers 13 and 15 function as a cladding layer, and p + -InGaA
The sP layer 12 is a layer for obtaining an ohmic contact, and these and the InGaAsP active layer 14 are for forming a long wavelength band laser structure. Subsequently, the InGaP single strain layer 5 and the n-InP layer 9 (thickness 2.0 μm) are sequentially grown. The composition of the single strained layer 5 was In 0.9 Ga 0.1 P, and the thickness was 10 nm, which is less than the critical film thickness.

【0011】この後、n−GaAs基板2aとn−In
P層9の表面を硫酸と過酸化水素の混合溶液で洗浄し、
更に、HF希釈液で処理した後、水洗してスピンナ乾燥
する。これらを洗浄した面を向かい合わせて重ね、40
g/cm2 程度の重しをしてアニール炉内に置く。この
時、n−GaAs基板2aおよびp−InP基板1のどち
らが上でもよい。炉内にH2 ガスを流しながら温度を4
50℃に昇温し、30分保持する。こうして図1(b)に
示すように、n−GaAs基板2aとp−InP基板1
が接着される。接着後、p−InP基板1を塩酸でエッ
チング除去し、更に、p−InGaAs層11を硫酸と
過酸化水素の混合溶液でエッチング除去した。その後、
通常の半導体レーザ作製プロセスを経て電極等を形成
し、レーザを作製した。
After that, the n-GaAs substrate 2a and the n-In
The surface of the P layer 9 is washed with a mixed solution of sulfuric acid and hydrogen peroxide,
Further, after being treated with an HF diluting solution, it is washed with water and spinner dried. Lay these washed surfaces face to face and place
Place a weight of about g / cm 2 in the annealing furnace. At this time, either the n-GaAs substrate 2a or the p-InP substrate 1 may be on top. The temperature is set to 4 while flowing H 2 gas into the furnace.
The temperature is raised to 50 ° C. and kept for 30 minutes. Thus, as shown in FIG. 1B, the n-GaAs substrate 2a and the p-InP substrate 1 are
Are glued together. After the adhesion, the p-InP substrate 1 was removed by etching with hydrochloric acid, and the p-InGaAs layer 11 was further removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide. afterwards,
Electrodes and the like were formed through a normal semiconductor laser manufacturing process to manufacture a laser.

【0012】本実施例によれば、n−GaAs基板2a
とn−InP層9の接着界面ではミスフィット転位が発
生し、レーザを高温で長時間動作させるとn−InP層
9中へ伝播する。しかしそれらはInGaP単一歪層5
によって伝播を阻止され、レーザ構造中にほとんど到達
しない。従って大部分のレーザの特性は劣化することは
なかった。
According to this embodiment, the n-GaAs substrate 2a is used.
Misfit dislocations are generated at the bonding interface between the n-InP layer 9 and the n-InP layer 9, and propagate into the n-InP layer 9 when the laser is operated at high temperature for a long time. However, they are InGaP single strained layer 5
Is prevented from propagating by and almost never reaches the laser structure. Therefore, the characteristics of most lasers did not deteriorate.

【0013】一方、図10に示す従来例では、単一歪層
がないためレーザを高温で連続発振させるとミスフィッ
ト転位がレーザ構造中へ伝播し、駆動電流が増加し動作
しなくなるチップが多くあった。即ち、InGaP単一
歪層によってデバイスを過酷な条件下で動作させた時の
劣化が抑制された。
On the other hand, in the conventional example shown in FIG. 10, since there is no single strain layer, when the laser is continuously oscillated at a high temperature, misfit dislocations propagate into the laser structure and the driving current increases, so that many chips do not operate. there were. That is, the InGaP single strained layer suppressed the deterioration when the device was operated under severe conditions.

【0014】本実施例はInGaP単一歪層を用いた
が、同様の効果をもたらすものであれば他の材料による
単一歪層を用いてもよい。InGaP単一歪層の組成と
膜厚は、InP層に対して適当な歪応力を生じ、且つ臨
界膜厚以内であればこれに限らない。また、本実施例は
長波長レーザを作製する場合について示したが、種々の
デバイスを作製する全ての場合について本発明の適用が
可能であり、デバイス構造を接着後に形成してもよい。
更に、本実施例はGaAs基板とInP基板を接着する
例のみ示したが、他の二種の基板を接着する場合につい
ても適当な単一歪層を用いることにより本発明の適用が
可能であり、接着方法も本実施例に限らない。
Although the InGaP single strained layer is used in this embodiment, a single strained layer made of another material may be used as long as the same effect can be obtained. The composition and film thickness of the InGaP single strained layer are not limited to these as long as they generate an appropriate strain stress on the InP layer and are within the critical film thickness. Further, although the present embodiment shows the case of manufacturing a long wavelength laser, the present invention can be applied to all cases of manufacturing various devices, and the device structure may be formed after bonding.
Further, although the present embodiment shows only an example in which a GaAs substrate and an InP substrate are bonded together, the present invention can be applied to the case where other two types of substrates are bonded together by using an appropriate single strain layer. The bonding method is not limited to this embodiment.

【0015】(実施例2)以下、本発明の第二の実施例
を図2により説明する。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to FIG.

【0016】基本的な接着方法および層構造は実施例1
と同様であるが、本実施例ではInGaP単一歪層5と
n−InP層9の間に更にn−InP層6a(厚さ0.5
μm),InGaP単一歪層7,n−InP層6b(厚さ
0.5μm),InGaP単一歪層8を成長した。単一歪
層7および8の組成および膜厚は単一歪層5と同じとし
た。
The basic bonding method and layer structure are described in Example 1.
However, in this embodiment, an n-InP layer 6a (having a thickness of 0.5) is further provided between the InGaP single strain layer 5 and the n-InP layer 9.
.mu.m), InGaP single strained layer 7, n-InP layer 6b (thickness 0.5 .mu.m), and InGaP single strained layer 8 were grown. The composition and film thickness of the single strained layers 7 and 8 were the same as those of the single strained layer 5.

【0017】本実施例によると、InGaP単一歪層を
三層に増やすことにより、より確実に転位の伝播が阻止
された。従って過酷な条件下での動作による劣化が更に
抑制された。
According to the present embodiment, by increasing the InGaP single strained layer to three layers, dislocation propagation was prevented more reliably. Therefore, the deterioration due to the operation under severe conditions was further suppressed.

【0018】本実施例では単一歪層の組成および膜厚は
全て同じとしたが、前述の歪応力と臨界膜厚の関係を満
たせばそれぞれ他の異なる組成,膜厚、および材料を用
いてもよい。また単一歪層の導入回数はこれに限らな
い。
In this embodiment, the composition and the film thickness of the single strained layer are all the same, but if the above-mentioned relationship between the strain stress and the critical film thickness is satisfied, another different composition, film thickness and material are used. Good. The number of times the single strained layer is introduced is not limited to this.

【0019】(実施例3)以下、本発明の第三の実施例
を図3により説明する。
(Embodiment 3) A third embodiment of the present invention will be described below with reference to FIG.

【0020】基本的な接着方法および層構造は実施例2
と同様であるが、本実施例ではInGaP歪層5〜8の
代りに歪超格子層51〜81を形成した。歪超格子層5
1〜81はIn0.9Ga0.1P層(50Å)とInP層
(50Å)の三周期で構成した。このように歪超格子層
を形成した場合でも実施例2と同様の効果が得られた。
The basic bonding method and layer structure are described in Example 2.
However, in this example, strained superlattice layers 51 to 81 were formed in place of the InGaP strained layers 5 to 8. Strained superlattice layer 5
1 to 81 are composed of three cycles of an In 0.9 Ga 0.1 P layer (50 Å) and an InP layer (50 Å). Even when the strained superlattice layer was formed in this way, the same effect as in Example 2 was obtained.

【0021】本実施例では歪超格子層は全て同じ層構造
を持つものとしたが、新たな転位を発生するものでなけ
れば、それぞれ他の異なる層構造を持った歪超格子を用
いてもよい。
In this embodiment, all strained superlattice layers have the same layer structure. However, strained superlattices having different layer structures may be used as long as new dislocations are not generated. Good.

【0022】(実施例4)以下、本発明の第四の実施例
を図4により説明する。
(Fourth Embodiment) A fourth embodiment of the present invention will be described below with reference to FIG.

【0023】MOCVD法により、図4(a)に示すよう
にp−InP基板1上にp−InGaAsエッチングストップ
層11,p+−InGaAsP層12,p−InP層1
3,アンドープInGaAsP活性層14,n−InP
層15、およびn−GaSb層10x(厚さ100Å)
を順次成長する。この後、n−GaSb層10xの表面
を実施例1と同様の方法で洗浄し、n−Si基板3をH
F希釈液で処理した後水洗してスピンナ乾燥する。これ
らを洗浄した面を向かい合わせて重ね、第一の実施例と
同様の方法で接着する。こうして図4(b)に示すよう
に、n−Si基板3とp−InP基板1がn−GaSb
層10xを介して接着された構造が得られる。ここで、
GaSbはSiおよびInPより熱膨張係数が大きいた
め、n−Si基板3とn−GaSb層10xの界面では
引っ張り応力が、n−GaSb層10xとn−InP層
15の界面では圧縮応力がかかる。このように引っ張り
と圧縮両方向の応力が生じることによって、n−Si基
板3とp−InP基板1の間の格子定数差等の物性差が
緩和される。また、GaSbは弾性定数が小さく変形し
やすいため、n−Si基板3とp−InP基板1の間の
物性差を吸収する効果も生じ、この結果、ミスフィット
転位の発生が抑えられ、更に接着界面にかかる歪の量が
低減される。接着後、p−InP基板1を塩酸でエッチ
ング除去し、更にp−InGaAs層11を硫酸と過酸
化水素の混合溶液でエッチング除去した。その後、通常
の半導体レーザ作製プロセスを経て電極等を形成し、長
波長レーザを作製した。
As shown in FIG. 4A, the p-InGaAs etching stop layer 11, the p + -InGaAsP layer 12, and the p-InP layer 1 are formed on the p-InP substrate 1 by the MOCVD method.
3, undoped InGaAsP active layer 14, n-InP
Layer 15 and n-GaSb layer 10x (thickness 100Å)
To grow sequentially. After that, the surface of the n-GaSb layer 10x is washed by the same method as in Example 1, and the n-Si substrate 3 is exposed to H.
After treatment with the F diluent, washing with water and spinner drying. These washed surfaces are faced to each other and stacked, and bonded in the same manner as in the first embodiment. Thus, as shown in FIG. 4B, the n-Si substrate 3 and the p-InP substrate 1 are n-GaSb.
A structure is obtained which is bonded via the layer 10x. here,
Since GaSb has a larger thermal expansion coefficient than Si and InP, tensile stress is applied to the interface between the n-Si substrate 3 and the n-GaSb layer 10x, and compressive stress is applied to the interface between the n-GaSb layer 10x and the n-InP layer 15. The tensile and compressive stresses thus generated alleviate the physical property difference such as the lattice constant difference between the n-Si substrate 3 and the p-InP substrate 1. Further, since GaSb has a small elastic constant and is easily deformed, it also has an effect of absorbing a physical property difference between the n-Si substrate 3 and the p-InP substrate 1. As a result, the occurrence of misfit dislocations is suppressed, and further adhesion The amount of strain on the interface is reduced. After the adhesion, the p-InP substrate 1 was removed by etching with hydrochloric acid, and the p-InGaAs layer 11 was removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide. Then, electrodes and the like were formed through a normal semiconductor laser manufacturing process to manufacture a long wavelength laser.

【0024】本実施例によれば、GaSb層10xによ
り接着界面でのミスフィット転位の発生が抑制され、ま
た界面の歪の量が低減されるため、レーザを高温で長時
間動作させても新たにミスフィット転位が発生すること
もなく、特性は全く劣化しなかった。即ち、図11に示
す従来例と比べて、GaSb層10xによってデバイス
を過酷な条件下で動作させた時の劣化が抑制された。
According to the present embodiment, the GaSb layer 10x suppresses the occurrence of misfit dislocations at the adhesive interface and reduces the amount of strain at the interface. Therefore, even if the laser is operated at high temperature for a long period of time, No misfit dislocations were generated and the characteristics were not deteriorated at all. That is, as compared with the conventional example shown in FIG. 11, the GaSb layer 10x suppressed deterioration when the device was operated under severe conditions.

【0025】本実施例は、長波長レーザを作製する場合
について示したが、種々のデバイスを作製する全ての場
合について本発明の適用が可能であり、デバイス構造を
接着後に形成してもよい。また、本実施例はSi基板と
InP基板を接着する例のみ示したが、他の二種の基板
を接着する場合についても適当な熱膨張係数を持つ材料
を介することにより本発明の適用が可能であり、接着方
法も本実施例に限らない。
Although the present embodiment shows the case of producing a long wavelength laser, the present invention can be applied to all cases of producing various devices, and the device structure may be formed after bonding. Further, this embodiment shows only an example of adhering the Si substrate and the InP substrate, but the present invention can be applied to the case of adhering two other types of substrates by interposing a material having an appropriate thermal expansion coefficient. Therefore, the bonding method is not limited to this embodiment.

【0026】(実施例5)以下、本発明の第五の実施例
を図5により説明する。
(Fifth Embodiment) A fifth embodiment of the present invention will be described below with reference to FIG.

【0027】MOCVD法により、図5(a)に示すよう
にp−GaAs基板2b上にp−InGaPエッチング
ストップ層21(厚さ0.3μm),p+−GaAs層2
2(厚さ0.3μm),p−AlGaAs層23(厚さ
1.0μm),アンドープMQW(Multi-Quantum Wel
l)活性層24,n−AlGaAs層25(厚さ1.0μ
m),n−GaAs層26(厚さ1.0μm)を順次成
長する。MQWとは組成の異なる二種の半導体薄膜を交
互に積層したもので、例えば、GaAs(7nm)とA
0.2Ga0.8As(5nm)の四周期で構成すると発振
波長は830nmとなり、Al0.1Ga0.9As(8nm)
とAl0.3Ga0.7As(5nm)の四周期で構成すると発
振波長780nmの活性層が得られる。本実施例ではM
QWは波長830nmの構造とした。また、AlGaA
s層23および25はクラッド層として機能し、p+−
GaAs 層22はオーミックコンタクトを得るための
もので、これらとMQW活性層24は短波長帯レーザ構
造を成すためのものである。
By the MOCVD method, as shown in FIG. 5A, the p-InGaP etching stop layer 21 (thickness 0.3 μm) and the p + -GaAs layer 2 are formed on the p-GaAs substrate 2b.
2 (thickness 0.3 μm), p-AlGaAs layer 23 (thickness 1.0 μm), undoped MQW (Multi-Quantum Wel)
l) Active layer 24, n-AlGaAs layer 25 (thickness 1.0 μm
m) and an n-GaAs layer 26 (thickness 1.0 μm) are sequentially grown. MQW is a stack of two types of semiconductor thin films having different compositions, and is composed of, for example, GaAs (7 nm) and A
When it is composed of four periods of 0.2 Ga 0.8 As (5 nm), the oscillation wavelength is 830 nm, and Al 0.1 Ga 0.9 As (8 nm)
And Al 0.3 Ga 0.7 As (5 nm) for four periods, an active layer with an oscillation wavelength of 780 nm is obtained. In this embodiment, M
The QW has a structure with a wavelength of 830 nm. In addition, AlGaA
The s layers 23 and 25 function as cladding layers, and p +-
The GaAs layer 22 is for obtaining ohmic contact, and these and the MQW active layer 24 are for forming a short wavelength band laser structure.

【0028】一方、MOCVD法により、n−GaP基
板4上にn−InP層10y(厚さ300Å)を成長す
る。この後、n−GaAs層26の表面とn−InP層
10yの表面を実施例1と同様の方法で洗浄する。これら
を洗浄した面を向かい合わせて重ね、実施例1と同様の
方法で接着する。
On the other hand, the n-InP layer 10y (thickness 300Å) is grown on the n-GaP substrate 4 by the MOCVD method. After that, the surface of the n-GaAs layer 26 and the n-InP layer
The surface of 10y is washed in the same manner as in Example 1. These washed surfaces are faced to each other and stacked, and bonded in the same manner as in Example 1.

【0029】こうして図5(b)に示すように、n−Ga
P基板4とp−GaAs基板2bがn−InP層10y
を介して接着された構造が得られる。ここで、InPは
GaPおよびGaAsより熱膨張係数が小さいため、n
−GaP基板4とn−InP層10xの界面では圧縮応
力が、n−InP層10yとn−GaAs層26の界面
では引っ張り応力がかかる。このように引っ張りと圧縮
両方向の応力が生じることによって、n−GaP基板4
とp−GaAs基板2bの間の格子定数差等の物性差が
緩和される。その結果、界面でのミスフィット転位の発
生が抑えられ、更にn−GaP基板4およびp−GaA
s基板2bにかかる歪の量が低減される。
Thus, as shown in FIG. 5B, n-Ga
The P substrate 4 and the p-GaAs substrate 2b are the n-InP layer 10y.
A structure adhered via is obtained. Since InP has a smaller coefficient of thermal expansion than GaP and GaAs, n
Compressive stress is applied at the interface between the -GaP substrate 4 and the n-InP layer 10x, and tensile stress is applied at the interface between the n-InP layer 10y and the n-GaAs layer 26. The tensile and compressive stresses are generated in this way, so that the n-GaP substrate 4 is
The difference in the physical properties such as the difference in lattice constant between the p-type GaAs substrate 2b and the p-GaAs substrate 2b is reduced. As a result, the occurrence of misfit dislocations at the interface is suppressed, and the n-GaP substrate 4 and p-GaA are further suppressed.
The amount of strain applied to the s substrate 2b is reduced.

【0030】接着後、p−GaAs基板2bを硫酸と過
酸化水素の混合溶液でエッチング除去し、更にp−In
GaP層21を塩酸でエッチング除去した。その後、通
常の半導体レーザ作製プロセスを経て電極等を形成し、
レーザを作製した。
After the adhesion, the p-GaAs substrate 2b is removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide, and p-In is further added.
The GaP layer 21 was removed by etching with hydrochloric acid. After that, electrodes etc. are formed through a normal semiconductor laser manufacturing process,
A laser was produced.

【0031】本実施例の様に、第四実施例とは逆に熱膨
張係数の小さい材料を介して接着した場合でも、n−I
nP層10yを形成しないで接着した従来の例と比べて
信頼性が向上する効果が得られた。もちろん作製するデ
バイスの種類や接着方法,接着する基板の種類等は本実
施例に限らず、他の二種の基板を接着する場合にも適当
な熱膨張係数を持つ材料を介することにより本発明の適
用が可能である。
As in the case of this embodiment, even if the material is adhered through a material having a small coefficient of thermal expansion, contrary to the fourth embodiment, n-I
The reliability was improved compared to the conventional example in which the nP layer 10y was adhered without being formed. Of course, the types of devices to be manufactured, the bonding method, the types of substrates to be bonded, etc. are not limited to those in the present embodiment, and the present invention can be applied to other two types of substrates by interposing a material having an appropriate thermal expansion coefficient. Can be applied.

【0032】(実施例6)本発明の第六の実施例を図6
により説明する。
(Embodiment 6) A sixth embodiment of the present invention is shown in FIG.
Will be described.

【0033】MOCVD法により、図6(a)に示すよう
にp−GaAs基板2b上にp−InGaPエッチング
ストップ層21,p+−GaAs層22,p−AlGa
As層23,アンドープMQW活性層24,n−AlG
aAs層25,n−GaAs層26を順次成長する。一
方、分子線エピタキシ(MBE)法により、n−Si基板
3上にn−GaN層10z(厚さ200Å)を成長する。
この後、n−GaAs層26の表面とn−GaN層10
zの表面を第一実施例と同様の方法で洗浄する。これら
を洗浄した面を向かい合わせて重ね、第一実施例と同様
の方法で接着する。こうして図6(b)に示すように、n
−Si基板3とp−GaAs基板2bがn−GaN層1
0zを介して接着された構造が得られる。ここで、Ga
NはSiおよびGaAsより格子定数が小さいため、n
−Si基板3とn−GaN層10zの界面では引っ張り応
力が、n−GaN層10zとn−GaAs層26の界面
では圧縮応力がかかる。このように引っ張りと圧縮両方
向の応力が生じることによって、n−Si基板3とp−
GaAs基板2bの間の格子定数差等の物性差が緩和さ
れる。その結果、界面でのミスフィット転位の発生が抑
えられ、更にn−Si基板3およびp−GaAs基板2
bにかかる歪の量が低減される。
By the MOCVD method, as shown in FIG. 6A, the p-InGaP etching stop layer 21, the p + -GaAs layer 22, and the p-AlGa are formed on the p-GaAs substrate 2b.
As layer 23, undoped MQW active layer 24, n-AlG
The aAs layer 25 and the n-GaAs layer 26 are sequentially grown. On the other hand, the n-GaN layer 10z (thickness 200Å) is grown on the n-Si substrate 3 by the molecular beam epitaxy (MBE) method.
After this, the surface of the n-GaAs layer 26 and the n-GaN layer 10
The surface of z is cleaned in the same manner as in the first embodiment. These cleaned surfaces are faced to each other and overlapped, and they are adhered in the same manner as in the first embodiment. Thus, as shown in FIG. 6B, n
-Si substrate 3 and p-GaAs substrate 2b are n-GaN layers 1
A structure bonded via 0z is obtained. Where Ga
Since N has a smaller lattice constant than Si and GaAs, n
A tensile stress is applied at the interface between the -Si substrate 3 and the n-GaN layer 10z, and a compressive stress is applied at the interface between the n-GaN layer 10z and the n-GaAs layer 26. As a result of the tensile stress and the compressive stress in both directions, the n-Si substrate 3 and the p-
Differences in physical properties such as a lattice constant difference between the GaAs substrates 2b are alleviated. As a result, the occurrence of misfit dislocations at the interface is suppressed, and the n-Si substrate 3 and the p-GaAs substrate 2 are further suppressed.
The amount of strain on b is reduced.

【0034】接着後、p−GaAs基板2bを硫酸と過
酸化水素の混合溶液でエッチング除去し、更にp−In
GaP層21を塩酸でエッチング除去した。その後、通
常の半導体レーザ作製プロセスを経て電極等を形成し、
短波長レーザを作製した。
After the adhesion, the p-GaAs substrate 2b is removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide, and p-In is further added.
The GaP layer 21 was removed by etching with hydrochloric acid. After that, electrodes etc. are formed through a normal semiconductor laser manufacturing process,
A short wavelength laser was produced.

【0035】本実施例の様に、格子定数の小さい材料を
介して接着した場合でも、第四および第五実施例に記載
の場合と同様に、n−GaN層10zを形成しないで接
着した従来の例と比べて信頼性が向上する効果が得られ
た。もちろん作製するデバイスの種類や接着方法,接着
する基板の種類等は本実施例に限らず、他の二種の基板
を接着する場合についても適当な格子定数を持つ材料を
介することにより本発明の適用が可能である。
Even when bonding is performed through a material having a small lattice constant as in this embodiment, as in the cases described in the fourth and fifth embodiments, the conventional bonding without forming the n-GaN layer 10z is performed. The effect of improving reliability was obtained as compared with the example. Of course, the types of devices to be manufactured, the bonding method, the types of substrates to be bonded, etc. are not limited to those in the present embodiment, and also in the case of bonding other two types of substrates, the material of the present invention can be used by interposing a material having an appropriate lattice constant. Applicable.

【0036】(実施例7)本発明の第七の実施例を同様
に図7により説明する。
(Embodiment 7) A seventh embodiment of the present invention will be described with reference to FIG.

【0037】MOCVD法により、図7(a)に示すよう
にp−InP基板1上にp−InGaAsエッチングストップ
層11,p+−InGaAsP 層12,p−InP層1
3,アンドープInGaAsP活性層14,n−InP
層15,InGaP単一歪層5,n−InP層6a,I
nGaP単一歪層7,n−InP層6b,InGaP単
一歪層8,n−InP層9、およびn−GaSb層10
xを順次成長する。この後、n−GaSb層10xの表
面を第一実施例と同様の方法で洗浄し、n−Si基板3
をHF希釈液で処理した後水洗してスピンナ乾燥する。
As shown in FIG. 7A, the p-InGaAs etching stop layer 11, the p + -InGaAsP layer 12, and the p-InP layer 1 are formed on the p-InP substrate 1 by the MOCVD method.
3, undoped InGaAsP active layer 14, n-InP
Layer 15, InGaP single strained layer 5, n-InP layer 6a, I
nGaP single strain layer 7, n-InP layer 6b, InGaP single strain layer 8, n-InP layer 9, and n-GaSb layer 10
grow x sequentially. After that, the surface of the n-GaSb layer 10x is washed by the same method as in the first embodiment, and the n-Si substrate 3 is formed.
Is treated with HF diluted solution, washed with water and dried by spinner.

【0038】これらを洗浄した面を向かい合わせて重
ね、第一実施例と同様の方法で接着する。こうして図7
(b)に示すように、n−Si基板3とp−InP基板1
がInGaP単一歪層5〜8およびn−GaSb層10
xを介して接着された構造が得られる。接着後、p−I
nP基板1を塩酸でエッチング除去し、更にp−InG
aAs層11を硫酸と過酸化水素の混合溶液でエッチン
グ除去した。その後、通常の半導体レーザ作製プロセス
を経て電極等を形成し、長波長レーザを作製した。
These cleaned surfaces are superposed facing each other and bonded in the same manner as in the first embodiment. Thus, FIG.
As shown in (b), the n-Si substrate 3 and the p-InP substrate 1
Are InGaP single strained layers 5-8 and n-GaSb layer 10
A structure bonded via x is obtained. After adhesion, p-I
The nP substrate 1 is removed by etching with hydrochloric acid, and then p-InG
The aAs layer 11 was removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide. Then, electrodes and the like were formed through a normal semiconductor laser manufacturing process to manufacture a long wavelength laser.

【0039】本実施例では、n−GaSb層10xによ
り接着界面でのミスフィット転位の発生が抑制され、且
つ、単一歪層によって転位の伝播が阻止されるため、レ
ーザの劣化がより確実に抑制されて、劣化する素子がほ
とんどなくなった。
In the present embodiment, the n-GaSb layer 10x suppresses the generation of misfit dislocations at the adhesive interface, and the single strained layer prevents the propagation of dislocations. Almost no elements were suppressed and deteriorated.

【0040】本実施例は、第四実施例と同様にGaSb
層を介することによってミスフィット転位の発生を抑制
するが、GaSbの代りに実施例5に記載のような熱膨
張係数の小さい材料や、第六実施例に記載のような格子
定数の小さい材料等その他の材料を用いることも可能で
ある。また、単一歪層によって転位の伝播を阻止してい
るが、各々の単一歪層の代りに実施例3に記載のような
歪超格子層を用いることも可能であり、またその導入回
数は本実施例に限らない。更に、接着する基板の種類や
デバイス構造,接着方法も本実施例に限らない。
This embodiment is similar to the fourth embodiment in GaSb.
Although the occurrence of misfit dislocations is suppressed by interposing a layer, a material having a small coefficient of thermal expansion as described in Example 5 or a material having a small lattice constant as described in Example 6 instead of GaSb. Other materials can also be used. Although dislocation propagation is blocked by the single strained layers, it is possible to use strained superlattice layers as described in Example 3 instead of the single strained layers, and the number of times of introduction thereof. Is not limited to this embodiment. Furthermore, the type of substrate to be bonded, the device structure, and the bonding method are not limited to those in this embodiment.

【0041】(実施例8)本発明を光電子集積化素子
(OEIC)に適用した場合について、図8により説明
する。
(Embodiment 8) A case where the present invention is applied to an optoelectronic integrated device (OEIC) will be described with reference to FIG.

【0042】図8(a)に示すように、n−GaAs基板
2a上の一部にアンドープGaAs層31(厚さ1.0μ
m),p−AlGaAs層32(厚さ0.3μm),アン
ドープGaAs層33(厚さ1.0μm),n−GaA
sチャネル層34(厚さ0.3μm),n+−GaAsコ
ンタクト層35(厚さ0.1μm)を選択成長し、レー
ザの駆動回路として機能する電界効果トランジスタ(F
ET)を形成する。このFETおよび周辺部をSiO2
膜36でコーティングする。
As shown in FIG. 8A, an undoped GaAs layer 31 (thickness 1.0 μm) is formed on a part of the n-GaAs substrate 2a.
m), p-AlGaAs layer 32 (thickness 0.3 μm), undoped GaAs layer 33 (thickness 1.0 μm), n-GaA
The s-channel layer 34 (thickness 0.3 μm) and the n + -GaAs contact layer 35 (thickness 0.1 μm) are selectively grown, and the field effect transistor (F
ET) is formed. The FET and the peripheral portion of SiO 2
Coat with membrane 36.

【0043】一方同図(b)のようにp−InP基板1
上の一部にp−InGaAsエッチングストップ層1
1,p−InP層13,アンドープInGaAsP活性
層14,n−InP層15,InGaP単一歪層5,n
−InP層6a,InGaP単一歪層7,n−InP層
6b,InGaP単一歪層8,n−InP層9を成長
し、側面にSiO2 膜36を形成する。この後、GaA
s基板2aの露出部分とn−InP層9の表面を実施例
1と同様の方法で洗浄する。これらの洗浄した面を、図
9(a)に示すように向かい合わせて重ね、実施例1と同
様の方法で接着する。接着後、InP基板1を塩酸でエ
ッチング除去し、更にInGaAs層11を硫酸と過酸
化水素の混合溶液でエッチング除去する。
On the other hand, as shown in FIG. 3B, p-InP substrate 1
P-InGaAs etching stop layer 1 on the upper part
1, p-InP layer 13, undoped InGaAsP active layer 14, n-InP layer 15, InGaP single strain layer 5, n
-InP layer 6a, InGaP single strained layer 7, n-InP layer 6b, grown InGaP single strained layer 8, n-InP layer 9, an SiO 2 film 36 on the side surface. After this, GaA
The exposed portion of the s substrate 2a and the surface of the n-InP layer 9 are cleaned by the same method as in the first embodiment. These washed surfaces are faced to each other as shown in FIG. After the adhesion, the InP substrate 1 is removed by etching with hydrochloric acid, and the InGaAs layer 11 is removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide.

【0044】本実施例ではレーザ構造はBH(Buried
Heterostructure)構造とし、エッチングによって図9
(b)のようなメサ形状を形成し、側面を半絶縁性InP
層16とn−InP層17で埋め込む。更にp−InP
層13a,p+−InGaAsP層12を成長し、SiO2 膜3
6を追加形成する。その後、FET部にコーティングし
たSiO2 膜36を選択エッチングし、電極37を形成
してOEICを作製した。
In this embodiment, the laser structure is BH (Buried).
Heterostructure) structure and etching
The mesa shape as shown in (b) is formed, and the side surface is semi-insulating InP.
The layer 16 and the n-InP layer 17 are embedded. Furthermore, p-InP
The layer 13a and the p + -InGaAsP layer 12 are grown, and the SiO 2 film 3 is formed.
6 is additionally formed. After that, the SiO 2 film 36 coated on the FET portion was selectively etched to form an electrode 37, thereby manufacturing an OEIC.

【0045】本実施例によるOEICでFETによる半
導体レーザ駆動動作を確認した。更にレーザの動作特性
は、高温駆動状態でも劣化することはなかった。これ
は、単一歪層によって転位の伝播が阻止されたことによ
る。本発明の適用は本実施例で示したOEICの構造に
限らない。
The operation of driving the semiconductor laser by the FET was confirmed by the OEIC according to this example. Furthermore, the operating characteristics of the laser did not deteriorate even at high temperature driving. This is because dislocation propagation was blocked by the single strained layer. The application of the present invention is not limited to the structure of the OEIC shown in this embodiment.

【0046】[0046]

【発明の効果】本発明ではミスフィット転位の発生を抑
える層、若しくは伝播を抑える層を形成した後に異種基
板の接着を行うため、接着後のミスフィット転位による
結晶の劣化が抑えられる。このため、接着した構造を用
いてデバイスを作製した場合、デバイス特性が転位の影
響を受けない。
According to the present invention, since the heterogeneous substrates are bonded after forming the layer for suppressing the generation of misfit dislocations or the layer for suppressing the propagation thereof, the deterioration of the crystal due to the misfit dislocations after the bonding can be suppressed. Therefore, when the device is manufactured by using the bonded structure, the device characteristics are not affected by the dislocation.

【0047】また、本発明はいかなる組合せの異種基板
の接着にも適用が可能で、それぞれの組合せで基板間の
物性差に応じ、それを緩和するのに適した層を形成する
ことにより、結晶の劣化が抑制される。
Further, the present invention can be applied to adhesion of heterogeneous substrates in any combination, and by forming a layer suitable for alleviating the physical property difference between the substrates in each combination, a crystal is formed. Is suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す半導体装置の断面図。FIG. 1 is a cross-sectional view of a semiconductor device showing an embodiment of the present invention.

【図2】本発明の第二実施例を示す半導体装置の断面
図。
FIG. 2 is a sectional view of a semiconductor device showing a second embodiment of the present invention.

【図3】本発明の第三実施例を示す半導体装置の断面
図。
FIG. 3 is a sectional view of a semiconductor device showing a third embodiment of the present invention.

【図4】本発明の第四実施例を示す半導体装置の断面
図。
FIG. 4 is a sectional view of a semiconductor device showing a fourth embodiment of the present invention.

【図5】本発明の第五実施例を示す半導体装置の断面
図。
FIG. 5 is a sectional view of a semiconductor device showing a fifth embodiment of the present invention.

【図6】本発明の第六実施例を示す半導体装置の断面
図。
FIG. 6 is a sectional view of a semiconductor device showing a sixth embodiment of the present invention.

【図7】本発明の第七実施例を示す半導体装置の断面
図。
FIG. 7 is a sectional view of a semiconductor device showing a seventh embodiment of the present invention.

【図8】本発明を光電子集積化素子に適用した場合の半
導体装置の断面図。
FIG. 8 is a sectional view of a semiconductor device when the present invention is applied to an optoelectronic integrated element.

【図9】本発明を光電子集積化素子に適用した場合の半
導体装置の断面図。
FIG. 9 is a sectional view of a semiconductor device when the present invention is applied to an optoelectronic integrated device.

【図10】従来の半導体装置の断面図。FIG. 10 is a sectional view of a conventional semiconductor device.

【図11】従来の他の半導体装置の断面図。FIG. 11 is a cross-sectional view of another conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1…p−InP基板、3…n−Si基板、5,7,8…
InGaP単一歪層、6a,6b,9,15…n−In
P層、10x…n−GaSb層、11…p−InGaA
sエッチングストップ層、12…p+−InGaAsP
層、13…p−InP層、14…アンド−プInGaA
sP活性層。
1 ... p-InP substrate, 3 ... n-Si substrate, 5, 7, 8 ...
InGaP single strained layer, 6a, 6b, 9, 15 ... n-In
P layer, 10x ... n-GaSb layer, 11 ... p-InGaA
s Etching stop layer, 12 ... p + -InGaAsP
Layer, 13 ... p-InP layer, 14 ... And-type InGaA
sP active layer.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】第一の半導体基板と、第二の半導体基板と
を接着してなる半導体装置において、前記第一の半導体
基板と前記第二の半導体基板との間に転位低減領域が配
設されていることを特徴とする半導体装置。
1. A semiconductor device in which a first semiconductor substrate and a second semiconductor substrate are bonded to each other, and a dislocation reduction region is provided between the first semiconductor substrate and the second semiconductor substrate. A semiconductor device characterized by being provided.
【請求項2】請求項1において、前記転位低減領域を複
数層有する半導体装置。
2. The semiconductor device according to claim 1, wherein the dislocation reduction region has a plurality of layers.
【請求項3】請求項1または2において、前記転位低減
領域が単層の歪薄膜を有する半導体装置。
3. The semiconductor device according to claim 1, wherein the dislocation reduction region has a single-layer strain thin film.
【請求項4】請求項1または2において、前記転位低減
領域が歪超格子層を有する半導体装置。
4. The semiconductor device according to claim 1, wherein the dislocation reduction region has a strained superlattice layer.
【請求項5】請求項1,2,3または4において、前記
第一の半導体基板および前記転位低減領域がIII−V 族
化合物よりなる半導体装置。
5. The semiconductor device according to claim 1, 2, 3 or 4, wherein the first semiconductor substrate and the dislocation reduction region are made of a III-V group compound.
【請求項6】請求項1,2,3,4または5において、
前記第二の半導体基板がSiである半導体装置。
6. The method according to claim 1, 2, 3, 4 or 5.
A semiconductor device in which the second semiconductor substrate is Si.
【請求項7】第一の半導体基体の上に転位低減領域を形
成する工程と、前記転位低減領域の表面と第二の半導体
基体の表面とを密着させてこれらを直接接着する工程を
含むことを特徴とする半導体装置の製造方法。
7. A step of forming a dislocation reduction region on a first semiconductor substrate, and a step of adhering a surface of the dislocation reduction region and a surface of a second semiconductor substrate directly to each other. A method for manufacturing a semiconductor device, comprising:
【請求項8】第一の半導体基板と、第二の半導体基板と
を直接接着してなる半導体装置において、前記第一の半
導体基板および前記第二の半導体基板より熱膨張係数が
大きい、第三の半導体層を介して直接接着してなること
を特徴とする半導体装置。
8. A semiconductor device in which a first semiconductor substrate and a second semiconductor substrate are directly adhered to each other, wherein a thermal expansion coefficient is larger than those of the first semiconductor substrate and the second semiconductor substrate. A semiconductor device characterized by being directly bonded via the semiconductor layer of.
【請求項9】第一の半導体基板と、第二の半導体基板と
を直接接着してなる半導体装置において、前記第一の半
導体基板および前記第二の半導体基板より熱膨張係数が
小さい、第三の半導体層を介して直接接着してなること
を特徴とする半導体装置。
9. A semiconductor device in which a first semiconductor substrate and a second semiconductor substrate are directly adhered to each other, wherein a thermal expansion coefficient is smaller than those of the first semiconductor substrate and the second semiconductor substrate. A semiconductor device characterized by being directly bonded via the semiconductor layer of.
【請求項10】第一の半導体基板と、第二の半導体基板
とを直接接着してなる半導体装置において、前記第一,
第二の半導体基板の格子定数よりも小さい格子定数を有
する第三の半導体層を介して直接接着してなることを特
徴とする半導体装置。
10. A semiconductor device comprising a first semiconductor substrate and a second semiconductor substrate directly bonded to each other, wherein:
A semiconductor device, which is directly bonded via a third semiconductor layer having a lattice constant smaller than that of the second semiconductor substrate.
【請求項11】請求項8,9または10において、前記
第三の半導体層は、前記第一の半導体基板および前記第
二の半導体基板より弾性定数が小さい半導体装置。
11. The semiconductor device according to claim 8, 9 or 10, wherein the third semiconductor layer has a smaller elastic constant than the first semiconductor substrate and the second semiconductor substrate.
【請求項12】請求項8,9,10または11におい
て、前記第一の半導体基板がIII−V 族化合物よりなる
半導体装置。
12. The semiconductor device according to claim 8, 9, 10 or 11, wherein the first semiconductor substrate is made of a III-V group compound.
【請求項13】請求項8,9,10,11または12に
おいて、前記第二の半導体基板はSiである半導体装
置。
13. The semiconductor device according to claim 8, 9, 10, 11 or 12, wherein the second semiconductor substrate is Si.
【請求項14】請求項8,9,10または11におい
て、前記第一の半導体基体の上に前記第三の半導体層を
形成する工程と、前記第三の半導体層の表面と前記第二
の半導体基体の表面とを密着させてこれらを直接接着す
る工程を含む半導体装置の製造方法。
14. The method according to claim 8, 9, 10 or 11, wherein the step of forming the third semiconductor layer on the first semiconductor substrate, the surface of the third semiconductor layer and the second semiconductor layer. A method of manufacturing a semiconductor device, which includes a step of closely adhering to a surface of a semiconductor substrate and directly adhering them.
【請求項15】請求項1,2,3,4,5,6,8,
9,10,11,12または13において、前記半導体
装置が、半導体光素子あるいは光電子集積化素子である
半導体装置。
15. Claims 1, 2, 3, 4, 5, 6, 8,
9. The semiconductor device according to 9, 10, 11, 12 or 13, wherein the semiconductor device is a semiconductor optical element or an optoelectronic integrated element.
JP21953093A 1993-09-03 1993-09-03 Semiconductor device and its manufacture Pending JPH0774066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21953093A JPH0774066A (en) 1993-09-03 1993-09-03 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21953093A JPH0774066A (en) 1993-09-03 1993-09-03 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0774066A true JPH0774066A (en) 1995-03-17

Family

ID=16736928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21953093A Pending JPH0774066A (en) 1993-09-03 1993-09-03 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0774066A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283487A (en) * 1994-04-08 1995-10-27 Hitachi Ltd Semiconductor device and manufacture thereof
EP0829934A1 (en) * 1996-09-13 1998-03-18 Alcatel Method for fabricating an optoelectrical semiconductor device and a device or matrix of devices fabricated using said method
JP2012023326A (en) * 2009-09-04 2012-02-02 Sumitomo Chemical Co Ltd Semiconductor substrate, field effect transistor, integrated circuit and method for manufacturing semiconductor substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283487A (en) * 1994-04-08 1995-10-27 Hitachi Ltd Semiconductor device and manufacture thereof
EP0829934A1 (en) * 1996-09-13 1998-03-18 Alcatel Method for fabricating an optoelectrical semiconductor device and a device or matrix of devices fabricated using said method
FR2753577A1 (en) * 1996-09-13 1998-03-20 Alsthom Cge Alcatel METHOD FOR MANUFACTURING A SEMICONDUCTOR OPTOELECTRONIC COMPONENT AND COMPONENT AND MATRIX OF COMPONENTS MANUFACTURED ACCORDING TO THIS METHOD
JP2012023326A (en) * 2009-09-04 2012-02-02 Sumitomo Chemical Co Ltd Semiconductor substrate, field effect transistor, integrated circuit and method for manufacturing semiconductor substrate

Similar Documents

Publication Publication Date Title
Lo et al. Bonding by atomic rearrangement of InP/InGaAsP 1.5 μm wavelength lasers on GaAs substrates
US6207973B1 (en) Light emitting devices with layered III-V semiconductor structures
Thiis et al. Progress in long-wavelength strained-layer InGaAs (P) quantum-well semiconductor lasers and amplifiers
US6657233B2 (en) Light emitting devices with layered III-V semiconductor structures, and modules and systems for computer, network and optical communication, using such device
US5734670A (en) Semiconductor device, semiconductor laser, and high electron mobility transistor
KR100278482B1 (en) Self-excited semiconductor laser device
JPH09116225A (en) Semiconductor light emitting device
JP2969979B2 (en) Semiconductor structures for optoelectronic components
JP3474917B2 (en) Method for manufacturing semiconductor device
JP4641230B2 (en) Optical semiconductor device
JPH0774066A (en) Semiconductor device and its manufacture
JP3406376B2 (en) Method for manufacturing compound semiconductor device
JPH07249838A (en) Semiconductor laser and its manufacture
US5854090A (en) Method of manufacturing wafer bonded semiconductor laser device
US6853008B2 (en) Semiconductor device and manufacturing method thereof
US4783425A (en) Fabrication process of semiconductor lasers
JPH06268327A (en) Semiconductor light emitting element
JP3041381B2 (en) Quantum well semiconductor laser device
JPH1187764A (en) Semiconductor light-emitting device and its manufacture
JPH1084158A (en) Semiconductor laser
JP3676029B2 (en) Semiconductor laser device
JPH06349692A (en) Semiconductor device and its manufacture
KR100278624B1 (en) Semiconductor laser device
JPH08274026A (en) Semiconductor device and manufacturing method thereof
JPS63152193A (en) Semiconductor laser device